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Abstract—The spread of virtual reality and 360° video 

applications has raised research interest in developing new 

streaming techniques. On one hand, 360° videos rely on strict 

network requirements compared to conventional 2D videos. 

Realizing an adequate user experience is subject to ultra-low 

latency and huge bitrate requirements. On the other hand, 360° 

videos have distinct characteristics that allow for innovative 

streaming solutions. These solutions have benefited from the 

advancements in deep learning for optimizing the transmission 

under restricted network resources. In this paper, we review 

existing works employing deep learning in 360° video 

transmission and we highlight the challenges associated with 

360° video streaming. 
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I. INTRODUCTION 

The latest developments in multimedia technologies have 
led to the popularization of virtual reality (VR) and 360° 
videos. Users equipped with head-mounted displays (HMDs) 
can explore the spherical view of an omnidirectional video by 
moving their heads toward the desired directions. Current and 
future communication systems aim to accommodate the 
emerging multimedia applications which raise critical 
network challenges. 360° videos for instance rely on very high 
bitrates and tight latency requirements [1]. To overcome these 
challenges, viewport information has been leveraged for the 
development of resource-efficient streaming algorithms. 
Rather than transmitting whole bulky video files, viewport-
dependent streaming transmits only the parts that are within or 
adjacent to users’ viewports [2]. This in turn ensures 
substantial bandwidth reductions and more efficient use of 
resources. Projection methods such as equirectangular 
projection (ERP) and cube-map projection are usually utilized 
to transform 360° videos into 2D formats [3]. Consequently, 
the resulting 2D shapes are divided into rectangular tiles that 
can be encoded independently. Hence allowing for a more 
flexible and optimized transmission by streaming only tiles 
related to users’ viewports. HMDs normally collect users’ 
head movements and eye gaze traces and translate them into 
their corresponding viewports. These traces can also be 

utilized for predicting future users’ viewports and thus 
allowing for proactive network decisions. 

In the case of conventional 2D videos, many network 
solutions have been investigated and applied for smooth video 
streaming. Adaptive video streaming readjusts transmission 
parameters according to the varying network conditions [4], 
[5]. Edge caching can bring popular videos closer to end users 
for reduced latency and optimized bandwidth [6], [7]. In 
situations where video content is streamed to multiple clients, 
multicast transmission suggests a simultaneous transmission 
to reduce the required resources [8]. Several optimization 
techniques have been adopted to attain the best possible 
performance. Nonetheless, 360° videos differ from regular 
videos as they entertain stricter quality of service (QoS) 
requirements. Moreover, 360° videos have unique 
characteristics that can be integrated for more innovative 
solutions. 

In the past decades, machine learning (ML) and deep 
learning (DL) techniques have evolved into powerful tools 
that demonstrated significant breakthroughs in domains such 
as natural language processing and computer vision [9]. 
Advancements in communication systems made it difficult for 
conventional modeling and optimization techniques to capture 
the full complexity of such systems. Thus, the power of ML 
and DL has been also investigated and utilized in 
communication and networking problems [10], [11]. Such 
techniques prove promising in the context of 360° video 
transmission and recent work towards this direction exist. 

In this article, we review the current approaches on deep 
learning methods applied for the optimization of 360° video 
transmission. In section II, we introduce important aspects of 
viewing 360° videos and in section III we review DL-based 
viewport prediction methods. Section IV summarizes the use 
of DL in 360° video transmission. We then provide a short 
discussion and conclude our work in section V. 

II. 360° VIDEOS CHARACTERISTICS 

360° videos are typically captured by 360° camera or 
created by combining multiple scenes of distributed cameras. 
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A user watching a 360° video using an HMD can freely 
navigate the spherical view by looking in the desired direction. 
In a three degrees of freedom (3DoF) setting, a user can move 
his/her head along the pitch, yaw, and roll axes to cover the 
whole spherical scene [12]. A user’s viewport or field of view 
(FoV) is constructed based on the user’s viewing direction and 
the HMD specifications. Fig. 1 shows a user while watching a 
360° and his defined FoV. 

The spherical scene is usually mapped into a rectangular 
format and then partitioned into nonoverlapping tiles that are 
encoded and transmitted independently. Among the varied 
existing mapping schemes, equirectangular projection is the 
most common approach. In ERP, the spherical video is 
projected into a rectangular grid resulting in non-uniform 
distribution of pixels [13]. Cubemap projection stretches the 
spherical shape and projects it into the six faces of a cube. 
Although cubemap improves over ERP, the pixel density still 
varies within the sides of the cube. In view of this, equi-
angular cubemap (EAC) adjusts the sampling steps to be at 
uniform distances and assigns equal pixel densities across the 
whole scene [14]. Many other shapes and formats have been 
investigated to overcome the nonuniform pixel distribution 
including the dyadic projection [15] and the barrel projection 
[16]. Pyramid projection [17] provides a viewport-dependent 
encoding method that relies on the watched viewport. The 
pyramid encoding scheme expands the spherical video to 
cover a pyramid shape where only the user’s FoV is rendered 
at full quality. Transforming omnidirectional videos into 2D 
formats allows for leveraging powerful 2D video encoding 
methods including Advanced Video Coding (AVC) / H.264 
[18], High-Efficiency Video Coding (HEVC) / H.265 [19], 
and AV1 [20]. In 2020, Versatile Video Coding (VVC) / 
H.266 [21] was introduced to outperform previously existing 
codecs and to serve a range of applications including 360° 
video streaming. 

 
Figure 1: Viewing 360° videos. 

Efficient transmission schemes attempt to send tiles that 
comprise the user’s FoV leading to significant bandwidth 
reductions. This utilizes knowledge about the user’s viewing 
direction which can be obtained from the HMD recorded 
traces. Due to the crucial latency requirements of 
omnidirectional videos, many viewport prediction methods 
have been proposed to anticipate users’ requests and act 
accordingly in advance. Humans tend to focus on engaging 

parts within spherical videos. Analyzing viewing trajectories 
demonstrate that users’ attention is directed toward specific 
objects or scenes with high correlation among different users 
[22]. Moreover, horizontal explorations of videos (yaw) 
prevail over vertical explorations (pitch) as the vertical 
direction is usually concentrated in central regions. These 
observations can be utilized for making intelligent viewport 
predictions and for optimizing proactive 360° video streaming 
strategies. 

III. DL-BASED VIEWPORT PREDICTION 

Accurate viewport predictions are needed for a reliable 
proactive service. Consequently, many solutions have 
employed the recent advancements in DL methods. [23] 
combines content-related information including image 
saliency maps and motion maps with viewing directions 
recorded by the HMDs to obtain tile viewing probabilities. In 
this work, image saliency maps are produced offline using a 
convolutional neural network (CNN). Saliency information, 
along with motion maps and previous viewing orientations, 
are then fed to a fixation prediction network to predict future 
viewing directions. The fixation prediction network utilizes 
long short-term memory (LSTM) networks to estimate the 
upcoming viewing probabilities of video tiles. In addition to 
relying on the user’s own past viewing information, [24] 
leverages other users’ future FoVs. Considering trajectory-
based and heatmap-based input formats, the authors propose 
multiple models to tackle the different scenarios including 
LSTM seq2seq models, attentive mixture of experts (AME), 
and fully convolutional networks (FCNs). [25] employs 
LSTM for encoding users’ recorded gaze trajectories and 
CNN for extracting saliency features of the video content. The 
outputs of the two modules are combined using fully 
connected layers to predict gaze displacements between 
current and future times. A transformer-based architecture that 
uses the user’s past viewport scanpath is proposed in [26] to 
estimate the upcoming scanpath. Transformer networks 
employ self-attention layers and allow for capturing time 
dependencies in the input scanpaths. The proposed model 
results in a good long-term prediction performance with low 
computational complexity and without relying on any content-
based information. LiveROI [27] provides online viewport 
prediction to be used in live VR streaming settings. A 3D-
CNN model is adopted to identify important actions within the 
video content and interpret them through natural language. 
The extracted information is then combined with the user’s 
viewing trajectory to obtain the final predictions. 

Proactive transmission of 360° videos requires having 
reliable viewport predictions. In some transmission scenarios, 
however, it is wise to anticipate inaccuracies in viewport 
predictions by adding a margin to the predicted viewports to 
be also transmitted. In other cases, the whole panoramic video 
is rendered and sent at low resolution and only the predicted 
viewport is transmitted at the full resolution. Therefore, the 
user experience will be less affected by inaccurate predictions. 

IV. DL-BASED 360° VIDEO TRANSMISSION 

Transmitting only the tiles relevant to users’ FoVs results 
in a considerable bandwidth reduction. With tile-based 
streaming, tiles can be encoded and transmitted independently 
at different rates. Choosing appropriate tile rates according to 
channel conditions and users’ viewports to optimize the 
transmission quality can be a challenging problem [28], [29]. 
[30] first calculates future viewport predictions using LSTM 



to be utilized in optimizing the tile bitrate selection. 
Specifically, a reinforcement learning (RL) algorithm is used 
for choosing proper viewport and non-viewport tile bitrates. 
Another RL-based solution for adaptive 360° video streaming 
is proposed in [31]. A 3D-CNN model is used for obtaining 
spatio-temporal features within the video content and utilizes 
the acquired information to provide the viewport predictions. 
The selection of tiles and tile qualities is performed using RL 
according to changes in the available bandwidth and user 
viewport. Another 360° video delivery system is presented in 
[32]. This framework aims at maximizing users’ quality of 
experience (QoE) under network capacity conditions. The 
proposed tiled adaptive transmission relies on viewport 
predictions which are acquired based on the saliency and 
motion maps of the videos and head-tracking historical 
information. Two different deep learning approaches are 
investigated in this work for obtaining the tile probability 
maps. The first one is based on a CNN+LSTM architecture, 
whereas the second approach leverages 3D-CNNs. PARSEC 
[33] makes use of the underutilized computational power on 
the client side to reduce the bandwidth requirements for 
streaming 360° videos. It employs deep neural networks 
(DNNs) based super-resolution at the client side to retrieve the 
high-resolution content. Depending on the available 
computational power, available bandwidth, and viewport 
predictions, a rate adaptation algorithm is proposed to select 
which tiles should be fetched at full resolutions from the 
server and which tiles should be reconstructed from lower 
resolutions at the client side to maximize the overall QoE. 

In the presence of multiple VR users who are expected to 
consume common content, correlations among users’ 
viewports can be leveraged by multicasting the common 
viewed areas. Optimizing the multicast transmission includes 
grouping and scheduling the users according to their network 
conditions and similarities between their FoVs. In [34], a 
multicast transmission scheme is proposed in a millimeter 
wave (mmWave) communication system where groups of 
users are served by nonorthogonal beams. A deep recurrent 
neural network (DRNN) model is trained to predict users’ 
FoVs. Users are then clustered according to spatial and 
content correlations. In this work, the admission and 
scheduling subproblems are optimized to maximize the 
average frame quality under latency constraints. [35] employs 
online reinforcement learning for smart transmission mode 
selection for VR broadcasting services. The considered 
network consists of a macro cell, mmWave small cells, and 
device-to-device (D2D) clusters. Mobile VR users 
dynamically select their transmission modes based on the 
online RL scheme that maximizes the system throughput. 

Caching popular tiles closer to users reduces the 
experienced latency and avoids sending the same data 
multiple times, hence alleviating the burden on core networks. 
Optimizing caching policies involves answering the questions 
of what tiles to cache and where. [36] proposes a multi-neural 
network solution to maximize the cache hit ratio (CHR) of 
tiled 360° video transmission. Specifically, an LSTM network 
is used for video popularity predictions and a CNN network is 
adopted to perform content-based tile classification.  A 360° 
video caching and delivery framework is introduced in [37]. 
Collaborative transcoding-enabled caching is optimized using 
multi-agent deep reinforcement learning with the aim of 
reducing service latency. The assumed network consists of a 
macro base station (MBS) and multiple small base stations 
(SBSs) and employs nonorthogonal multiple access (NOMA) 

for the multicast transmission. In [38], a federated deep 
reinforcement learning (FDRL) method is adopted to optimize 
caching and rate adaptation for VR video transmission in 
hierarchical clustered mobile edge computing networks. An 
agent is trained to optimize a reward function that incorporates 
CHR, video quality, quality changes, rebuffering time, as well 
as bandwidth and transcoding costs where the performance 
analysis shows that FDRL results in improving the CHR and 
the user QoE. 

V. CONCLUSION  

The need for transmitting VR and 360° videos introduces 
new network challenges for researchers and network 
operators. Omnidirectional videos have higher bitrates and 
tolerate lower latencies than conventional 2D videos. In this 
context, innovative viewport-based and tile-based streaming 
methods aim at optimizing the transmission of 360° videos. In 
this article, we first introduced the features of 360° videos and 
the accompanying network challenges. We then discussed the 
DL techniques used for content-based and trajectory-based 
viewport prediction. Next, a review of DL solutions applied in 
optimizing 360° transmission has been provided. A range of 
DL models can be used in viewport prediction and tile-based 
360° video streaming. Applying the advanced DL techniques 
in optimizing the transmission of omnidirectional videos is a 
promising track for achieving low-cost seamless 360° video 
delivery. 
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