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Abstract—Adoption of low-code engineering in complex enter-
prise applications also increases the size of the underlying models.
In such cases, the increasing complexity of the applications and
the growing size of the underlying artefacts, various scalability
challenges might arise for low-code platforms. Task-specific
programming languages, such as OCL and EOL, are tailored
to manage the underlying models. Existing model management
languages have significant performance impact when it comes to
complex queries operating over large-scale models reaching mag-
nitudes of millions of elements in size. We propose an approach
for automatically mapping expressions in Epsilon validation
programs to VIATRA graph patterns to make the validation of
large-scale low-code system models scalable by leveraging the
incremental execution engine of VIATRA. Finally, we evaluate the
performance of the proposed approach on large Java models of
the Eclipse source code. Our results show performance speed-up
up to 1481x compared to the sequential execution in Epsilon.

Index Terms—static analysis, model querying, scalability,
graph patterns

I. INTRODUCTION

Model-driven engineering (MDE) is a software engineering

methodology that considers models as first-class citizens of the

software development process. MDE typically includes several

tasks such as model validation, transformation, code genera-

tion. These tasks usually include a common set of queries over

certain model elements. While executing these queries over

large-scale models (in order of million of elements), there is

a significant cost of computation, taxing available resources.

Low-code platforms commonly use MDE concepts to pro-

duce software, thus reducing or eliminating the need for

hand-written code. There are a number of low-code plat-

forms already available such as ZAppDev [1], Mendix [2],

OutSystems [3]. In many low-code platforms users can de-

velop applications from which platform-specific source code,

e.g., Java, can be generated. As such, low-code platforms need

to manage a larger number and size of software models, often

on cloud resources, with scalability and efficiency becoming

increasingly important. Although cloud resources can scale

elastically on-demand, but they may imply large financial

costs. Therefore, we propose an approach that can be used

not only in cloud environments.

In this paper, we propose a method to improve the perfor-

mance (primarily by reducing the execution time) of model

validations by mapping OCL-like expressions embedded in

Epsilon validation constraints to graph patterns. We have im-

plemented a prototype demonstrating our solution by mapping

Epsilon Validation Language (EVL) to VIATRA graph patterns.

The implementation of the aforementioned tool is open-source

and available on GitHub [4]. Moreover, we measured the

performance of the solution on validation rules from the

Findbugs validation suite [5].

The rest of the paper is structured as follows: Section II

introduces Epsilon and VIATRA frameworks followed by a

motivating example. Section III presents the overall EVL to

VIATRA pattern mapping approach. Section IV presents initial

performance results. Section V reviews the state-of-the-art

related to our research. Section VI concludes the paper and

suggests possible future extensions.

II. BACKGROUND

In this section, we introduce the Epsilon and VIATRA

frameworks, followed by the motivating example of the paper.

A. Epsilon

Epsilon [6] is a family of task-specific languages for per-

forming a number of model management tasks, such as vali-

dation (Epsilon Validation Language - EVL), model-to-model

transformation (Epsilon Transformation Language - ETL) and

pattern matching (Epsilon Pattern Language - EPL). All these

languages are built on the top of a base language, the Epsilon

Object Language (EOL), providing imperative constructs such

as loops, conditionals and operations (both built-in and user-

defined). EOL is inspired by OCL, a widely used language

that has a similar syntax. All languages of Epsilon support



managing models from a number of modeling technologies

(and their respective persistence formats), through a uniform

interface, the Epsilon Model Connectivity (EMC) layer. The

architecture of Epsilon is illustrated in Figure 1.

EVL ETL

EOL

EMC

EMF CSV Simulink

EPL

accesses models through

extends extends
extends

Fig. 1. Epsilon architecture

B. VIATRA

VIATRA is an open-source model query, validation and

transformation framework supporting the efficient evaluation

of model queries on top of EMF models [7], [8]. The core

language of VIATRA is the Viatra Query Language (VQL),

which allows the definition of model queries as incremental

graph patterns. A graph pattern is a graph-like structure

consisting of conditions (nodes and edges) to be matched

against a large instance model.

VIATRA provides two engines to evaluate the graph patterns

on EMF models. The first one is the incremental engine

implementing the RETE algorithm [9]. This engine computes

the pattern matches and caches them, therefore enabling incre-

mental re-evaluation of patterns. The second one is the local

search engine that employs efficient search plans to compute

and collect pattern matches [10]. Both engines benefit from

the base index that caches the base relations and objects in

the model by type [11].

C. Motivating Example

Fig. 2. An excerpt of Java metamodel

In this paper, we use the Java metamodel as a motivating

example, because it is sufficiently complex while also being

well-known and understandable by a MDE and low-code

audience. An excerpt of the metamodel is depicted in Figure 2.

We can specify several model validation constraints in EVL

for Java models conforming to the metamodel.

1 model Java driver ViatraEMF {

2 nsuri = "http://www.eclipse.org/MoDisco/

3 Java/0.2.incubation/java"

4 };

5

6 context Java!ImportDeclaration {

7 constraint allImportsAreUsed {

8 check: Java!NamedElement.all.exists(

9 ne|ne.originalCompilationUnit =

10 self.originalCompilationUnit and

11 ne.usagesInImports = self)

12 }

13 }

14

15 context Java!VariableDeclaration {

16 constraint variableIsUsed {

17 check: Java!SingleVariableAccess.all

18 .exists(sva|sva.variable = self)

19 }

20 }

21

22 context Java!CatchClause {

23 constraint exceptionIsUsed {

24 check: Java!SingleVariableAccess.all

25 .exists(sva|sva.variable =

26 self.exception)

27 }

28 }

Listing 1. Example EVL script before optimisation

Listing 1 shows three constraints called allImportsAreUsed,

variableIsUsed and exceptionIsUsed, respectively. The al-

lImportsAreUsed constraint checks that every ImportDeclara-

tion in the model is used by at least one NamedElement. The

variableIsUsed constraint checks that every VariableDeclara-

tion represented in the model is accessed at least once. Finally,

exceptionIsUsed similarly checks that every exception variable

in CatchClause is accessed at least once.

Now, if we consider evaluating these constraints over a

large Java model containing elements in the order of hundreds

of thousands, then naively executing these constraints would

be computationally expensive. If we assume the number of

ImportsDeclaration and NamedElement to be M and N respec-

tively, then the complexity of the allImportsAreUsed constraint

would be O(M*N). Similarly, the complexity of evaluating

variableIsUsed over M number of VariableDeclaration and

N number of SingleVariableAccess would be O(M*N).

In this paper, we propose a translation of these computa-

tionally expensive expressions to VIATRA patterns as depicted

in Listing 2. Although this optimization does not reduce

the computational complexity of the problem, but in many

practical cases it provides a shorter evaluation time due to the

incremental query engine (see Section IV).

1 import "http://www.eclipse.org/MoDisco/

2 Java/0.2.incubation/java"

3



Metamodel EMF Model EMF Driver

EVL
 Validation
Program

conforms to

Abstract

Syntax
Tree

Type-
resolved

AST

ViatraEMF
Driver

extends

Static
Analysis

Viatra Query
Engine

EVL to Viatra
Mapping EVL Engine Validation

Results

Viatra Engine
Bridge

Fig. 3. EVL to VIATRA mapping architecture

4 pattern Java2(sva: SingleVariableAccess,

5 self0: VariableDeclaration){

6 SingleVariableAccess.variable(

7 sva, self0);

8 }

Listing 2. variableIsUsed’s check block translated to a VQL pattern

III. PROPOSED APPROACH

In this section, we will discuss an approach for the ef-

ficient execution of model validation programs using static

analysis and automatic program rewriting. The main goal of

the proposed approach is to improve performance by reducing

execution time. This approach is illustrated in Figure 3.

A. Static Analysis

In the first step, the EVL validation program is parsed to ex-

tract its Abstract Syntax Tree (AST). Then the static analyser

produces a type-resolved AST in which the resolved types are

populated using metamodel introspection and type inference.

As EVL extends EOL, the core language of Epsilon, EVL’s

static analyser also extends EOL’s static analyser. It essentially

includes additional support for analysing expressions inside

constraints, pre and post blocks. The pre and post blocks of

an EVL program consist of EOL expressions that are executed

before and after evaluating the constraints, respectively.

B. EVL to VIATRA Mapping

In the second step, we traverse the type-resolved AST

sequentially and detect the expressions that can be optimized.

These expressions are in the form of first-order operations

operating over allInstances of a model element. In a check

block of a constraint, each expression is evaluated over all

elements of the context, thus first-order operations can be

computationally expensive for large models in this case, see

complexity measures at the end of Section II-C. Therefore, we

translate these operations to VIATRA patterns as follows:

First, the NsUri of an EPackage is extracted from the model

declaration statement (lines 2-3 in Listing 1) and mapped

to import statement in VQL (lines 1-2 in Listing 2). After

that, the body of the first-operations are translated to graph

patterns. Names of the patterns should be unique, due to VQL

naming conventions. Therefore, they are generated based on

the model name concatenated with a sequence number, see

line 4 in Listing 2.

In the operation body, we translate operator expressions

consisting of property call expressions to graph patterns in

VIATRA. Property call expressions define navigations in EOL,

e.g., sva.variable in line 18 of Listing 1 reads the variable field

of the sva object. In operator expressions, the name of the first

operand is the name of the property on which the navigation

should happen. The operator defines the comparison basis, and

the value of the second operand is the value to be compared

against. It can be either a literal value or a reference to

the single-valued result of another EOL expression. In the

latter case, the value is received as an additional pattern

parameter. Model navigations are represented by declarative

graph patterns in VQL, where the starting node is the type

of the model element, and the edge is the property used in

the property call expression. If the operator is an inequality

operator, then an additional check constraint is generated in

VQL whose body contains the inequality comparison. As an

example, let’s consider the EOL expression sva.variable = self

in line 18 of Listing 1, that is translated to SingleVari-

ableAccess.variable(sva, self0) in lines 6-7 of Listing 2 with

self0 being an additional pattern parameter in VQL (line

5 of Listing 2). In our prototype implementation [4], only

conjunctions of operator expressions are supported.

As shown in Table I, most first-order operations are trans-

lated to only one VQL pattern. However, in some cases, such

as in the reject and forAll operations, we need to generate an

additional pattern. In those cases, we look for the matches of

the negated expression, therefore the main pattern contains

a negative invocation of the second pattern (neg find).

Besides, the type of the first-order operation defines the

method to be called on the Matcher API of VIATRA with

some additional parameters used for comparing the result,

e.g., countMatches == 0.

Finally, the body of the first-order operation is replaced

by an operation call expression, encapsulating a Run Viatra

Call Parameters object that contains: (i) the generated VQL

patterns, (i) the name of the main VQL pattern that is used

to collect the pattern matches, (iii) the name and the (iv) pa-

rameter of the method to be called on VIATRA’s Matcher API,

and (v) the EOL expressions representing the extra parameters

of the patterns. The values of these expressions will be bound



TABLE I
EOL EXPRESSIONS TO VQL MAPPING

EOL expression VQL Pattern Matcher API call

Java!NamedElement.all.select(u|u.name=“main”) pattern Java1(namedElement: NamedElement) {
NamedElement.name(namedElement, “main”);

}

allMatches
Java!NamedElement.all.selectOne(u|u.name=“main”) oneArbitraryMatch
Java!NamedElement.all.exists(u|u.name=“main”) hasMatch
Java!NamedElement.all.one(u|u.name=“main”) countMatches == 1
Java!NamedElement.all.none(u|u.name=“main”) countMatches == 0
Java!NamedElement.all.count(u|u.name=“main”) countMatches
Java!NamedElement.all.nMatch(u|u.name=“main”,2) countMatches == 2
Java!NamedElement.all.atLeastNMatch(u|u.name=“main”,1) countMatches 〉= 1
Java!NamedElement.all.atMostNMatch(u|u.name=“main”,1) countMatches 〈= 1

Java!NamedElement.all.reject(u|u.name=“main”) pattern Java1(namedElement: NamedElement) {
neg find Java1internal(namedElement);

}
pattern Java1internal(namedElement: NamedElement) {

NamedElement.name(namedElement, “main”);
}

allMatches
Java!NamedElement.all.forAll(u|u.name=“main”) hasMatch == false

at runtime to the corresponding parameters of the patterns.

C. Collecting Validation Results

After the translation of optimizable EOL expressions to

VQL patterns, the EVL engine iterates through the EVL

program and evaluates the expressions. If it finds a translated

EOL expression, then the runViatra method of the ViatraEMF

driver is called, which calls the VIATRA Engine Bridge that

prepares query specifications from the textual VQL patterns,

obtains a matcher for the main specification and invokes the

corresponding method with the appropriate parameters on the

matcher. Finally, the found matches are returned to the EVL

engine, which combines them with the matches from the

unoptimized expressions and returns the validation results.

IV. EVALUATION

In order to measure the query execution time and memory

use of the proposed approach we adopted three validation

constraints (Listing 1) from the Findbugs validation suite [5]

and evaluated them on the Java MoDisco EMF model of the

Eclipse source code [5]. We compared the incremental (RETE)

and local search (LS) engines of VIATRA with the sequential

EVL engine. In the query evaluation phase, the models are

already loaded in memory, and the EOL expressions are al-

ready translated to VQL. The query rewriting took 9 ms for all

queries. The measurements were conducted on a machine with

Windows 10, Intel i7-9750H CPU @ 2.60GHz, 32 GB RAM,

Java HotSpotTM 64-Bit Server VM 13.0.1+9 (with 16 GB max

heap size).

A. Analysis of the Results

As Table II shows, the RETE engine provides the shortest

execution time, due to the incremental caching of pattern

matches. The local search engine with base index gives

similar results, due to the caching of the base relations and

objects in the model. The LS engine without base index and

the sequential EVL engine were several magnitudes slower

compared to the previous engines. The largest speed-up is

TABLE II
EXECUTION TIME OF THE ENGINES (IN MIN:SEC.MILLISECONDS)

Model size

Query engine

RETE
LS with

base index
LS without
base index

Sequential EVL

100K 0.937 1.346 03:25.720 03:25.985
200K 1.766 2.488 14:43.912 15:55.617
500K 4.315 6.056 93:00.186 106:30.364

TABLE III
MEMORY USE OF THE ENGINES (IN MB)

Model size

Query engine

RETE
LS with

base index
LS without
base index

Sequential EVL

100K 94 92 88 49
200K 141 133 126 80
500K 284 268 243 183

1481x between the RETE and the sequential EVL engine, in

the case of models with 500k elements.

Comparing the memory use of the engines in Table III, we

can observe that the RETE engine consumes the most memory,

while sequential EVL the least. Interestingly, the local search

engine without base index consumes almost the same amount

of memory as the engine with base index. This is because the

base index is initialized in both cases, but in the first case the

engine does not retrieve any object from the index.

B. Threats to Validity

Internal validity: The results reported in this paper are

computed on programs containing first-order operation calls

on all instances of model elements. If there are no such

optimisable operations and queries in the program, then the

execution time is the same as in sequential EVL.

External validity: Opposed to the local search engine of

VIATRA, the sequential Epsilon engine does not consider

opposite edges in the metamodel when creating the search



plan. Therefore, to have comparable results we used the Java

metamodel without these edges. Otherwise the local search

engine would have performed similar to the RETE engine in

both cases, due to the simplicity of the patterns.

Technical limitations: Although Viatra has a non-EMF-

based adoption in MPS [12], and the wide ranges of EMC

drivers enable Epsilon to be used with different modeling

sources, but there is no EMC driver for MPS yet. Therefore,

our solution is limited to the EMF technical space.

V. RELATED WORK

This section discusses relevant literature in the field of

model querying. In particular, we will discuss the use of query

translation approaches for optimization purposes.

In our previous work, we used static analysis for enabling

the translation from EOL to SQL [13]. A solution for efficient

querying large-scale databases is presented in [14], where

OCL queries are translated to SQL at runtime. Heidenre-

ich et al. proposed an approach for translating from OCL

to multiple query languages like SQL and XQuery using

model-to-text transformations [15]. These solutions work on

relational database backends.

Mogwai [16] is a tool to efficiently query large-scale models

persisted in NoSQL backends. It translates the scripts written

in OCL and ATL to Gremlin, a native query language for

NoSQL databases. Sanchez et al. proposed an approach for

translating OCL queries to MATLAB commands for efficiently

querying large Simulink models [17]. Bergmann et al. pre-

sented a mapping strategy from OCL to graph-based pat-

terns [18]. In their approach, they map a subset of OCL

expressions to EMF-IncQuery graph patterns.

The novelty of the approach proposed in this paper is

adding partial incrementality by just translating a part of EVL

program detected through static analysis. Only the expensive

expressions are translated to corresponding VIATRA patterns.

This is achieved as a trade-off between execution time and

memory consumption.

VI. CONCLUSION AND FUTURE WORK

We have proposed an architecture for automatically map-

ping certain expensive expressions from an EVL validation

program to VQL patterns. Mapping takes the benefit of static

type information extracted by the static analyzer from the EMF

models. The translated VQL patterns executed by the RETE

engine outperform the sequential execution of EVL validation.

We have argued that this sort of partial translation can help

model validation scale well for large-scale low-code system

models. without explicitly relying on the elastically scalable

computational resources in the cloud. Therefore, the approach

can be used in other deployment scenarios as well.

This work can be extended in further iterations to cover the

mapping of more complex expressions, e.g., navigating multi-

valued references. Besides rewriting queries to a different

language, another way to improve the performance is to use the

parallel EVL engine [5] or to cache all instances of every type

in the model. Comparing the performance of these approaches

with the RETE engine is also an interesting future direction.
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