
Digital Twin Operational Platform for Connectivity
and Accessibility using Flask Python

Matthew S. Bonney
Department of Mechanical Engineering

The University of Sheffield
Sheffield, UK

Email: m.bonney@sheffield.ac.uk

Marco de Angelis
Institute for Risk and Uncertainty

University of Liverpool
Liverpool, UK

David Wagg
Department of Mechanical Engineering

The University of Sheffield
Sheffield, UK

Mattia Dal Borgo
Department of Mechanical Engineering/ DMMS Lab

KU Leuven/ Flanders Make
Leuven, Belgium

Abstract—This paper demonstrates an example of an open-
source, modular, and system independent framework that has
been developed by a team of researchers working for the UK
based DigiTwin project. The example in this paper is based
on a framework for a digital twin operational platform (DTOP)
that uses Flask Python, and is named DTOP-Cristallo. DTOP-
Cristallo is an operational platform that uses HTML web pages
as the interface between the digital twin simulations, both
python based and 3rd party software based, and the user. This
framework is particularly useful for connectivity with users, since
it can deploy the digital twin with multiple accessibility options
to accommodate a wide variety of intended uses.

I. MOTIVATION

The digital twin concept is a hot research topic, as described
in the recent review papers — see for example [1], [2], [3],
[4], [5], [6]. In the context of engineering applications, digital
twins has four main elements (i) models (both physics- and
data-based), (ii) data, (iii) digital connectivity, and (iv) rep-
resentations of knowledge (e.g. contextual and expert knowl-
edge) [7]. In order to realise a digital twin in practice, an
operational platform is required. This will need to incorporate
the necessary software and hardware components that enables
the digital twin and user to interact with the corresponding
physical twin. In this paper we will refer to such a combination
of software and hardware as a digital twin operational platform
(DTOP). The idea of a DTOP is closely related to that of a
digital twin information system which is a concept that has
been developed in the construction industry [8].

In terms of digital twin software developments to date, most
activity has been driven by proprietary software vendors (see
review in [4]) resulting primarily in closed-source products.
However, there are major benefits by enabling interoperability
between different parts of the digital twin and even between
multiple different twins. Therefore an objective of the research
community is to create greater openness in platforms and
the associated software being used, and this is already being
pursued in the area of Internet-of-Things (IoT) — see for
example [9].

This ethos is applied to the development of an open software
that consists of a prototype web-based digital twin operational
platform called DTOP-Cristallo. The platform has been devel-
oped using the Python/Flask framework in order to provide
a user interface via web pages. This format should maximize
accessibility for as many users as possible. It also allows a
direct route for connectivity to the physical twin and other
cloud-based services that may be required. However, there
are trade-offs to be made. For example, cyber security of the
digital twin is much more difficult to manage using a web-
based platform.

The accessibility options for Flask are based on how the
user connects to the Flask server. In general, there are three
main categories of this connections as pictured in Figure 1.
The first category is a standalone connection similar to the
software developed by proprietary vendors. This allows a
single user/machine access to the digital twin. Using a stan-
dalone DTOP gives the highest level of inherent security,
but severely limits any collaborative or multi-discipline work
to be performed on the system. On the counterpoint, the
most accessible category is a server or web-based DTOP.
This allows for a multitude of users access to the digital
twin, however considerations such as security must be taken
into consideration. Additionally, this allows for easy cloud-
based resources such as virtual computing and databases. As
a compromise between these two extremes, the final category
is a LAN-based DTOP. This allows higher security of being
locally on site, access local high-performance computing, and
collaborative efforts by allowing multiple users simultane-
ously.

II. FRAMEWORK

Following the general definition of the envisaged digital
twin operational platform, in this Section we briefly outline
how the implementation of the prototype DTOP-Cristallo fits
within the general open-source framework. The language at the
core of the DTOP-Cristallo is Python, which is licensed under
the PFS license agreement. In addition to the PFS license,

Digital twin operational platform for connectivity and accessibility using flask python

1

This is a peer-reviewed, accepted author manuscript of the following paper: Bonney, M. S., de Angelis, M., Wagg, D., & Dal Borgo, M. (2021). Digital twin operational platform for 
connectivity and accessibility using flask python. In 2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C) (pp. 
239-243). IEEE. https://doi.org/10.1109/MODELS-C53483.2021.00042



Fig. 1. Connections Categories for Flask

starting from Python 3.8.6, examples, recipes, and other code
in the documentation are dual licensed under the PSF and the
Zero-Clause BSD license. The choice of Python as the core
language is because it is to date a dominant programming
language in a variety of web-based and scientific applications.
Despite the criticism about its speed, Python can also be used
to run expensive algorithms thanks to the widely available and
accessible libraries for vectorized computing like Numpy, and
high-performance computing like CUDA.

Within the Python ecosystem, Flask stands out as a server
tool for a variety of reasons. First, Flask is computationally
light-weight, is released under the BSD 2 license agreement,
and has no auxiliary requirements for accessing various aspects
such as databases, validating web forms, authenticating users
or other high-level tasks. This is in contrast to other platform
generation tools, where most choices are hard to change or
adapt to specific needs. Flask has three main dependencies:

• routing, debugging and Web Server Gateway Interface
(WSGI)

• Jinja2 template
• command-line integration with Click

Because these dependencies come with the installation of
Flask, the only requirement to run Flask is a computer with
Python installed. Flask has also been chosen because of its
accessibility and its thorough documentation, brought to life
by the popular blog of Miguel Grinberg [10].

Flask provides the flexibility to structure the code in a way
that the web-interface design is fairly independent from the
development of the underlying mathematical code. This un-
derlying mathematical code includes the code for dispatching
the information gathered from the user, recorded data, and the
pure mathematical simulations, leading to the utilisation of
high-performance computing. The design of the web-interface
can be done using the popular triad HTML5, CSS, and
Javascript for responsive, interactive and animated browser-
based graphical interfaces.

The open-source Plotly graphing libraries, under the MIT
licence, were used to make the interactive plots. There are

Fig. 2. Categorisation of the Layers of a DTOP

also working examples of Flask connecting with other popular
tools for graphical interfacing, like React.js, which opens up
exciting possibilities for non-browser-based applications. With
Flask, the popular dichotomy frontend/backend can be fully
exercised with only a few lines of code. Using Flask, the
power of the high-level Python programming language can
be fully harnessed, providing the inter-connectivity for multi-
ple micro components that range from scientific computing
to data management up to graphical interfacing. With this
setup, the broad user-base can use a browser to interact with
multiple components of the digital twin and trigger different
computations, without any particular programming knowledge,
whilst the knowledgeable user can download the open-source
project and make the necessary changes. It is the hope that
this setup will make digital twin technology more widely and
easily accessible by the engineering community.

To aid in the development of this framework, a DTOP is
separated into three levels as pictured in Figure 2. The first
layer is the interface layer. This is the layer that contains
aspects such as Flask, HTML, and the scientific simulations.
DTOP-Cristallo has been focusing on the development of this
layer with future work to incorporate and develop the other
layers. The other two layers are focused on the software and
hardware aspects of a DTOP. For the hardware aspects, the
IoT layer focuses on the connection between the digital and
physical twins. This includes the transfer of data from the
physical to digital twin via the sensors and the transfer of data
from the user to the physical twin. The last layer is the cloud
computing layer. This involves the connection of the digital
twin to remote computing options such as high-performance
computing, virtual computing, and database storage.

III. PROTOTYPE PLATFORM DTOP-CRISTALLO

DTOP-Cristallo is currently comprised of six individual
tools/simulations that are used for various engineering applica-
tions. These tools range from nonlinear dynamic simulations,
to uncertainty quantification, to comparing experimental and
numerical data. To access these tools, links are provided on
DTOP-Cristallo’s home page and the side bar on each tool.

Digital twin operational platform for connectivity and accessibility using flask python

2



Fig. 3. DTOP-Cristallo’s Home Page

This can be seen in Figure 3, which is the main home page
for DTOP-Cristallo. To discuss the programmed tools, they
are classified into three main categories, self-contained, file
IO, and 3rd party simulations.

A. Self-Contained Tools

Out of the six tools currently programmed, three of them
are fully contained in within the python programming. These
are, Design under uncertainty, Structural vibration control, and
Uncertainty propagation. While each is programmed by differ-
ent programmers with different styles, all three of these only
require the functions specifically written by the programmer
or built-in for python. For simplicity, these tools are split
into two separate files: one that contains the scientific code,
or functions, that perform the main calculations through the
input by the user and the other one that interacts with Flask,
gathers the user’s input, call the main calculation, and sends
the results back to Flask. This separation is particularly useful
for the development of DTOP-Cristallo because it minimizes
the required knowledge for a new programmer to have in order
to contribute with their scientific code.

To demonstrate how the user interacts with DTOP-Cristallo
and the programmed tools, Figure 4 shows the input selection
options used in the structural vibration control tool. This tool
investigates three distinct vibration control algorithms that can
be used to reduce the resonance response of a mechanical
structure. In general, this is very important in order to reduce
the large oscillations that the structure can experience during
an external harmonic excitation such as an earthquake or wind-
based loading. These various algorithms include both passive
and active methods to achieve this result. The user can apply
various algorithm parameters in order to determine an optimal
set of parameters.

This tool shows how a user interacts and gives parameter
values to the simulation. Since the interface is written in
HTML, the input can be a variety of values. For this specific
tool, there are Boolean input, text-based numerical values,
and numerical sliders. Some other possible inputs include
text entries and file locations. Once the user has made their

Fig. 4. User’s Input Options for Structural Vibration Control Tool

selection, the information is sent to Flask and the tool upon
clicking the “Simulate” button below the parameter boxes.

B. File IO Tools

The second category of tools relate to the use of external
data through data-files that store information. There are two
tools in DTOP-Cristallo that fall under this category, Nonlinear
control-based continuation and Experimental cross-validation.
These are categorised by the use of an external file that is
maintained within the Git repository. For the experimental
cross-validation, both previously calculated numerical model
and experimental results are stored as numpy arrays. This
tool gathers the information from the arrays and plots them
against each other. An example of this information is seen
in Figure 5. Currently, this tool purely plots the comparison
between the prototypes and their numerical models. However,
this tool can be expanded to test and quantify a few different
important aspects. One of the most important aspects that it
can quantify is the part-to-part variability that is inherent from
manufacturing tolerances and material variability. Since four
nominally identical prototypes were constructed at separate
locations using different material stock, the dynamic charac-
teristics of this structures are different from each other. While
this is expected, keeping the variability to acceptable levels is
important to ensure the system’s robustness.

The nonlinear control-based continuation uses the files in
a more interactive method by both reading and writing to
the saved numpy arrays. This tools consists of two frequency
sweeps (both increasing and decreasing) and a numerical
continuation on the nonlinear properties of the structure. To
perform the calculations, each evaluation appends its value to
the numpy array that is saved in the file. While this method of

Digital twin operational platform for connectivity and accessibility using flask python

3



Fig. 5. Example Output of Experimental Cross-Validation Tool

Fig. 6. Default Mesh Used in the Finite Element Analysis Tool

programming is not optimal, it does showcase an interesting
implementation that can be utilised for other systems.

C. 3rd Party Simulations Based Tools

The last category currently implemented into DTOP-
Cristallo is based on the connectivity to external programs.
There is currently one tool that fits within this category, which
is finite element analysis. This tool takes in user parameters
such as, material properties, analysis parameters, and mesh
information, then generates an ABAQUS run script that can
perform the finite element analysis. The system with the
default mesh size can be seen in Figure 6. Finite element
analysis is a very commonly used simulation in structural
design. This tool is particular because it is able to modify
the material properties and predict the dynamic characteristics
of the structure. There are two main uses of this tool with the
first being a model calibration procedure. This would incor-
porate experimental data and modify the material properties
to accurately model the physical twin. The other use is for
investigating a possible material/heat treatment change.

In order to perform this analysis, the tool takes some
required data (geometry data, material assignment, etc.) from a
text file, then combines that information with the user provided
values to generate a python-based run script. ABAQUS, since
it is based in python, can take this run script and perform
the finite element analysis. This generates multiple files, but
with two main files of interest are the output database ∗.odb
and the text-based report ∗.dat. Both of these files contain the

main simulation results, namely the natural frequencies, for
the simulation. This can also be partially classified as a file
IO tools since it uses verbose text files to create a python run
script file. The reason for this separate category is the fact that
DTOP-Cristallo also calls ABAQUS to run the analysis.

IV. REMARKS

DTOP-Cristallo https://github.com/Digital-Tw
in-Operational-Platform/Cristallo uses a vari-
ety of tools that is commonly used in structural engineering
design. This is developed as a system-based example of the
uses of a DTOP. With this use, DTOP-Cristallo mimics a
portion of what is commonly sold in the industry as a digital
twin, but in an open-source and modular nature compared
to the proprietary and bespoke software sold. A DTOP can
also be used for a research project, but is not demonstrated
within DTOP-Cristallo. In a similar DTOP, it is being used
for designing experimental testing. This connects the results
from an experiment that automatically get stored in a database,
performs an analysis, then gives the experimental conditions
for the proceeding experiment. For this system, the DTOP
determines the next environmental temperature used to create
an accurate temperature-dependent surrogate model using the
minimum number of experimental results within a specified
budget.

DTOP-Cristallo is a novel tool that demonstrates an open-
source and modular framework for using an operational plat-
form to implement and access a digital twin. It contains a
selection of commonly used simulations/analyses tools for a
variety of structural dynamic systems. Flask is used for DTOP-
Cristallo to provide a flexible interface for accessing the digital
twin and its tools. DTOP-Cristallo gives access to the digital
twin of a scaled three-storey structure and is able to perform
a variety of simulations and give access to experimental data.

Current work in the development of DTOP-Cristallo is
focused on two main aspects. The first aspect is the implemen-
tation and study of the connectivity between the digital and
physical twins in an open-source framework. This is mainly
comprised of two parts, first is the reading of sensors using
the DTOP and secondly is the sending of information to
the physical twin for situations such as manual earthquake
mitigation or shutdown. The second aspect is centered around
the development of a server-based version. This gives access
of the digital twin to the approved users from any location
and device that has internet access. Having this increases in
accessibility greatly expands the usability of digital twins for
remote systems and international projects.

ACKNOWLEDGEMENT

The authors would like to acknowledge the support
of EPSRC via grant number EP/R006768/1. All the
code and data presented in this paper can be accessed
at the following GitHub repository: https://github.com/
Digital-Twin-Operational-Platform/Cristallo

Digital twin operational platform for connectivity and accessibility using flask python

4

https://github.com/Digital-Twin-Operational-Platform/Cristallo
https://github.com/Digital-Twin-Operational-Platform/Cristallo


REFERENCES

[1] A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital twin: Enabling
technologies, challenges and open research,” IEEE Access, 2020.

[2] D. Jones, C. Snider, A. Nassehi, J. Yon, and B. Hicks, “Characterising
the digital twin: A systematic literature review,” CIRP Journal of
Manufacturing Science and Technology, 2020.

[3] M. Liu, S. Fang, H. Dong, and C. Xu, “Review of digital
twin about concepts, technologies, and industrial applications,”
Journal of Manufacturing Systems, 2020. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0278612520301072

[4] R. Minerva, G. M. Lee, and N. Crespi, “Digital twin in the iot context:
a survey on technical features, scenarios, and architectural models,”
Proceedings of the IEEE, vol. 108, no. 10, pp. 1785–1824, 2020.

[5] D. J. Wagg, K. Worden, R. J. Barthorpe, and P. Gardner, “Digital Twins:
State-of-the-Art and Future Directions for Modeling and Simulation
in Engineering Dynamics Applications,” ASCE-ASME Journal of
Risk and Uncertainty in Engineering Systems Part B Mechanical
Engineering, vol. 6, no. 3, 05 2020, 030901. [Online]. Available:
https://doi.org/10.1115/1.4046739

[6] S. A. Niederer, M. S. Sacks, M. Girolami, and K. Willcox, “Scaling
digital twins from the artisanal to the industrial,” Nature Computational
Science, vol. 1, no. 5, pp. 313–320, 2021.

[7] P. Gardner, M. Dal Borgo, V. Ruffini, A. J. Hughes, Y. Zhu, and
D. J. Wagg, “Towards the development of an operational digital twin,”
Vibration, vol. 3, no. 3, pp. 235–265, 2020.

[8] R. Sacks, I. Brilakis, E. Pikas, H. S. Xie, and M. Girolami, “Construc-
tion with digital twin information systems,” Data-Centric Engineering,
vol. 1, 2020.

[9] M. Platenius-Mohr, S. Malakuti, S. Grüner, J. Schmitt, and T. Gold-
schmidt, “File-and api-based interoperability of digital twins by model
transformation: An iiot case study using asset administration shell,”
Future Generation Computer Systems, vol. 113, pp. 94–105, 2020.

[10] M. Grinberg, Flask web development: developing web applications with
python. ” O’Reilly Media, Inc.”, 2018.

Digital twin operational platform for connectivity and accessibility using flask python

5

http://www.sciencedirect.com/science/article/pii/S0278612520301072
http://www.sciencedirect.com/science/article/pii/S0278612520301072
https://doi.org/10.1115/1.4046739

	Motivation
	Framework
	Prototype Platform DTOP-Cristallo
	Self-Contained Tools
	File IO Tools
	3rd Party Simulations Based Tools

	Remarks
	References



