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Høgskulen på Vestlandet
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Abstract—Behavioral models play an essential role in Model-
driven engineering (MDE). Keeping inter-related behavioral
models consistent is critical to use them successfully in MDE.
However, consistency checking for behavioral models, especially
in a heterogeneous scenario, is limited.

We propose a methodology to integrate heterogeneous behavi-
oral models to achieve consistency checking in broader scenarios.
It is based on aligning the respective behavioral metamodels by
defining possible inter-model relations which carry behavioral
meaning. Converting the models and their relations to a behavi-
oral formalism enables analysis of global behavioral consistency
using model-checking.

I. PROBLEM

A significant motivation for MDE is to handle the increasing
complexity of software systems by a clear separation of
concerns [1]. In the multi-view modeling approach, a set of
models is developed for the different aspects of a system.
Consequently, it is likely that separate groups of people work
independently on different parts of the system. However, this
separation of concerns causes problems because models must
be kept consistent, i.e., they should not contain contradicting
information [2]. Without this inter-model consistency, MDE
cannot deliver on the promised productivity increase and error
reduction [3].

Inter-model consistency is especially problematic when the
used models are heterogeneous: Firstly, structural models
such as class diagrams and entity-relationship diagrams ex-
ist. Secondly, behavioral diagrams are used to describe the
dynamics of a system. Widely used diagrams or formalisms
for specifying behavior are state machines, activity diagrams,
Petri nets, and process algebras.

Inter-model consistency for structural models has been
researched extensively. One promising approach is model
weaving [4], which establishes links between models with
the goal of automatic consistency checking. Typically, these
inter-relations focus on structural aspects, such as identity,
usage, dependency, and refinement [5], [6]. They are called
correspondences on the metamodel level and commonalities
on the model level [7], [8]. Inter-model constraints can then
be defined and automatically be checked. This works by
either merging individual models to a global model using
commonalities [9] or establishing a comprehensive view of
the global model [7].

However, there is no general approach to check global
behavioral consistency on a collection of models, sometimes

called semantic consistency. Behavioral models describing
interacting parts of a system should be checked for deadlocks,
live-locks, and other system-specific requirements. This is
generally not problematic if the models conform to the same
formalism or modeling language. Nevertheless, in a heteroge-
neous case, one still wants to define interactions between the
models and check behavioral consistency.

Using only one formalism or modeling language for beha-
vioral models is not feasible since one wants to use the most
suitable formalism or modeling language in each situation. The
modeling formalisms used in each case depend on the system
requirements, existing software landscape, and the knowledge
and preferences of the responsible developers.

There can also be consistency rules spanning structural and
behavioral models. For example, messages to objects in a
Unified Modeling Language (UML) sequence diagram must
match the corresponding classes methods in a class diagram
[10]. We will focus on behavioral consistency before address-
ing consistency between structural and behavioral models in
future work.

II. RELATED WORK

[11] investigates the consistency of object-oriented beha-
vioral models formulated as capsule statecharts in UML-
RT. Consequently, they deal with a homogeneous model-
ing environment where all behavioral models are developed
in the same modeling language. The authors use the term
semantic consistency instead of behavioral consistency. To
check behavioral consistency, they map statechart models to
Communication Sequential Processes (CSP). Using the well-
defined semantics of CSP, they validate deadlock freeness and
the processes compliance to a previously defined communica-
tion protocol. Their proposed general methodology to analyze
consistency is to find a suitable semantic domain and map the
models into it. The semantic domain can then be exploited to
check the consistency.

Based on this methodology, consistency checking for se-
quence diagrams and statecharts was developed in [12]. The
consistency requirement claims that all possible interactions
specified within sequence diagrams for each class should be
possible regarding the behavior of that class defined in a
statechart. As a semantic domain, the authors have successfully
used CSP again.
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Besides process algebras such as CSP, different types of
Petri nets are used for behavioral consistency checking. In
[13], Petri nets were used to check consistency for sequence
diagrams and statecharts. [14] analyses sequence diagrams
in the context of embedded systems using a transformation
to Petri nets. Consistency for UML activity diagrams was
checked using Petri nets in [15].

In practice, one could encounter a situation where the
combination of state machines, process algebras, Petri nets,
and activity diagrams is desired1. It is possible to check
behavioral consistency using our proposed approach even
in heterogeneous modeling scenarios. This leads to more
freedom of choice regarding behavioral modeling and model
combinations. In addition, behavioral models of higher quality
can be achieved, which lay the foundation for successful and
effective MDE.

Approaches that cover heterogeneous scenarios and allow
for model simulation, which can be used for behavioral
consistency verification, are Ptolemy [16] and GEMOC studio
[17]. However, they lack formal semantics, or in the case of
Ptolemy, formal semantics have been developed afterwards
[18].

III. PROPOSED SOLUTION

The proposed solution builds on the methodology presented
in [11] but introduces a new step inspired by the multi-model
consistency management process for structural models defined
in [7]. The proposed solution can be summarized by the four-
step process in Figure 1. We will explain it in detail now.

1. Consistency
Specification 2. Model Alignment 3. Transformation to

a semantic domain
4. Consistency

Verification

Fig. 1. Behavioral Consistency Management Process

A potential consistency problem for a set of behavioral
models triggers the consistency management process. The first
step of the process begins with a problem discussion and an in-
formal problem statement. The step concludes by formalizing
the consistency problem. To formalize the problem, one should
add atomic propositions to the states of the individual models
with the problem statement in mind. Then, we can calculate
the disjoint union of all atomic propositions and use this set
of propositions to formalize our constraint in a temporal logic
as if we had one model describing the global system.

To check inter-model consistency for structural models, one
defines inter-relations between models on the metamodel level
and the model level to describe overlaps in information [7],
[19]. We propose a similar approach for behavioral models
based on inter-model relations. The inter-model relations on
the metamodel level define how behavioral models can co-
ordinate. Thus, we call them coordinations. The inter-model
relations on the model level should state how models interact,

1The merger of two companies and their IT-infrastructures could for
example cause heterogeneity in the used modeling languages.

which leads to the composite system’s behavior. Consequently,
we call them interactions.

The second step is to define inter-model relations, i.e.,
coordinations and interactions. Firstly, one has to define coor-
dinations that align the metamodels. For this approach to work,
there must be a metamodel for each used model. However,
developing a metamodel if it is not already present is a
one-time expense. Similarly, metamodel alignment must be
only done once. In section VI, we will align the metamodels
for finite state machines and Petri nets. In the future, other
formalisms can be integrated similarly. Secondly, one must
align the models by defining interactions between them. For
example, the synchronization of a transition in a state machine
with a transition in a Petri net could be specified. Model
alignment is also an essential activity in the multi-model
consistency management process for structural models [7].

The third step in the process is to transform the models into
a suitable semantic domain respecting their interactions. By
including the inter-model relations in the transformation, we
can deal with a heterogeneous modeling scenario compared
to the original methodology in [11]. A feasible approach is
to translate each model individually and then combine them
according to the defined interactions.

We will use graph grammars as a behavioral formalism for
the model execution (see section VI) for the following reasons.
Many behavioral formalisms have been described by graph
grammars, for example, state machines [20], [21], Petri nets
[22], the π-calculus [23], and workflow models [24]. Using
graph grammars, one stays on a higher level of abstraction
than, for example, transition systems as a semantic domain.
This has the advantage that the state space generated by
graph grammars is better understandable. Counterexamples for
consistency constraints should be easier to understand because
we stay closer to the original modeling formalisms. Being on
a higher level makes it easier to implement different com-
munication variants such as synchronous and asynchronous
message passing. In addition, structural models are formalized
as graphs or graph-like structures [7], which can lead to an
integration of behavioral and structural models using graph
transformations in the future. However, the semantic domain
is interchangeable if there is an interpretation for the given
models and their interactions.

The fourth step in the process is concerned with verifying
the specified behavioral consistency. The semantic domain
should generate a state space for the overall system that
is related to the original models. This should allow us to
attach the atomic propositions from the individual models to
the generated state space. Thus, one gets a Kripke structure
(state space and atomic propositions [25]) to check behavi-
oral constraints. Besides checking general properties such as
deadlocks, the model-specific constraints defined in step one
should be checked. We aim to reuse existing model checkers
to evaluate the defined constraints on the resulting Kripke
structure.

In the best case, the specification of constraints is inde-
pendent of the choice of the semantic domain, such that the



behavioral constraints can be checked automatically. Gener-
ally, user input is also possible in this step if the chosen
semantic domain does not precisely match the previously
defined constraints. However, this is not desirable since the
semantic domain should be mostly hidden from the user.

IV. PLAN FOR EVALUATION AND VALIDATION

To evaluate our methodology, we plan to implement a tool
for behavioral consistency checking. It should come with a
textual Domain Specific Language (DSL) for metamodel and
model alignment, automatic transformations to a semantic
domain, and the semantic domain’s implementation, including
consistency verification. For graph grammars, one can use
tools like GROOVE [26], [27], or Verigraph [28] to generate
a state space from a graph grammar.

The developed tool serves as a basis for evaluation and
validation. At first, we plan to validate if the tool sufficiently
covers frequent combinations of behavioral models found
in the literature and industry. Afterward, we will evaluate
the tool based on its performance and scalability by either
increasing the number of behavioral models and their size or
the computing resources available. Finally, we will compare
our approach to the approaches taken by GEMOC studio
[17] and Ptolemy [16]. The comparison will be based on
the evaluation criteria mentioned before and the supported
behavioral model heterogeneity.

V. EXPECTED CONTRIBUTIONS

We plan to make the following contributions:
• A new methodology for behavioral consistency checking

in heterogeneous cases.
• Metamodels and metamodel alignments for common be-

havioral modeling formalisms.
• A semantic domain for advanced behavioral consistency

checking.
Besides these theoretical contributions, we plan to develop a
modeling tool for metamodel and model alignment and beha-
vioral consistency checking following the proposed method-
ology.

VI. CURRENT STATUS

Our work on behavioral consistency has just started, such
that we do not have a finished implementation of the following
theoretical aspects yet. So far, finite state machines and Petri
nets have been considered as behavioral models/formalisms.

We will use the example models depicted in Figure 2
to explain the current status of our work by following the
proposed methodology. Figure 2 depicts three state machines,
SM1-SM3, and a Petri net N1 (ignore the cyan connections
for now). As a convention, Petri net edges have the weight one
if not explicitly stated otherwise. The state machines SM1 and
SM2 represent two resources that can be acquired and released
by the processes defined by SM3 and N1. SM3 acquires both
resources, does some work, and then releases them, while the
three processes modeled in the Petri net N1 only need one
of the two resources to do their work. What each process

is doing with the resources is kept abstract. However, in
practice, we often face situations in which multiple processes
are competing for the same resources.

One could have used Petri nets to model the state machines
in Figure 2. Nevertheless, we have used state machines to
model most processes of the running example since the extra
features of Petri nets were not needed. In this case, the
difference between a Petri net model and a state machine
model for a resource is tiny, but in general, one formalism
can be better suited for a given aspect of a system.

A reasonable consistency requirement for the overall system
resulting from executing the models in parallel is that all
processes always finish their execution. In addition, each
resource is accessed by at most one process at a time. Thus,
we formulate the following constraints:

1) Successful termination: The state where both resources
are available while SM3 is in its final state and N1

has three tokens in the place end should eventually be
reached.

2) Proper resource one access: There can be at most one
token in the places r1 while SM3 is in the state start or
end. If SM3 is not in the state start or end, there must
be no token in the places r1.

3) Proper resource two access: There can be at most one
token in the places r2 while SM3 is not in the state
work. If SM3 is in the state work, there must be no
token in the places r2.

The constraints can be formalized using temporal logic by
assigning appropriate atomic propositions to the mentioned
states. The first constraint can be seen as a liveness property,
while the last two constraints describe safety properties.

To check our constraints, we need to define finite state
machines and Petri nets, state their respective metamodels,
and align them. After that, we can align the models of our
running example depicted in Figure 2.

Definition 1 (Finite state machine). A finite state machine
M = (S,Σ, δ, s0, F ) consists of a set of states S, a finite
alphabet Σ, a state transition relation δ ⊆ S × Σ × S, an
initial state s0 ∈ S and a set of final states F ⊆ S [29].

Figure 3 depicts the metamodel M1 for finite state ma-
chines. In the remainder of this paper, we will use the term
state machines to refer to finite state machines. In addition to
Definition 1, we added names to states and state machines.
The finite alphabet Σ is not made explicit but can be derived
by the transition names of a given state machine. The clouds
in Figure 3 depict concrete syntax elements inspired by UML
statecharts. The concrete syntax elements for state machines
and the one following for Petri nets are already used in
Figure 2.

Definition 2 (Petri net). A Petri net N = (P, T, F, ω) consists
of a finite set of places P , a non-empty finite set of transitions
T (T ∩ P = ∅), a flow relation F ⊆ (P × T )∪ (T × P ), and
a weighting function ω : F → N [29].



1-Resource-Processes

end
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Fig. 2. Example models SM1, SM2, SM3, N1, and their interactions

*

*

1 1

states

transitions

from to

startState 1

StateMachine

name: String

State

name: String

Transition

name: String

finalStates

*

Fig. 3. Finite state machine metamodel M1

Figure 4 illustrates the metamodel M2 for Petri nets2. In
addition to Definition 2, places have a set of tokens since
we want to model states of Petri nets, which are token
distributions. We again added names to transitions, places,
edges, and the Petri net itself. The concrete syntax for the
metamodel is also given, where edge weights should be written
above the arrow depicting the edge. The default weight is one
if no weight is specifically stated.

Aligning the metamodels for finite state machines and Petri
nets is straightforward since both formalisms rely on transi-
tions to change the application state. Consequently, transitions
are aligned, as shown in Figure 5. The inter-model relation
relating the two is called synchronous communication and
should be interpreted as two transitions firing simultaneously,
i.e., handshaking in a semantic domain. One could also add an

2Formally edges representing elements of the flow relation can have transi-
tions or places as source and target which does not conform to Definition 2.
We will ignore this issue for now, since we do not want to introduce constraints
to the metamodel.

1

PetriNet

name: String

Edge

name: String

weight: Integer

Transition

Node

name: String

Place Token
*

*

*

tokens

1

source

target

Fig. 4. Petri net metamodel M2

inter-model relation for asynchronous communication between
transitions.

TransitionTransition

name: String

SynchCommunication

Fig. 5. Alignment of the metamodels M1 and M2

It is sufficient to interpret Figure 5 as defining the existence
of a set of pairs of transitions SynchCom ⊆ δ×T . A different
formalization suitable for more complex model alignment is
the comprehensive system construction [7].

The cyan connections in Figure 2 suggest the model align-
ment for our running example. All acquire r1/acquire r2
transitions are synchronized with the acquire transition for the
resource 1/2. Formally we obtain four sets of synchronizations
since we have two models synchronizing with two resources.
Aligning the state machine metamodel with itself (formally
needed for the alignment of SM2 and SM3) is not explicitly
shown but is analogous to the alignment shown in Figure 5
for Petri nets. The model alignment states how the models



interact with each other, which is crucial for the state space
generation in the chosen semantic domain.

We will choose graph grammars as a semantic domain for
the reasons stated earlier, but one could also choose a different
domain or switch in the future. Our approach is to transform
each model into a graph grammar and combine the resulting
grammars to realize the defined coordination between the
models. The semantic domain of graph grammars is defined
as follows.

Definition 3 (Graph grammar). A graph grammar GG =
(S, P ) consists of a start graph S and a set of production
rules P [22].

Definition 4 (Production rule). A production rule P = L
l←

K
r→ R consists of graphs L, K, R, and injective graph

morphisms l : K → L and r : K → R [22].

Informally speaking, elements in R but not in L are added
by a rule, while elements in L and R are preserved. A rule
deletes elements that are in L but not in R.

The transformation from Petri nets to graph grammars is
based on the semantics defined in [22]. We assume that the
token distribution in a Petri-net model pn corresponds to its
initial state. Thus, the start graph is given by the graph, which
only contains the places and tokens from pn. Each transition
is transformed to a production rule which removes tokens
from the incoming places of the transition and adds tokens to
the outgoing places of the transition according to the defined
weights. For the Petri net N1, the resulting graph grammar
will have six rules, where each rule removes one token from
the previous place and adds one token to the following place.

The initial state of a graph grammar representing a state
machine is given by the graph only containing its start state.
Again, each transition is transformed to a production rule that
removes the transition’s source state and adds the transition’s
target state. Consequently, during the execution of a state
machine, the corresponding graph will always only contain
the current state.

Combining a set of graph grammars for state machines and
Petri nets is given by the union of start states and the merge of
production rules. All production rules without synchronization
carry over unchanged. Every pair in a SynchCom set leads to
one rule where the three graphs of the rule are the component-
wise union of the two underlying rules.

In our running example, the synchronization (cyan con-
nection) between SM1 and N1 leads to the rule shown in
Figure 6. However, since we have four synchronization sets,
we also get a joint rule where acquire of SM1 synchronizes
with acquire r1 in SM3. This means resource one either
synchronizes with N1 or SM3, but never both.

The state space generated by the final graph grammar is es-
sentially a combination of states of the individual state spaces.
Consequently, we can carry over the atomic propositions from
the individual models and even check local constraints for
individual models in the global state space. More interestingly,

L K R

start

r1

start

r1

start

r1

r1 available r1 acquired

Fig. 6. Resulting rule (acquire, acquire r1) for Figure 2

one can check the inter-model behavioral constraints defined
earlier using the union of atomic propositions.

For our running example, we would generate the state
space from the previously obtained graph grammar and attach
the set of defined atomic propositions. Afterwards, we can
check the consistency constraints formulated in the first step
of the consistency management process. Eventual counterex-
amples to our constraints should be understandable since the
graph grammar directly operates on instances of the defined
metamodels. We checked the behavioral consistency for our
running example using Groove3.

We plan to finish the theoretical foundations in the next
few months by defining executable algorithms for the trans-
formation of state machines and Petri nets to the semantic
domain. Afterwards, during the last month of this year, we
plan to implement a prototype to automate the transformation
to the semantic domain, including consistency verification. In
parallel, we integrate the π-calculus in the semantics domain
of graph grammars inspired by [23]. Other popular behavioral
models such as UML activity diagrams and Business Process
Modeling Notation (BPMN) models should be investigated in
the near future.

VII. CONCLUSION

We proposed a methodology for handling heterogeneous
behavioral model consistency. To the best of our knowledge,
current approaches only offer limited consistency checking
in a heterogeneous scenario. To cope with heterogeneity,
metamodel and model alignment are proposed inspired by the
model alignment of structural models.

Furthermore, we have proposed graph grammars as a suit-
able semantic domain for behavioral consistency checking.
Finite state machines and Petri nets, as two fundamental be-
havioral formalisms, have been encoded in the graph grammar
domain. Their metamodels have been aligned, and the intended
synchronization semantics were highlighted using a running
example.

Possible future work is adding asynchronous communica-
tion, synchronizing multiple Petri net transitions with one state
machine transition, or synchronizing more than two transitions
from different models with each other. In addition, more
behavioral modeling formalisms must be included to allow for
more heterogeneity. One could also aim to include continuous-
time models for more diverse modeling scenarios.

3https://github.com/timKraeuter/MODELS-2021-Doctoral-Symposium/
tree/main/example implementation groove.

https://github.com/timKraeuter/MODELS-2021-Doctoral-Symposium/tree/main/example_implementation_groove
https://github.com/timKraeuter/MODELS-2021-Doctoral-Symposium/tree/main/example_implementation_groove
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