
Development of a Meta-language and its Qualifiable
Implementation for the Use in Safety-critical

Software
Vanessa Tietz

Institute of Aircraft Systems
University of Stuttgart

Stuttgart, Germany
0000-0002-5942-5893

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—The use of domain-specific modeling for develop-
ment of complex (cyber-physical) systems is gaining increas-
ing acceptance in the industrial environment. Domain-specific
modeling allows complex systems and data to be abstracted
for a more efficient system design, development, validation, and
configuration. However, no existing (meta-)modeling framework
can be used with reasonable effort in certified software so far,
neither for the development of systems nor for the execution of
system functions. For the use of (development) artifacts from
domain-specific modeling in safety-critical processes or systems
it is required to ensure their correctness by either subsequent
(manual) verification or the usage of (pre-)qualified software.
Existing meta-languages often contain modeling elements that
are difficult or impossible to implement in a qualifiable manner
leading to a high manual, subsequent certification effort. There-
fore, the aim is to develop a (meta-)modeling framework, that
can be used in certified software. This can significantly reduce
the development effort for safety-critical systems and enables
the full advantages of domain-specific modeling. The framework
components considered in this PhD-Thesis include: (1) an essen-
tial meta-language, (2) a qualifiable runtime environment, and (3)
a suitable persistence. The essential (meta-)modeling language is
mainly based on the UML standard, but is enhanced with multi-
level modeling concepts such as deep instantiation. Supporting
a possible qualification, the meta-language is implemented us-
ing the highly restrictive, but formally provable programming
language Ada SPARK.

I. PROBLEM AND MOTIVATION

Domain-specific modeling (DSM) is commonly used for
the development of complex cyber-physical systems and
software. In DSM, the model elements represent objects of
the real application domain. This allows complex systems
and data to be abstracted in order to achieve a more efficient
design, development, validation and configuration. The
higher abstraction level of domain-specific models allows
complex structures and relationships to be represented and
efficient automation processes like the automatic generation
of development artifacts to be introduced. (Meta-)modeling
frameworks can be used in the development of (cyber-
physical) systems as well as in software for the execution of
system functions handling complex data structures. A variety
of frameworks, such as the Eclipse Modeling Framework

(EMF) [1], the Generic Modeling Environment (GME) [2],
Matlab Simulink [3] and System Composer [4] or SCADE
[5] are available for DSM. Nevertheless, there are only a
few examples where the artifacts created with DSM are
utilized to support the certification process or as part of
safety-critical software. This is mainly due to the fact that
the required subsequent (manual) qualification effort to
ensure the correctness of the artifacts is disproportionately
high for the user of the (meta-)modeling framework.
For qualification, the user must provide proof that the
(development) objectives specified in standards such as DO-
178C [6] or ISO26262 [7] are complied with. This includes,
proof of the absence of undesirable behavior, compliance with
predefined requirements and proof of test coverage by means
of coverage metrics. It is possible to reduce the subsequent
qualification effort by using a pre-qualified (meta-)modeling
framework or at least components of the framework assisting
the tool user in conducting the qualification processes.
Therefore, the aim of the PhD-Thesis is to develop parts
of a qualifiable (meta-)modeling framework applicable in
safety-critical software. In this context, the term framework
is related to a tool that can be used in (safety-critical)
software, which at least consists of a meta-language and a
runtime. The (meta-)modeling framework shall support the
development process of safety-critical systems as well as
system functions where complex data models are needed
e.g. predictive maintenance or artificial intelligence. All
implied problems of current (meta-)modeling frameworks are
described in more detail below to motivate research questions.

Problem 1 - Many meta-modeling languages are hardly
usable in the safety-critical domain: Existing meta-languages
are general-purpose and, therefore highly complex in
their structure, and contain modeling elements whose
implementation might not be qualified due to imprecisely
defined or non-deterministic behavior in the implementation.
If the artifacts created with such a meta-language can be
qualified, then only with high subsequent (manual) effort.
Elements that are difficult to qualify include, for example,
opposite-references and proxies, which are very complex

ar
X

iv
:2

11
1.

04
32

2v
1 

 [
cs

.S
E

] 
 8

 N
ov

 2
02

1

https://orcid.org/0000-0002-5942-5893


in their behavior and thus often cannot be programmed
deterministically. The selective reduction of the functional
scope of existing languages via profiles and the subsequent
generation of safety-critical code via a code generator is not
sufficient. This is because the environments does without
qualification artifacts such as requirements and design
documents. This means that a new runtime environment
has to be programmed anyway, documented according
to the requirements derived from standards. Furthermore,
the code generator would also have to be qualified accordingly.
RQ1: What does a meta-language look like whose implemen-
tation leads to no ambiguity or non-deterministic behavior at
runtime?

Problem 2 - Many runtime environments of meta-languages
are implemented with object-oriented programming languages
or in an object-oriented manner: Software implemented with
an object-oriented programming language can barely be
qualified due to issues like dynamic binding, overloading,
try and catch constructs, multiple inheritance or garbage
collectors [8] [9]. More issues regarding the application
of object-oriented programming are listed in [8] and
[9]. Additionally, programming languages (including
procedural ones) such as C++, Java or C do not provide
an internal mechanism for formal proof of semantic
correctness that could reduce the (manual) qualification effort.
RQ2: How and with which programming language can a
formally verifiable runtime environment for meta-models and
domain-specific models be implemented? What does such an
implementation look like and what has to be done to reduce
the manual qualification effort?

Problem 3 - Reflective requests can only be qualified
under huge manual effort so far and therefore are hardly
used in safety-critical applications: A powerful feature
of DSM is that meta-models can be read and modified
during run-time. It is the specific intention to enable this
feature via reflective requests also for safety-critical systems
in order to achieve greater flexibility in possible areas of
application. Reflection means that a program can know
and possibly modify its own structure. In this case, the
reflections refer to the created domain-specific models whose
structure is the meta-model. There is a risk of manipulating
data in such a way that it is no longer consistent with
the underlying model. In addition, all meta-interactions
have to be deterministic and an unintended loss of data
due to reflective requests must be avoided at all expense.
RQ3: How can we ensure that changes to the meta-model
at runtime via reflective requests do not lead to undesired
misbehavior and corrupted data?

II. RELATED WORK

A variety of frameworks are available for DSM such as
the Eclipse Modeling Framework (EMF) [1], the Generic
Modeling Environment (GME) [2] or Matlab Simulink [3] and
System Composer [4]. These frameworks allow the efficient
mapping of complex relationships in application-specific data

models using a meta-language (e.g..: UML [10], or (E)MOF
[11]), a meta-model (e.g.: OAAM [12], SysML [13] or AADL
[14]) and a domain-specific model. Due to the high abstraction
level of domain-specific models, development artifacts e.g.
source code can be created. Therefore, domain-specific models
are predestined for application in the development of complex,
cyber-physical systems. For the use of such frameworks and
languages in the safety-critical domain, the output must be
verified (manually), using model checkers, qualified (valida-
tion) software or manual review activities accordingly to stan-
dardized processes or deliverables. In the field of avionics, for
example, such deliverables are described in DO-178C [6], DO-
330 [15], DO-331 [16], DO-332 [9], and DO-333 [17], or for
the automotive sector in ISO 26262 [7]. The processes include
writing requirements, choosing a programming language with
a qualified compiler, complying with coding standards and
guidelines like MISRA-C [18], proving the absence of un-
desired behavior and the fulfillment of requirements, proving
test coverage by means of dedicated coverage metrics (e.g.
modified-decision coverage), and performing review processes
[6]. Due to the high effort resulting from the mandatory quali-
fication processes, the utilization of domain-specific models or
frameworks in qualified software or development processes is
comparatively rare with respect to their use in the non-critical
cyber-physical domain. The latter statement targets the use of
DSMs in the qualified path not as optional auxiliary tools.
The most common approaches in the safety-critical domain
are attempts to use domain-specific models to automatically
generate safety-critical software, which is outside the scope
under consideration. This includes, for example, SCADE [5]
or TargetLink [19]. Furthermore, there are many approaches
to facilitate the use of models in the safety-critical area via
subsequent formal verification and validation [20] [21] of
models and requirements through model-checking [22] [23]
[24]. In addition to a model checker, the UPPAAL tool also
offers the possibility of creating abstract models, simulate
dynamic behavior, and specify and verify the safety of the
models [25] [26]. Another approach is OSATE [27], which
supports the validation of AADL [14] models according to
all naming and legality rules defined in the AADL [14]
standard. Additionally, it provides code templates, real-time
syntax checking, code completion, and proposals to fix errors.
Ocarina [28], a stand-alone model processor written in the
Ada programming language, is also based on AADL. The
Ocarina tool suite provides model manipulation, syntactic/ se-
mantic analysis, and the verification and code generation from
AADL models. Model verification without direct reference to
safety-critical systems is addressed in [29] [30] [31]. I am
unaware of any (meta)-modeling framework directly usable
in qualified software. Almost all mentioned approaches are
based on existing (meta-)modeling frameworks and languages
and achieve applicability in safety-critical software by e.g.
simplifying qualification processes through model verification
and validation or subsequent qualified transformations (auto-
matic code generation). None of them considers qualifiability
by introducing a new qualifiable implementation of a meta-



language. With our approach the outcome of modeling shall
be directly usable without the need of subsequent qualification
processes. This enables the utilization of (meta-)modeling in
real-time safety-critical system functions.

III. PROPOSED SOLUTION

To solve the related issues and to answer the research ques-
tions, a new (meta-)modeling framework applicable in safety-
critical software will be developed. The framework shall con-
sist of (1) an essential meta-language, (2) a qualifiable runtime,
(3) a suitable persistence, (4) a deterministic transformation
language, (5) an automatic generation of qualification artifacts,
and (6) a decoupled visualization. In order to facilitate a
possible qualification, all mentioned components should work
decoupled and can only communicate with each other via a
generic interface. This allows the individual components to be
viewed and (pre-)qualified independently if it is desired. At the
same time, this means that individual components within the
framework should be replaceable by other implementations. In
this PhD-Thesis the components (1) to (3) are considered and
described in detail. Since there are always different notations
in the field of meta-modeling, the following notation will be
used: The meta-language corresponds to the M3-level, the
meta-model to the M2-level and the domain-specific model
to the M1-level.
(1) Essential Meta-Language: The most important aspect
about the meta-language is the avoidance of modeling el-
ements that cannot be implemented deterministically in the
runtime environment. This addresses RQ1. In addition, the
focus is to simplify the complexity of the language by only
providing essential functionalities that are needed for static
modeling of complex data and system structures. This means,
for example, that there is no need to define operations nor to
enable software modeling. The goal is to create alternatives
for elements that are difficult to qualify where necessary.
To obtain a correct understanding of this language and the
models generated on M2 and M1 level, an unambiguous
interpretability of the language as well as of the M2 and M1
models will be taken into account. Moreover, the language
should provide both an interface for the automatic generation
of qualification artifacts and the ability to define constraints at
M2 level which can be proven on M1 level.
(2) Qualifiable Runtime: The runtime environment, address-
ing RQ2, will provide the functionality of creating, editing
and, in general, interacting with meta-models on M2 level and
domain-specific models on M1 level based on the semantic
and rules defined by the meta-language on M3 level. The
runtime is exclusively a model editor and not a model executor.
Similar to the meta-language, minimalism and simplicity is
emphasized. In this case regarding the number of code lines -
the larger the amount of code, the more has to be checked for
a possible qualification. Additionally, no automatic generation
of code from created meta-models is provided, the runtime
environment operates only as a model interpreter which is im-
plemented with a qualifiable programming language. Another
possibility to reduce the qualification effort to a minimum

is the choice of a suitable, formally provable and restrictive
programming language. Even if the chosen programming lan-
guage supports object-oriented programming, the management
of objects during runtime should be conducted via an object-
relational mapping approach. This initially leads to a greater
computational effort, but is easier to qualify because this
type of object management is based on easily comprehensible
operations based on list entries and links to each other via
global unique identifiers. The interaction with the models on
M2 and M1 level shall be based on atomic CRUD (Create,
Read, Update, Delete) requests via a sole and unambiguous
interface to the other components. When implementing the
meta-language, care should be taken to ensure that the integrity
of the data is maintained at all times. RQ3 is addressed
during the implementation of the qualified runtime, too. The
implementation of the needed reflective requests shall ensure
data integrity and consistency of all models during their
execution.
(3) Suitable Persistence: In order to store the created meta
and domain-specific models, suitable deterministic and reliable
serialization processes should be implemented based on the
type of data-storage used.

IV. EVALUATION AND VALIDATION

The functionality and operation of the meta-modeling
framework will be demonstrated with a demonstrator. This
demonstrator will be a software tool usable with a graphi-
cal interface. First of all, the correct implementation of the
meta-language as well as the compliance with predefined
requirements will be verified through the execution of several
(pre-defined) use-cases. If the implementation is correct and
all requirements have been met, the focus will be on the
qualifiability of the runtime environment. A possible quali-
fication process can be supported, via the proof of freedom
from runtime errors by means of formal test methods and
the proof of deterministic program behavior via program
tracing. From a functional point of view, the usability of
the modeling language, modeling possibilities, the runtime
and process workload, qualification effort, as well as the
clarity and structure of the models created will be consid-
ered and compared to state-of-the-art solutions like EMF or
(Web)GME. For example, different use cases will be defined
and modeled, and existing meta-models such as the OAAM
or AADL will be recreated. During the complete development
process, different versions of the demonstrator will be given
to (industrial) partners in order to get feedback on the quality
and usability of the framework in their special use-cases and to
be able to respond to their requirements in an early stage. It is
conceivable to define evaluation metrics by which the quality
of the new framework is assessed by the (industrial) partners
in comparison to existing frameworks and an evaluation is
quantitatively feasible.

V. EXPECTED CONTRIBUTIONS

In this section a list of expected theoretical and practical
contributions of the PhD research is provided.



• The most fundamental contribution is the enabling of the
development of a new (meta-)modeling framework that
can be used in qualified software, making DSM more
accessible for the development of safety-critical systems
as well as for safety-critical system functions in e.g.
avionics, or autonomous driving.

• Comprehensive understanding of which elements of
meta-languages make qualification cumbersome. This in-
cludes implementation options and their impact on the
qualification process.

• An essential meta-language for DSM that is free from
modeling elements that could lead to non-deterministic
behavior in the implementation.

• The implementation of the meta-language with a formal
provable but strongly restrictive programming language.

• Providing the option to use reflective requests in safety-
critical software.

• A deterministic and comprehensive definition of meta-
model modifications during run-time.

• The (meta-)modeling framework usable in qualified soft-
ware enables the usage in advanced system functions
depending on complex data- and system models in the
safety-critical domain e.g. artificial intelligence, predic-
tive maintenance, plug & fly avionics, and autonomous
driving.

VI. CURRENT STATUS AND TIMELINE

To answer all defined research questions (RQ1 - RQ3)
different tasks have to be conducted. These are sorted and
listed according to their component of the framework:
Whole Framework: (1) Defining requirements for a qualifi-
able DSM framework, (2) conception of a qualifiable (meta-)
modeling framework, its components and their interaction, (3)
evaluation and verification of the framework and the defined
requirements.
Meta-Language: (1) Definition of the meta-language.
Qualifiable Runtime: (1) Selection of a suitable programming
and verification language, (2) definition and implementation of
the interface for interaction with models on M2 and M1 level,
(3) definition and implementation of deterministic meta-model
changes (reflections), (4) implementation of a demonstrator.
Persistence: (1) Defining an appropriate data-structure, (2)
implementation of a suitable serialization.

Whole Framework: As a first step towards a (meta-)
modeling framework the interaction of all components of the
framework was defined as it is illustrated in Figure 1. Dashed
lines represent the communication between the different com-
ponents over a generic interface, dotted-dashed lines indicate
the visualization of the different models. Shaded components
are not editable and colors are used to distinguish the different
lines. The whole framework is as much as possible decoupled
and modular. Due to the modularity, the components can be
qualified independently from each other, or if required simply
replaced with other established solutions. With the exception
of the modeling part (MOD), acting as a specification, commu-
nication between the components is conducted over the generic

Generic Interface

RUN TRA VISCER

Persistence

M3 Meta-Language

M2 Meta-Model TRAM2 Meta-Model

M1 Domain-specific Model

MOD

M1 Model TRA

Basis

Communication
Visualization
not editable 

MOD: (Meta)-Modeling Language, RUN: Runtime, TRA: Transformations, CER: Certification, VIS: Visualization

Fig. 1. Interaction between components of (meta)-modeling framework [32]

interface. The modeling part with the meta-language on M3
level and the transformation language on M2 level based on
the meta-language must be implemented directly into source
code to be able to create the corresponding M2 and M1 models
or transformations at runtime, respectively. Even if the models
located in RAM could be written directly to a persistence, the
way to go is also via the generic interface. It is to be expected
that the structure will not change at this level of detail. The
parts outlined in red, are considered in this PhD-Thesis.

Meta-Language: A first prototype already exists for the
meta-language which is depicted in Figure 2.

METAConstructor RootFolder
- name: String 

create()read()update()delete()
Namespace

1
0 … n

1 1 StructureElement
+ name: String+ id: Integer

Constraint <<import>> 1

Class
+ isAbstract: Boolean+ type@2: StructureElement

1
0 … n

Composition
+ endMultiplicity: Integer

Inheritance

targetClass

10 … n

general specific1 1

generalization

0 … n
0 … n

Association
+ startMultiplicity: Integer+ endMultiplicity: Integer

1target 1

0 … n

Attribute
+ maximumSize: Integer+ value@2: String

1 0 … n

DataType Unit
+ value: String

11
0 … n0 … n

physical

Fig. 2. Meta-Language

The main element is the Class object in the middle of the UML
chart. Classes can be connected to each other via Composi-
tions, Inheritances or Associations. Unlike other languages, no
separate base class is introduced for the references between
classes, since these would have to be implemented using
instance-of operators. The behavior of instance-of operators
is not transparent and therefore increases the qualification
effort of the implementation. Every Class can contain several
Attributes and every Attribute has a DataType and a Unit.
The Unit is introduced to have an additional mechanism for
checking transformations and to define the precise meaning
of Attributes. This could avoid errors that occur due to
different understanding of the Attributes or unit errors. For



the ability of structuring and modularization meta-models,
the Namespace is introduced. The Namespace can contain
Classes or other Namespaces. The Constraint element on the
left of the Namespace acts as a placeholder for a yet to be
modeled constraint environment in order to define constraints
on M2 level and to be able to check them on M1 level. The
starting point of each model is the RootFolder, in which the
METAConstructor operates in order to apply it to the complete
model. The METAConstructor interacts with the models on
every level (M2 and M1) via CRUD-Requests. Even though
typical UML elements are used, this is not intended to be based
exclusively on the UML standard. In addition to the common
UML notation, concepts of logical/ physical classification and
deep-instantiation [33] as part of multi-level modeling are also
utilized for the meta-language. This allows an unambiguous
model-based specification of relations that are only assumed
by convention in standard UML. Deep-instantiation enables
the possibility of defining attributes at M3 level and instanti-
ating them more then one level above at e.g. M1 level. In
Figure 2 it is depicted with the @ symbol and a number
which indicates how many levels above the attribute can be
instantiated. The @ symbol and the corresponding number
are specified as potency value. The number is decremented
on every modeling level above. Additionally, the underlined
attribute means that a value of this attribute has to be set on
every level instead of only at the level where the potency value
becomes zero. Without that concept it would only be possible
to do instantiation one level above e.g. declaring on M3 and
instantiating on M2 or declaring on M2 and instantiating
on M1. Logical /physical classification is denoted with the
physical annotation, the dashed lines and the StructureElement
object in the UML chart. The StructureElement is used to
give every element on every modeling level the meaning of
a physical object which always has a name and an identifier.
Additionally, it enables the possibility of changing the type
of each element during runtime because every element is at
least a StructureElement with a dedicated type defined a level
below. The concepts described have very little impact on the
users of the framework, e.g. it only forces the user to define
the type of an object at both M2 and M1 level.

Qualifiable Runtime: For the implementation of the meta-
language, an appropriate programming language is required.
Therefore, a comparison of the programming languages Ada
SPARK, Ada, RUST and C was carried out. The focus was on
a possible qualification of the programming language through
concepts that facilitate the qualification process of the runtime
e.g. prohibition of implicit type conversions, and the possi-
bility of contract based programming. Due to its restrictivity
and formal provability, Ada SPARK was utilized to implement
the meta language. The result of formal proofs can support
the qualification process. Determinism is primarily intended
through the use of Ada SPARK as well as the avoidance
of modeling constructs that cannot be implemented non-
deterministically. The runtime acts only as a model interpreter
in which the elements and the semantic of the meta language
are implemented using Ada SPARK. The models (M2 and

M1) are managed in RAM using an object-relational mapping
approach. Each M3 element has its own fixed-size list of
elements where the objects created at M2 level are stored.
E.g. all objects of type class created at M2 level are stored
in a list of all classes at runtime. Created attributes are again
stored in a separate list and are assigned to the respective
objects via global unique identifiers which do not change
even when reloading the models. Each identifier is identical
to the position in its corresponding list. This facilitates the
handling of elements and their references in the runtime
implementation. For the interaction with the M2 and M1
models atomic CRUD-Requests are implemented as depicted
in the following:

• create <identifier>
• read <identifier> <feature>
• update <identifier> <feature> <position> <value>
• delete <identifier>.

Every request needs at least the identifier of the addressed
element. The read request additionally needs the feature that
has to be read e.g. name or type. For updating the value of
a feature of an element the value and the position where the
value has to be inserted is required. The position is needed
to set values to certain positions in lists. If it is not a list,
the position value 1 is selected. Currently, a connection to a
higher order model query and modification language is being
implemented.

Persistence: So far, no progress has been made here.
Proposed Planned Timeline and Future Work: The plan

is to implement a first demonstrator with the programming
language Ada SPARK in 2021. The prototype shall cover the
whole functionality described within the current version of
the meta-language including the creation of M2 level and M1
level models as well as the coupling to the higher order model
query and modification language which is again coupled to an
appropriate visualization. In addition, the first considerations
proceed in the direction of storing the data in the persistence
and implementing an appropriate serialization. Subsequently
modeling and implementing a constraint environment within
the meta-language for the creation and examination of con-
straints on M2 and M1 level in 2022. Furthermore, reflective
requests shall be defined and implemented for interacting with
and modifying the M2 level deterministically and in a way
which ensures data integrity during runtime. In 2023, the
focus should be mainly on the qualifiability of the runtime
environment. To this end, requirements will be defined and
reviewed. The requirements will be checked by means of de-
fined scenarios and use cases. The elaboration of the thesis will
take approximately one year and is scheduled for completion
in 2024.

ACKNOWLEDGMENT

The German Federal Ministry for Economic Affairs and
Energy (BMWi) has funded this research within the LUFO-VI
program and the TALIA project. Additionally, I would like to
thank my supervisor Bjoern Annighoefer for his guidance and
support.



REFERENCES

[1] S. Dave, B. Frank, P. Marcelo, and M. Ed, EMF Eclipse Modeling
Framework. Addison-Wesley Professional, 2009.

[2] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,
G. Nordstrom, J. Sprinkle, and P. Völgyesi, “The generic modeling
environment,” Workshop on Intelligent Signal Processing, Budapest,
Hungary, vol. 17, 01 2001.

[3] I. The MathWorks, “Matlab simulink.” [Online]. Available: https:
//de.mathworks.com/products/simulink.html

[4] ——, “Matlab system composer.” [Online]. Available: https://de.
mathworks.com/products/system-composer.html

[5] F.-X. Dormoy, “Scade 6 a model based solution for safety critical
software development,” in Embedded Real Time Software and Systems
(ERTS2008), Jan. 2008.

[6] DO-178C Software Considerations in Airborne Systems and Equipment
Certification, RTCA Std., 2011.

[7] ISO 26262 Road Vehicles – Functional Safety, International Organization
for Standardization Std., 2018.

[8] S. Subbiah and S. Nagaraj, “Issues with object orientation in verifying
safety-critical systems,” in Sixth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing. IEEE, 2003.

[9] DO-332 Object-Oriented Technology and Related Techniques Supple-
ment to DO-178C and DO-278A, RTCA Std., 2011.

[10] OMG Unified Modeling Language (OMG UML), Object Management
Group (OMG) Std. 2.5.1, 2017.

[11] OMG Meta Object Facility (MOF) Core Specification, Object Manage-
ment Group (OMG) Std., 2019.

[12] B. Annighoefer, “An open source domain-specific avionics system
architecture model for the design phase and self-organizing avionics,”
in SAE Technical Paper Series. SAE International, mar 2019.

[13] A. Oliver, Modellbasierte Systementwicklung mit SysML. Carl Hanser
Verlag GmbH Co KG, 2012.

[14] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture analysis
& design language (AADL): An introduction,” Defense Technical Infor-
mation Center, Tech. Rep., feb 2006.

[15] DO-330 Software Tool Qualification Considerations, RTCA Std., 2011.
[16] DO-331 Model-Based Development and Verification Supplement to DO-

178C and DO-278A, RTCA Std., 2011.
[17] DO-333 Formal Methods Supplement to DO-178C and DO-278A, RTCA

Std., 2011.
[18] MISRA-C:2004 - Guidelines for the use of the C language in critical

systems. MIRA, Limited, 2004.
[19] dSPACE GmbH, “Targetlink,” Dec. 2020. [Online]. Available: www.

dspace.com

[20] B. V. Acker, B. J. Oakes, M. Moradi, P. Demeulenaere, and J. Denil,
“Validity frame concept as effort-cutting technique within theverification
and validation of complex cyber-physical systems,” Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, oct 2020.

[21] B. Van Acker, J. Denil, and P. De Meulenaere, “Generation of test
strategies for model-based functional safety testing using an artifact-
centric approach,” 2018.

[22] F. Zalila, X. Crégut, and M. Pantel, “Formal verification integration
approach for DSML,” in Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013, pp. 336–351.

[23] A. E. Haxthausen, “Automated generation of safety requirements from
railway interlocking tables,” in Leveraging Applications of Formal
Methods, Verification and Validation. Applications and Case Studies.
Springer Berlin Heidelberg, 2012, pp. 261–275.

[24] F. Zalila, “Methods and tools for the integration of formal verification
in domain-specific languages,” Ph.D. dissertation, Institut National Poly-
technique De Toulouse, 2014.

[25] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,” pp.
200–236, 2004.

[26] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Interna-
tional journal on software tools for technology transfer, vol. 1, no. 1-2,
pp. 134–152, 1997.

[27] “Osate.” [Online]. Available: https://osate.org/
[28] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, “Ocarina : An environ-

ment for AADL models analysis and automatic code generation for high
integrity applications,” in Reliable Software Technologies – Ada-Europe
2009. Springer Berlin Heidelberg, 2009, pp. 237–250.

[29] V. Besnard, F. Jouault, M. Brun, C. Teodorov, P. Dhaussy, and J. De-
latour, “Modular deployment of uml modelsfor v&v activities and
embedded execution,” oct 2020.

[30] V. Besnard, M. Brun, F. Jouault, C. Teodorov, and P. Dhaussy, “Unified
LTL verification and embedded execution of UML models,” in Proceed-
ings of the 21th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems. ACM, oct 2018.

[31] F. Hilken, P. Niemann, R. Wille, and M. Gogolla, “Towards a base model
for uml and ocl verification.” in MoDeVVa@ MoDELS. Citeseer, 2014,
pp. 59–68.

[32] V. Tietz, J. Schöpf, A. Waldvogel, and B. Annighöfer, “A concept for a
qualifiable (meta)-modeling framework deployable in systems and tools
of safety-critical and cyber-physical environments,” in-press.

[33] C. Atkinson and T. Kühne, “Rearchitecting the UML infrastructure,”
ACM Trans. Model. Comput. Simul., vol. 12, no. 4, pp. 290–321, Oct.
2002. [Online]. Available: https://doi.org/10.1145/643120.643123

https://de.mathworks.com/products/simulink.html
https://de.mathworks.com/products/simulink.html
https://de.mathworks.com/products/system-composer.html
https://de.mathworks.com/products/system-composer.html
www.dspace.com
www.dspace.com
https://osate.org/
https://doi.org/10.1145/643120.643123

	I Problem and Motivation
	II Related Work
	III Proposed Solution
	IV Evaluation and Validation
	V Expected Contributions
	VI Current Status and Timeline
	References

