Towards an Extensible Architecture and
Tool Support for Model-based Verification

David Delgado
Universidad de Mdlaga
Malaga, Spain
daviddelgado@uma.es

Abstract—Model-based software engineering (MBSE) brings
models to the center of software and system design. Models are
powerful abstractions used to support all phases of the software
development life cycle of complex software. As these models grow
larger and their complexity increases, they need to be verified and
validated to preserve their correctness. One possible way to do so
is by means of the use of formal methods. However, the availabil-
ity of MBSE tools with support for validation and verification
is limited, and they usually require the cuambersome deployment
of software burdened by dependencies, preventing the adoption
of these tools. This paper presents a web-based architecture
designed to support the definition of domain models and provide
translation capabilities to different verification formalisms. As
a proof of concept for our architecture, we have developed a
tool prototype that is light-weight, runs in the browser and
supports: (i) definition of domain models represented as class
diagrams and (ii) partial translation of class diagrams into the
Alloy specification language, enabling verification of structural
domain properties. We show how we have used this tool to verify
properties for the public bus management system in the city of
Malaga, Spain.

Index Terms—Model-based software engineering, verification,
web-based modeling tool, structural analysis, domain models,
Alloy

I. INTRODUCTION

Model-based software engineering (MBSE) uses models as
abstractions that facilitate the software development process.
As these models grow larger and become more complex,
ensuring their correctness becomes essential.

Formal verification tools for domain models, such as those
available for UML, are of utmost importance, because they
enable engineers to ensure the correctness and consistency
of their models. Specifying and analyzing the satisfaction
of structural and behavioral properties (e.g., constraints or
invariants) that must hold within the model reduces the risk
of design flaws or implementation errors.

Although there are tools that enable formal verification of
various classes of properties in domain models [3], [[7], [18],
these tend to be focused on a specific class of property, such
as structural constraints [3], or behavioral properties [7].

Moreover, these tools tend to require local installation of
large pieces of software and cumbersome management of
complex dependencies that bog down the specification and
verification of domain models. We find a similar situation with
UML profiles, such as the MARTE profile from the OMG [17],
as they need additional expertise and to be integrated in

Lola Burguefio, Javier Camara, Javier Troya

ITIS Software, Universidad de Mdlaga
Malaga, Spain
{lolaburgueno,jcamara,jtroya} @uma.es

specific tools. Hence, if designers want to verify different types
of properties in a domain model, they need to create a com-
plex local ecosystem of tools that enable various verification
capabilities, often without any interoperability between them.

As a consequence of the aforementioned situation, we posit
that engineers require tools that enable: (i) integrated com-
prehensive verification of domain models, (ii) interoperability
among multiple verification capabilities, and (iii) systematic
and transparent management of dependencies and other com-
plex software administration issues.

Building such tools, however, is not straightforward and
demands careful thinking about the type of underlying archi-
tecture required to enable all the desirable traits mentioned
above. To advance in this direction, in this paper we propose a
web-based architecture that enables online graphical definition
of domain models, as well as the systematic development of
translations into multiple formalisms and integration of formal
analysis capabilities.

We establish the grounds to claim the feasibility of our
architecture by presenting a prototype tool that enables the
definition of domain models represented as class diagrams
and their partial translation into Alloy, and illustrate its use
in the verification of structural properties from the public bus
management system in the city of Mdlaga, Spain.

This paper is organized as follows. In Section [, we present
our architecture and describe our-proof-of-concept tool. In
Section we validate our proposal by applying it for the
verification of structural properties in the public bus manage-
ment system of Mélaga. Section[[V]describes the related work.
Finally, in Section [V] we present our conclusions and future
work.

II. ARCHITECTURE AND TOOL SUPPORT

In this section, we present our architecture which is intended
to be the first contribution towards a modeling playground
that allows users to easily develop their software models and
transform them to different formalisms to perform a variety of
tasks, including structural and behavioral verification.

Figure [I] presents our web-based architecture designed to
support the definition of domain models graphically and the
translation of these models to different verification formalisms.
Our approach has been designed to be light-weight and exten-
sible.

displayed
Code Viewer .
haunal Domain Formal MM ‘
u(s;.er Model (code) model MM J
edits conformsto ~ conforms to
Diagram Editor ir.lst.an— | Domain M2M transfos Formal ‘
Language tation o Model s Model ‘
Package savel load M2T transfos | [TXTTS
Front-end 7S Formal ‘ ‘
S Model (code) |
Web browser 9%’6 Back-end () ‘

Serialized Model ‘

Fig. 1. Generic Architecture

Our architecture considers a solution that runs exclusively
on the browser, so nothing needs to be installed in the system,
fostering its portability. At a high-level, we can make the
distinction between the front-end and the back-end. Using the
front-end, the user can interact graphically with their domain
models as well as access the code generated from them. Each
diagram editor will have its own language package, which
will integrate the necessary language tools (e.g., parser, syntax
highlighter, auto-complete features, code linting).

The back-end contains the internal representation of the
domain model metamodel and the domain models created by
the user. It also offers an extension mechanism to introduce
new metamodels and models that will be used for verification
purposes, and supports model-to-model (M2M) and model-
to-text (M2T) transformations. It also provides functionalities
to serialize (save) and deserialize (load) domain models. As a
proof of concept, we have implemented a first prototype of this
tool, which supports domain models in form of class diagrams
and Alloy [9] as a verification language. In the following
we illustrate our architecture and explain the implementation
of our proof of concept, which is available on our Github
repository['}

A. Front-end: Web-based Modeling Tool

In the front-end, for the diagram editor, we have used the
GoJS libraryf| The basic constructs in GoJS are nodes and
links. For the representation of domain models in GolS, a
class is a node, an attribute is a property of a node, and an
association is a link. GoJS also has a data model, which is
user-defined and allows mapping data to nodes and links. This
data model also includes required metadata, e.g., position of
the elements on the canvas, color, etc. For saving and loading
we use JSON for both the models and their metadata.

The front-end of our tool is shown in Figure [3] It is
composed of a modeling canvas on the left-hand side, a toolbar
that enables editing the element properties (classes, attributes,
associations, etc.) on the bottom of the right-hand side, and a
window that displays the generated Alloy code on the upper
right-hand side.

Uhttps://github.com/atenearesearchgroup/web-model-based- verification-tool
Zhttps://gojs.net/latest/index.html

Instead of creating a complete language package for the
GoJS graphical editor, in our proof-of-concept prototype, we
have created a simplified version of it that we call GoJS
language adapter. This language adapter uses on-click event
listeners that monitor the graphical diagram editor and toolbar.
Every time the diagram is edited by the user, the corresponding
event is captured by the event listener, and a transaction is
created. Transactions contain information about the changes
made. We use these transactions, in the back-end, to propagate
the changes from the editor to the model. When a user
modifies the properties of an element using the toolbar these
modifications are applied directly to the domain model and
propagated to the GoJS diagram through the adapter.

AttributeValue
value: String

Operation
Attribute P
derived: Boolean

operation: String

type: OCLType
attribute: String U B
type: OCLType il N
Class
name: String
stereotype: String

A erarnd association: Associatiol
e: AssociationType lation: iation
e o extension: Class

;u#'

OperationParameter

parameter: String
type: OCLType

Association

Implementation Extension
origin: Class MetaModel origin: Class
target: Bag(Class) T target: Class

Enum
name: String
values: Bag(String)

<<data type>>

—| OCLType |<—

<<data type>> T

ocLoo ™ R <<data type>>
ollectionType imiti
yp! OCLTupleType OCLPrimitiveType
<<enum>> <<enum>> <<enum>>
AssociationType OCLCollections OCLPrimitives
association Set Integer
composition Bag Real
aggregation Sequence Boolean
OrderedSet String

Fig. 2. Metamodel for domain models

B. Back-end: Bridging MBSE and Verification Models

As part of the back-end of our architecture, we have defined
a domain model metamodel to represent domain models,
which is shown in Figure [2]

While the user is editing a diagram using the graphical
interface, the corresponding metamodel is instantiated and/or
edited. We propose the use of event listeners and a transaction
management system to constantly keep the model synchro-
nized with the editor.

Our architecture supports the definition of user-defined
metamodels and models in an extensible manner. When users

https://github.com/atenearesearchgroup/web-model-based-verification-tool
https://gojs.net/latest/index.html

O 127.0.01

sig Location {

destination0f: set Journey,

origin0f: set Journey,

stops: set Stop,

Begininfo .| Stoplnformation .
info——m7 ——— valTime: Int }
arrivalTimeStop: Integer| - intp vallimec n_tager
timeBoardBus: Integer 1 |stop departureTime: Integer
3 1 Bus sig Stop {
1 Stop vehicleld: Integer
spead: Integer . . .
r stopld: Integer ity In?ager info: one StopInformation,
. - T occupancy: Integer
stops doorNB: Integer
1 . ’ Endinfo
dropTime: Integer
e —— Route Class name
i) . routeld: Integer I
startTime: Integer |originOf length: Integer Location
arrivalTime: Inteaer origin: String
———daestinationOf destination: String
: Stereotype
origin
1 stopO!
destingtion
Passanger 1
indID: Integer “ L

arrivalTime: Integer

desting

bk 1‘" latitude: Integer
.‘Dnlongﬂude: Integer

Fig. 3. Screenshot of our tool

need to introduce a new verification language, they only need
to add to the tool the metamodel of the language (designated
by Formal Metamodel in Figure [T), a M2M transformation to
transform the domain model to a model that conforms to the
formal metamodel, and a M2T transformation that generates
code from the formal model.

In the current state of our proof-of-concept tool, the Alloy
specification language is available. This is, we added to our
tool a metamodel of a simplified version of Alloy, as well
as a M2M transformation that maps domain models to Alloy
models and a M2T transformation that generates Alloy code
from the Alloy model.

Figure [] shows our simplified Alloy metamodel. Note
that the Alloy metamodel is not intended to be an accurate
representation of Alloy, but to cover the minimal requirements
to create an Alloy model of a system as well as to facilitate the
creation of the corresponding M2M and M2T transformations.

Both the M2M and M2T transformations are triggered every
time the domain model is updated. This way, both views of our
tool (i.e., the graphical diagram and the corresponding formal
model) are always synchronized.

C. Mapping domain models to Alloy

The mapping from domain models to Alloy consists in
creating an Alloy signature for each class in the domain
model. The associations between classes are mapped as Alloy
attributes in the corresponding signature. The type of these
attributes depends on the cardinality of the association end.

AlloyModel |
name:IString L * | AlloyBinaryRelation
name: String
! 1
+ |AlloyMultiplicityFact
AlloySignature 1 1

constraintType: String
value: Integer

abstract: Boolean
name: String
extension: AlloySignature

AlloyRelation

name: String
type: AlloySignature
multiplicity: String

L)

A

Fig. 4. Alloy metamodel

If the association end has a cardinality of 1, then the Alloy
attribute is defined as one. If the cardinality of the association
end is different than one, then the Alloy attribute is mapped
as a set. Since associations are usually bidirectional in domain
models, we have designed a mapping that encodes each
bidirectional association as a symmetric relation in Alloy.
Figure [5] shows a simple example of this mapping visually.

D. Tool Support

To be able to use our tool in the browser and without
a server, it has been necessary to use the Javascript (JS)
language. We have used JS version ES6 compiled to ES5 by
means of RollUIﬂ

3https://rollupjs.org/

https://rollupjs.org/

................... » faet

i'Symmetry{
all a:A, b:B | b.a=a <=>bina.b}

Fig. 5. Mapping from domain models to Alloy

The M2M transformation has been created in JS ES6, while
the M2T transformation uses a template system in Javascript
called Nunjucks ﬂ We chose Nunjucks given its wide adoption,
support by the community and the fact that its syntax is used
in Jinja2 and Twig (widely used in Python, PHP, TextX, etc.).

III. VALIDATION

We have been granted with a national research project
related to urban-digital twins where one of the case studies
is about the bus transportation system that runs in our city:
Malaga. To validate our proposal, we have used our tool to
develop a domain model of this system and to verify some
properties.

The domain model of the system was introduced in [15],
where we envision a deployment of a urban-digital twin along
the cloud-to-thing continuum, where citizens are regarded as
first-class entities. Here, we present a simplified version of
the domain model, as displayed in Figure [3] using our tool.
According to the figure, we can see that a Passenger can take
any number of Journeys that always start and end at a specific
time and from/at a specific Location. A journey likely involves
getting on and off one or several buses at specific Stops. When
a passenger arrives at a stop, we store (Beginlnfo class) the
arrival time at the stop and the boarding time, so that we know
how long they have been waiting at the stop. The model also
registers the time someone gets off the bus (EndInfo class).
In turn, Buses follow specific Routes, where each route is
composed of a sequence of stops. Regardless of the route a
bus is following, it is always stored the arrival time at and
departure time from stops (StopInformation class).

Once this model is created in our tool, which is shown
in the domain model of Figure (3| we are able to generate
the corresponding Alloy representation. Bellow we present an
excerpt of it.

sig Journey {

end: set EndInfo,
begin: set BeginInfo, [...]

sig BeginInfo {
beginOf: one Journey,
beginInfoOf: one Stop

sig EndInfo {

endOf: one Journey,
endInfoOf: one Stop

4https://mozilla.github.io/nunjucks/

sig StopInformation { [...] }
sig Stop {
info: set StopInformation,
beginInfo: set BeginInfo,
endInfo: set EndInfo, [...]
}
fact journeyEndSymmetry {
all a:Journey, b:EndInfo
a.end

| b.endOf=a <=> b in

}
fact journeyBeginSymmetry{
all a:Journey, b:BeingInfo
a.begin

| b.beginOf=a <=> b in

[...]

Given this Alloy model, we are able to verify properties
such as:

// Journey origins and ends have to be different
assert acyclic_journeys {all j:Journey | disj[j.
begin. beginInfoOf, j.end. endInfoOf] }

//A bus only visits a stop once in a route
assert unique_stops { all b:Bus | all s, s':
| s.stop.route = s'.stop.route => sl!=s' }

b.info

IV. RELATED WORK
A. Web-based Modeling Tools

Several web-based modeling tools have been proposed.
Picto web [10] enables complex model exploration by means
of different views in a website. Epsilon playground [20] is a
tool that runs in the browser and supports model verification.
However, these two tools are tailored to the Epsilon family of
languages. Our tool, however, is extensible and could support
any modeling and verification language.

Umple [4]], [[13]] is a tool composed by a compiler and a web-
based front-encﬂ The front-end allows the user to edit Umple
code either textually, or rendered as diagrams, and enables
interaction with the compiler running as a server. Webgme [|14]]
is a web tool that supports the design of Domain Specific Mod-
eling Languages (DSML) and the creation of corresponding
domain model. AToMPM [19] is an open-source framework
for Multi-Paradigm Modeling that allows designing DSML
environments and performing operations on them. While all
these tools are similar to ours in some extent, the common
difference between them and our approach is that our proposal
is light-weigh and dependency-free as everything runs in the
browser. More importantly, our approach is extensible to new
analysis/verification models and languages.

Gentleman [12] is a web-based projectional editor generator
that allows the user to define a model and projections for its
concepts, and use the generated editor to create the model
instances. Our tool does not consider a projectional approach.

Siriuswelﬂ is a low-code platform to define web appli-
cations using visual languages. The goal of our tool is not
to create applications but to model domains and perform
verification tasks on them.

There are also web tools such as PlantUML[] for the creation

Shttps://cruise.umple.org/umpleonline/

Shttps://github.com/eclipse-sirius/sirius-web
https://plantuml.com/

https://mozilla.github.io/nunjucks/
https://cruise.umple.org/umpleonline/
https://github.com/eclipse-sirius/sirius-web
https://plantuml.com/

of diagrams with support for the UML notation. However, we
do not consider those as part of this related work and we focus
only on tools that, like our approach, allow the creation and
verification of models.

B. Integration of Domain Specific Languages and Formal
Methods

Since the appearance of early theoretical approaches that
aimed at bridging the gap between CASE and formal verifi-
cation tools, such as VeriAgent [|16], there have been multiple
efforts targeting tool support in this area [§]]. Their number
is too broad to be discussed in this paper, so we focus on a
selected subset closely related to our approach.

UML-VT [7] is a graphical specification environment and
translation tool that supports formal verification of UML
activity diagrams using the model checkers UPPAAL, SPIN,
NuSMV and PES. The tool is implemented as an Eclipse-
plugin that automatically translates the UML activities and
logical requirements into valid input notation for the model
checkers. Silva et al. 18] propose a methodology for creating
formal DSL tools using the Epsilon platform. While these ap-
proaches provide integration between graphical environments
and formal verification, they require local deployments with
complex dependencies and are not designed for extensibility
to multiple formalisms and verification capabilities.

Other efforts have mapped UML to various formal meth-
ods languages, such as CSP []1], [S], Z [2]], and Alloy [3].
Moreover, tools like HaiQ [6] combine different verification
capabilities such as structural and behavioral (probabilistic) by
projecting parts of its own specification language into Alloy
and probabilistic model checkers like PRISM [11]. These
approaches provide tool support that is mostly focused on the
translation between domain models and formalisms amenable
to automated analysis, but neglect the interactive specification
and verification of models.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a generic, extensible and
light-weight architecture and proof-of-concept-tool for the
verification of domain models expressed as class diagrams
using the Alloy specification language.

There are different lines of work that we would like to
explore in the future. First of all, we would like to extend
our transformations from domain models to Alloy to provide
support for class attributes and unidirectional associations.
Second, we acknowledge that running tools in the browser has
advantages but also limitations. We would like to be able to
reuse existing modeling technology and popular notations such
as EMF, hence we plan to extend our architecture in the future
to consider a server integration where these technologies could
run. We would also like to extend our approach and tool to
support the verification of, not only structural properties, but
behavioural properties. For this, we would like to introduce
behavioural diagrams such as sequence diagrams that will be
mapped to languages such as PRISM [11]].

Acknowledments. This work was partially funded by
Universidad de Maélaga (Campus Internacional de
Excelencia), and the Spanish Government under projects
PID2021-125527NB-100 and TED2021-130523B-100.

REFERENCES

[1] Islam Abdelhalim, Steve Schneider, and Helen Treharne. Towards a
practical approach to check uml/fuml models consistency using csp. In
Proc. of ICFEM’11, pages 33-48. Springer, 2011.

[2] Nuno Amdlio, Susan Stepney, and Fiona Polack. Formal proof from
uml models. In Proc. of ICFEM’04, pages 418433, 2004.

[3] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi
Ray. UML2Alloy: A challenging model transformation. In Proc. of
MODELS’07, pages 436-450, 2007.

[4] Omar Badreddin. Umple: A model-oriented programming language. In
Proc. of ICSE’10, page 337-338, New York, NY, USA, 2010.

[5] Jordi Cabot, Robert Clarisd, and Daniel Riera. Umltocsp: A tool for the
formal verification of uml/ocl models using constraint programming. In
Proc. of ASE’07, page 547-548, 2007.

[6] Javier Camara. Haiq: Synthesis of software design spaces with structural
and probabilistic guarantees. In Kyungmin Bae, Domenico Bianculli,
Stefania Gnesi, and Nico Plat, editors, Proc. of FormaliSE@ICSE’20,
pages 22-33. ACM, 2020.

[7]1 Zamira Daw, John Mangino, and Rance Cleaveland. UML-VT: A
formal verification environment for uml activity diagrams. In Proc.
of P&KD@MODELS’15, pages 48-51, 2015.

[8] Carlos A Gonzdlez and Jordi Cabot. Formal verification of static
software models in mde: A systematic review. Information and Software
Technology, 56(8):821-838, 2014.

[9] Daniel Jackson. Alloy: A language and tool for exploring software
designs. Commun. ACM, 62(9):66-76, aug 2019.

[10] Dimitris Kolovos and Antonio Garcia-Dominguez. The epsilon play-
ground. In Proc. of MODELS’22 (Companion Proceedings), page
131-137, 2022.

[11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of probabilistic real-time systems. In Ganesh Gopalakrish-
nan and Shaz Qadeer, editors, Proc. of CAV’11, volume 6806, pages
585-591, 2011.

[12] Louis-Edouard Lafontant and Eugene Syriani. Gentleman: a light-weight
web-based projectional editor generator. In Esther Guerra and Ludovico
ITovino, editors, Proc. of MODELS’20 (Companion Proceedings), pages
1:1-1:5. ACM, 2020.

[13] Timothy C. Lethbridge, Andrew Forward, Omar Badreddin, Dusan
Brestovansky, Miguel A. Garzén, Hamoud Aljamaan, Sultan Eid,
Ahmed Husseini Orabi, Mahmoud Husseini Orabi, Vahdat Abdelzad,
Opeyemi Adesina, Aliaa Alghamdi, Abdulaziz Algablan, and Amid
Zakariapour. Umple: Model-driven development for open source and
education. Sci. Comput. Program., 208:102665, 2021.

[14] Mikl6és Mar6ti, Tamas Kecskés, Robert Kereskényi, Brian Broll, Péter
Volgyesi, Laszl6 Juricz, Tihamer Levendovszky, and Akos Lédeczi.
Next generation (meta)modeling: Web- and cloud-based collaborative
tool infrastructure. In Proc. of MPM@MODELS’14, volume 1237, pages
41-60, 2014.

[15] Nathalie Moreno, Lorenzo Toro-Gélvez, Javier Troya, and Carlos Canal.
Modeling urban digital twins over the cloud-to-thing continuum. In Proc.
of MeSS@STAF’23, 2023.

[16] E. Mota, E. Clarke, A. Groce, W. Oliveira, M. Falcdo, and J. Kanda.
Veriagent: an approach to integrating uml and formal verification tools.
Electronic Notes in Theoretical Computer Science, 95:111-129, 2004.

[17] OMG. UML profile for MARTE: Modeling and analysis of real-time
embedded systems, 2009.

[18] Robson Silva, Alexandre Mota, and Rodrigo Rizzi Starr. Creating gui-
based dsl formal tools. In Proc. of IRI’13, pages 520-527, 2013.

[19] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen,
Simon Van Mierlo, and Hiiseyin Ergin. Atompm: A web-based modeling
environment. In Joint Proceedings of MODELS’13, volume 1115, pages
21-25, 2013.

[20] Alfa Yohannis, Dimitris S. Kolovos, Antonio Garcia-Dominguez, and
Carlos Javier Ferndndez Candel. Picto web: a tool for complex model
exploration. In Proc. of MODELS 22 (Companion Proceedings), pages
56-60, 2022.

	Introduction
	Architecture and Tool Support
	Front-end: Web-based Modeling Tool
	Back-end: Bridging MBSE and Verification Models
	Mapping domain models to Alloy
	Tool Support

	Validation
	Related Work
	Web-based Modeling Tools
	Integration of Domain Specific Languages and Formal Methods

	Conclusions and Future work
	References

