Stream my Models: Reactive Peer-to-Peer
Distributed Models @run.time

Thomas Hartmann, Assaad Moawad, Francois Fouquet,
Gregory Nain, Jacques Klein, and Yves Le Traon
Interdisciplinary Centre for Security, Reliability and Trust (SnT),
University of Luxembourg
Luxembourg
Email: firstName.lastName @uni.lu

Abstract—The models@run.time paradigm promotes the use
of models during the execution of cyber-physical systems to rep-
resent their context and to reason about their runtime behaviour.
However, current modeling techniques do not allow to cope at
the same time with the large-scale, distributed, and constantly
changing nature of these systems. In this paper, we introduce
a distributed models @run.time approach, combining ideas from
reactive programming, peer-to-peer distribution, and large-scale
models@run.time. We define distributed models as observable
streams of chunks that are exchanged between nodes in a peer-
to-peer manner. A lazy loading strategy allows to transparently
access the complete virtual model from every node, although
chunks are actually distributed across nodes. Observers and
automatic reloading of chunks enable a reactive programming
style. We integrated our approach into the Kevoree Modeling
Framework and demonstrate that it enables frequently changing,
reactive distributed models that can scale to millions of elements
and several thousand nodes.

Index Terms—Models@run.time, Distributed models, Reactive
programming, Asynchronous programming, Peer-to-peer

I. INTRODUCTION

Over the past few years the models @run.time paradigm has
proven the potential of models to be used not only at design-
time but also at runtime to represent the context of cyber-
physical systems (CPS), to monitor their runtime behaviour
and reason about it, and to react to state changes [1], [2].
Reasoning on the state of cyber-physical systems is a complex
task since it relies on the aggregation and processing of various
constantly evolving data such as sensor values. The recent
trend towards highly interconnected cyber-physical systems
with distributed control and decision-making abilities [3], [4]
makes the reasoning even more difficult. Nonetheless, to fulfill
their tasks, these systems typically need to share context and
state information between computational nodes (any computer
system reading, writing, or processing data in the context of
a CPS). Given the fact that the models@run.time paradigm
promotes the use of models to represent the state and context
information of cyber-physical systems, the runtime models of
distributed cyber-physical systems must also be distributed.
Moreover, runtime models of complex cyber-physical systems
can get very large, making it very difficult to share this
information efficiently.

Let us take a concrete example. We are working with Creos
Luxembourg S.A., the main electricity grid operator in Lux-
embourg, on a smart grid project to make the electricity grid
able to dynamically react and adapt itself to evolving contexts.
The smart grid is characterized as a very complex and highly
distributed cyber-physical system [5] where various sensor
data and information from the electrical topology must be
aggregated and analyzed. To support reasoning and decision-
making processes we use a model of the smart grid during
runtime. The main entities of this model are smart meters,
data concentrators, and the underlying electric grid topology.
Smart meters, installed at customers’ houses, continuously
measure the electric consumption and quality of power supply
and steadily send this data to so-called data concentrators.
Each data concentrator controls a number of associated smart
meters, collects, stores, and processes the data received from
these meters. The state of the smart grid, i.e., its runtime
model, is continuously updated with a high frequency from
various sensor measurements (like consumption or quality
of power supply) and other internal or external events (e.g.,
overload warnings). In reaction to these state changes different
actions can be triggered. However, reasoning and decision-
making processes are not centralized but distributed over smart
meters, data concentrators, and a central system [6], making it
necessary to share context information between these nodes.
The fact that runtime models of smart grids, depending on
the size of a city or country, can reach millions of elements
and thousands of distributed nodes, challenges the efficiency
of sharing context information.

These challenges are not specific to the smart grid but also
arise in many other large-scale, distributed cyber-physical sys-
tems where state and context information change frequently.
For example advanced automotive systems, process control,
environmental control, avionics, and medical systems [4].

Despite the fact that models@run.time enables the ab-
straction of such complex systems during runtime, to the
best of our knowledge, there is no approach tackling the
i) large-scale, ii) distributed, and iii) constantly changing
nature of these systems at the same time [7], [8]. This paper
introduces a distributed models @run.time approach combining

ideas from asynchronous, reactive programming, peer-to-peer
distribution, and large-scale models@run.time. First of all,
since models@run.time are continuously updated during the
execution of a system, they cannot be considered as bounded
but can change and grow indefinitely [9]. Therefore, we define
models as observable streams of model chunks, where every
chunk contains data related to one model element (e.g., a
meter). This stream-based interpretation of models allows to
process models chunk-by-chunk regardless of their global size.
Secondly, we distribute and exchange these model chunks
between nodes in a peer-to-peer manner and on-demand to
avoid the exchange of full runtime models. Moreover, the
use of a lazy loading strategy allows to transparently access
the complete virtual model from every node, although chunks
are actually distributed across nodes. Thirdly, we leverage
observers, an automatic reloading mechanism of model chunks
(in case of changes), and asynchronous operations to enable a
reactive programming style, allowing a system to dynamically
react to context changes.

We integrated our approach into the Kevoree Modeling
Framework [10], [11] by entirely rewriting its core to apply
a thoroughly reactive and asynchronous programming model.
Evaluated on an industrial-scale smart grid case study, inspired
by the Creos project, we demonstrate that our approach
enables frequently changing, reactive distributed models and
can scale to millions of elements distributed over thousands
of nodes, while the distribution and model access remains fast
enough to enable reactive systems.

The remainder of this paper is as follows. In Section II, we
introduce the background of this work: reactive programming,
peer-to-peer distribution, and the Kevoree Modeling Frame-
work. Section III presents our approach of reactive distributed
models at runtime, which we evaluate in Section IV. The
related work is discussed in Section VI. In Section V we
discuss the need for asynchronicity to distribute models before
we conclude in Section VII.

II. BACKGROUND

This section introduces important principles of reactive
programming, peer-to-peer distribution, and of the Kevoree
Modeling Framework.

A. Reactive Programming

Reactive programming is a paradigm focusing on observable
data streams and the propagation of changes. It aims at
supporting the development of asynchronous, event-driven,
and interactive applications by allowing to declaratively ex-
press programs in terms of what to do when a certain
event occurs [12]. Reactive programming extends the observer
pattern [13] to support continuous data streams and events
while abstracting from low-level tasks like threading, syn-
chronization, and non-blocking I/O. Streams are sequences of
ongoing events. Following this idea, nearly anything can be
considered as a stream: sensor data, user inputs, calculation
results, mouse movements and clicks, or runtime models.
Streams can come from different sources, can be observed and

reacted to. Events are always treated asynchronously, using
a function that is executed when the event occurs, another
function in case of errors, and a third function when the
stream finishes (in case it is not a continuous stream). The
observation of a stream is called subscribing, the defined
functions are observers, and the stream itself is the observable.
Streams have functional characteristics, such as immutability,
which make it possible to use streams as input for other
streams, to filter, combine, merge, or map streams to new
streams. Combined, as explained here, asynchronous mecha-
nisms and the observer pattern empower reactive programming
as a powerful tool, providing a high level of abstraction for
the development of event-driven and interactive applications.
There exists a number of reactive programming frameworks
and libraries for different programming languages, e.g., the
Rx (Reactive Extensions) [14] family and Scala.React [15].
With FrTime [16] and Flapjax [17] complete languages based
on this paradigm have been created. Our approach of reactive
distributed models@run.time is inspired by this increasingly
popular programming paradigm and lifts its main ideas and
concepts to the level of models.

B. Peer-to-Peer Distribution

Peer-to-peer (P2P) is a distributed computing or networking
architecture, which is designed for sharing computer resources
like content, storage, or CPU cycles [18]. P2P systems share
these resources by direct exchange between equally privileged
nodes, rather than relying on a centralized or intermediary
control. Peers act as both consumers and suppliers of re-
sources. Such architectures typically have characteristics like
scalability, increased access to resources, ability to adapt to
failures, and accommodate transient populations of nodes [18].
P2P networks establish a virtual overlay network on top of
the actual physical network topology [19], where data is still
exchanged over a TCP/IP network, but let peers communicate
directly with each other via logical overlay links. Overlay
networks are used for resource indexation and peer discovery
and are often distinguished in terms of centralization (purely
decentralized, partially decentralized, hypbrid decentralized)
and structure (unstructured and structured) [18]. Gossip [20]
and Gnutella [21] are examples for protocols for unstructured
P2P networks. Structured P2P networks usually use some form
of distributed hash tables, e.g., Chord [22] or Koorde [23] to
map resources to peers. Since P2P characteristics fit very well
with the requirements of our distributed models @run.time, we
build our distribution mechanism on top of a P2P architecture.
We distribute the model itself, in a P2P manner, by splitting
the model into chunks and spread them over the nodes. To
keep track of which chunk is distributed on which node, we
rely on standard solutions like distributed hash tables.

C. The Kevoree Modeling Framework

The Kevoree Modeling Framework (KMF) [10], [11] is an
alternative to the Eclipse Modeling Framework (EMF) [24].
Like EMF, KMF is a modeling framework and code generation

toolset for building object-oriented applications based on struc-
tured data models. However, while EMF was primary designed
to support design-time models, KMF is specifically designed
to support the models@run.time paradigm and targets run-
time models. While the basic concepts remain similar, run-
time models —especially runtime models of complex cyber-
physical systems— usually have higher requirements regard-
ing memory usage, runtime performance, and thread safety.
Therefore, EMF faces some limitations in supporting the
models @run.time paradigm, which KMF tries to address [10].
KMF also provides a notion of time [25] and a native ver-
sioning concept to support historized models [26], particularly
helpful when systems have to access and correlate data from
past states. KMF is able to export/import models into/from
the Ecore format, considered as a de facto standard, to ensure
the compatibility with EMF-based tools. KMF promotes the
use of models not only for code generation or architectural
management but also during runtime as a central artefact for
the development of systems. For this reasons, we decided to
integrate our approach into KMF.

III. REACTIVE DISTRIBUTED MODELS @RUN.TIME

This section details our approach of reactive peer-to-peer
distributed models@run.time. It begins with an overview of
our proposition and defines important terms used in the rest of
this paper. It then describes how models are split into chunks
to allow to define models of arbitrary size as observable con-
tinuous streams of chunks. Next, this section details how these
chunks together with peer-to-peer distribution techniques, lazy
loading, and automatic chunk reloading are used to transpar-
ently distribute runtime models over nodes. To finish, this
section presents how asynchronous programming empowers
the reactivity of systems to changes and events.

A. Overview: Distributed Models as Data Stream Proxies

The goal of our contribution is to enable i) large-scale, ii)
distributed, and iii) constantly changing models @run.time that
can scale to millions of elements distributed over thousands
of nodes, while keeping the distribution and model access fast
enough to enable reactive systems. To address the distribution
and the context sharing need, we propose a concept of runtime
models, which are virtually complete and spread over the
nodes of a distributed cyber-physical system. Indeed, every
model element can be accessed and modified from every node,
regardless on which nodes the model element is physically
present. To tackle the large-scale aspect, data are never copied
a priori. Instead runtime models are considered as proxies
of data, loading the related data only on-demand. This is
achieved by splitting runtime models into streams of data
chunks, where every chunk corresponds to one model element.
These data chunks are physically distributed in a peer-to-
peer manner, using distribution strategies similar to those used
for media sharing. Finally, reactive programming concepts
and a fine-grain (i.e., per model element) load and update
strategy are used together to cope with the constantly changing
nature of model elements. Asynchronous operations allow to

address the inherent uncertainty of network communications
and the reactive aspect empowers models to dynamically
react by observing changes on the shared data stream. These
characteristics are closely interlinked and we claim that the
combination of the three can offer distributed and scalable
models@run.time able to deal with constantly changing model
elements. Our approach is depicted in Figure 1 and detailed
in the rest of this section.

B. Definition of Terms

Following model-driven engineering concepts, we generate
an object-oriented API based on a meta model. This API can
be used to instantiate and manipulate a runtime model. This is
depicted on the top of Figure 1. The runtime model conforms
to the meta model and is used during the execution of a system.
In our case, we use KMF to generate a Java API to create
and manipulate runtime models, which can be used during the
execution of a cyber-physical system to represent its context, to
monitor its runtime behaviour, and to react to state changes. In
the following we use the term model as a synonym for runtime
model. In cases where we refer to a meta model we explicitly
use the term meta model. We use the term model element
to refer to one object of the runtime model corresponding to
one meta class in the meta model. A chunk is the (serialized)
content of one model element. This can be seen in Figure 1.

C. Models@run.time as Streams

In a formal way, we denote by NN the set of the con-
nected nodes. Every node n; € N, is a tuple of unique
id; and an (infinite) sequence of model chunks S,,,. S,, =
{Si1,...,8ij,...}. Each model chunk s;; contains an atomic
update for one runtime model element mej. A runtime model
element has a unique wuid [27], which is automatically
generated when a model element is created during runtime.
This model element contains a set of attributes and a set of
relationships to other model elements. Our global distributed
runtime model M, is thus the aggregation of all these dis-
tributed model elements. As argued, runtime models of cyber-
physical systems need to be continuously updated to reflect
state changes in the underlying systems. This makes it difficult
to consider them as bounded [9]. Moreover, as we have already
defined a one-to-one mapping between the model element
updates and the model chunks s;;, we can consider that M is
the virtual aggregation of all the model chunks created on all
the nodes: M = US,,,,Vn; € N. This is described in Figure 1.

Next, we define two functions, serialize and unserialize,
for every model element. The function serialize takes a model
element as input and creates a compact JSON format (similar
to BSON) of the runtime model element as output. It contains
the uuid and data of the model element. The uuid of a model
element is immutable, meaning that it cannot be changed
during the whole lifetime of an element. For efficiency reasons
we use a long value for wuids. Similarly, the unserialize
function takes a JSON representation of the model element
as input and creates a model element as output. The uuid of

Object-oriented API Runtime model

subscribe id:3
B

setAt
generate | getatr2 le;
SetAtir2(String attr2);

manipulate updates
getClass2s(): Class2(]
selClass2s(Class2[]
class2s); } O
class Class2 {

reads
id:6

I

subscribe

push/read notification

chunk i chunk i
ey:
{

}
class Class3 : Class1{ .
}

Modeling space

Data space

1 "attr2":

time

Fig. 1. Models as continuous streams of chunks

model elements together with the serialize and unserialize
functions allow us to split models in a number of chunks.

It is important to note that for each point in time a model
still consists of a finite number of chunks. However, consid-
ering the fact that a model can continuously, i.e., infinitely,
evolve over time a model can be interpreted as an infinite
stream of model chunks, where every model element changed
is added to the stream. Newly created model elements are
considered in the same way as changes. To delete elements we
define an explicit function delete. This function removes an
element from all relations where it is referenced. In addition,
all elements contained in the deleted one are recursively
considered as deleted. Streams are naturally ordered by time,
e.g., based on a clock strategy [28].

The definition of a uuid for every model element and the
way we split models into chunks also allow us to leverage a
lazy loading [29] strategy for chunks. Indeed, references are
resolved on-demand, meaning that the actual data of model
elements are loaded only when accessed by an explicit request
or by traversing the object model. For one-fo-one relationships,
the chunks only contain the uuid of the target model element,
and a (primitive) array of wuids in case of one-to-many
relationships. If a relationship changes the chunk is updated.
An example of a chunk can be seen in the lower right corner
of Figure 1. With this strategy we enable the loading of model
elements on-demand, regardless if they come from a file, local
or remote database, or —as discussed in subsection III-D—
if they are distributed in a peer-to-peer manner. Since model
element chunks can potentially be modified from a concurrent
(local or remote) process, we reload model element chunks
when they are accessed again. To reduce the overhead caused
by this reloading, we use a caching strategy [30] to decide
wether an element needs to be reloaded or not. This is a trade-
off between the freshness of data and overhead of reloading.

In Section IV, we demonstrate that this approach enables to
efficiently process large-scale models that do not necessarily
fit completely into main memory, by allowing to manipulate
models chunk-by-chunk. In addition, this lays the foundation
for our peer-to-peer-based distribution approach.

conforms to conforms to

Meta model

A generates
|
] subscribe
| OO0API F===~F~~"~"~"~"~"~"~"~"7"7"7"7"7"7777771
|
] '
777 N |
" | subscribe Node 3 ' !
o ., N pmmmmmleae N emmmmmbooo N
-4 : ! Runtime model ! | Runtime model ! | Runtime model ! H i
7] H ' 1 '
2 ! ' %/VC& ! 1 %/V b
£ H) i | P
N A I I [ol b
B ! Ve ! I Lo il
| ! [cache ' i [cache P
777777777 7 N\ __/ \ s }
8 N Y Y Y, Y ,
b f e & —Z-
s | push/read notification push/read notification
Eu | Content delivery chunk chunk chunk chunk
| network - ------------h- - do oo oo oo oo oo oo oo ooomo oS
| observable i3 id:1 idi10 8 id: id:3 id:i |
| | stream 1
|
| | !
| N S |

Fig. 2. Distribution model

D. Distributed Models@ run.time

This subsection describes the peer-to-peer distribution of
data chunks. We first discuss how we enable distributed model-
ing and how we uniquely identify distributed model elements.
Then, we outline the generic content delivery network (CDN)
interface to bridge the gap between the model and data space.
Finally, we discuss how we distribute data chunks using
distributed hash tables (DHT).

The idea of our contribution is to offer a virtually com-
plete view of runtime models, even though they are actually
distributed over several nodes. To ensure consistency between
runtime models they all conform to the same meta model.
In future work we want to investigate how an independent
evolution of meta models could be achieved, e.g., by (semi)
automatically migrating chunks on the fly. This would enable
different nodes to use different versions of a meta model. To
avoid the need of a-priori replication, we use runtime models
as data proxies. The task of model proxies is to decompose
all model operations into data chunk operations. This is the
responsibility of a so-called content delivery network, which
provides operations to retrieve (get) and share (put) data
chunks. Figure 2 depicts the distribution architecture of our
approach.

Since model elements can be created on any node, we first
have to refine our wuid generation strategy to avoid uuid
overlaps. Consensus algorithms like RAFT [31] or Paxos [32]
are able to offer strong consistency guaranties. However, they
are not designed for very high volatility like needed for object
creation. Therefore, we define our wuids with the goal to
reduce the amount of consensus requests based on a leader
approach [31]. We use 64 bits uuids composed of two parts.
A 20 bits prefix (MSB: most significant bits) is negotiated
at the time a node connects to the CDN and is from this
point assigned to the node. The remaining 44 bits are used for
locally generated identifiers (LSB: least significant bits). This
composition of uuids is depicted in Figure 3.

MSB LsB

|01011100..41 ‘ 100001111100001111100001...1

[I

20 bit prefix 44 bit local identifier

Fig. 3. Composition of uuids for distributed models

Prefizes are allocated in a token ring and can therefore be
reused. The number of concurrent connections is limited by
the prefix size. With 20 bits prefizes we enable more than
one million connections without a risk of collision. Managing
prefizes in a token ring and reusing them allow us to use
more than one million connections, but with an increasing
number of connections the risk of collisions also increases.
By using 44 bit for local identifiers every node can create 244
objects per prefiz (about 17,592 billions). If a node needs to
create more objects, another prefiz must be requested from
the CDN. As depicted in Figure 2, every node relies on a
content delivery network, which is responsible for the data
chunk exchange strategy, prefix negotiation, and network
related operations. Different implementations of the CDN can
support different distribution scenarios. We now focus on peer-
to-peer distribution. Listing 1 illustrates a simplified interface
definition of a CDN driver.

Listing 1. CDN interface
interface ModelContentDelveryDriver {
atomicGet (byte[] key, Callback<byte[]> callback);
get (byte[] key, Callback<byte[]> callback);
put (byte[] key, byte[] val, Callback callback);
multicast (long[] nodes,byte[] val, Callback callback);

The method atomicGet is used during the prefix nego-
tiation phase and requires a consensus like algorithm, e.g.,
RAFT. The methods get and put are the two primary methods
to load, store, and share data chunks. These operations can be
implemented using a multicast dissemination strategy or with
more advanced concepts like distributed hash-table algorithms.
These algorithms offer partitioning of storage to replicate data
over network. Finally, the method multicast is used for the
dissemination of modification events to all subscribed nodes.
All these methods are asynchronous and use callbacks to
inform about their execution results.

A CDN driver needs to be instantiated at each node to
enable nodes to collaborate to exchange data chunks. Like
the PeerCDN project [33], the CDN implementation used in
our approach relies on the Kademlia distributed hash table to
implement the get and put operations. Since Kademlia scales
very well with the number of participants, we leverage it on
top of a WebSocket communication layer.

E. Reactive Models @ run.time

As discussed, a key requirement for models@run.time-
based systems is to be able to quickly react to state changes.
In order to ensure reactivity, we make our streams of model

chunks observable [13]. We enable runtime models to sub-
scribe to these observable streams. Therefore, we define an
API that allows to specify which model elements should be
observed. This is usually domain-specific knowledge. Then,
whenever one of these runtime model elements changes (re-
gardless if due to local or remote changes) the observer (a run-
time model) is notified. Different runtime models can observe
different model elements, depending on which changes are
important for this observer. For example, the top of Figure 1
shows that the runtime model subscribes to changes of the
two runtime model elements with id = 3 and ¢d = 6. This
means that whenever one of the model elements with id = 3
or id = 6 changes, the observer (runtime model) is notified.
The information, which runtime model observes which model
elements, is managed by the CDN and stored in a distributed
hash table. Listing 2 shows how the generated API can be
used to subscribe for model element changes.

Listing 2. Subscription for model changes
runtimeModel.subscribeAll (false);
runtimeModel.subscribe (3, new Callback () {

/* callback code =/ };
runtimeModel.subscribe (6, new Callback() {
/* callback code =/ };
)i

There are two important concepts to note. First, explic-
itly subscribing only to elements that are important for the
computational node hosting this runtime model reduces the
unnecessary propagation of information through the network.
Secondly, it can be specified what should happen, i.e., what
code should be executed, when the observed change occurs.
This allows a reactive programming style by declaratively
specifying what should happen if a certain event occurs. As
can be seen in Listing 2, the second parameter of the subscribe
method is a callback, meaning that this is a non-blocking
code. Since distributed systems are inherently asynchronous
this non-blocking capability is key [34]. Without the support of
non-blocking operations this would mean that a computation
node is blocked until the awaited event occurs. For example,
if a data concentrator intends to read the consumption value
of an associated smart meter, with a blocking operation the
concentrator (thread) would be blocked until the value arrives.
Since this can take several seconds the computation time of the
concentrator is wasted and cannot be used for something else
in the meantime. Blocking operations are therefore contradic-
tory to the requirement that models @run.time-based systems
need to be able to quickly react to state changes.

Current standard modeling frameworks like EMF are strictly
synchronous. This makes them inappropriate for highly dis-
tributed and asynchronous applications. Thus, we completely
rewrote the core of KMF to apply a thoroughly reactive and
asynchronous programming model. In fact, every method call
in KMF is asynchronous and therefore non-blocking. This
principle is shown on the right side of Figure 4. The left
side of Figure 4 shows in comparison a synchronous, i.e.,
blocking operation call. As can be seen in the figure, non-
blocking operation calls do not block the calling process
until the triggered operation is finished. Therefore, the caller

time

Sazuage E
;

' |
‘start operation 4 ":‘me" P start operation!

Process B Process B

Blocking operations Non-blocking operations

Fig. 4. Blocking and non-blocking operation calls

process can do something else in the meantime. As soon as
the operation execution finishes, the caller is notified using
a callback. To avoid deeply nested callbacks, which is occa-
sionally referred to as callback hell [35], every method call in
KMF immediately returns a KDefer object, which is similar
to a Future or Promise. These objects enable the definition of
a control flow by specifying that the execution of one KDefer
depends on the result of another KDefer and so on. Listing 3
shows how this looks like.

Listing 3. Asynchronous method calls with KDefer
KDefer filter = runtimeModel.createDefer();
KDefer defer = class2.getClass2s();
filter.wait (defer);

filter.setJob (new KJob () { /# filter class2s */ });

Listing 3 filters the results of the getter of class2s. However,
the getter is asynchronous and therefore filtering the result
can only start when the getter is executed. This is realized
by defining that the filter has to wait for the results of the
getter. It is important to note that this is not an active wait.
Instead, the control flow immediately continues (non-blocking)
and the execution of the filter object is delayed until the getter
finishes. To make it easier to traverse models (without the need
to deal with callbacks) we define a traversal language on top of
KMF. The execution of KDefers are transparently mapped to
processes in KMF. A task scheduler system allows to specify a
specific strategy. This allows a MapReduce-like [36] approach
to horizontally scale by parallelizing method calls.

IV. EVALUATION

In this section we evaluate our reactive peer-to-peer dis-
tributed models @run.time approach. We show that it can scale
to runtime models with millions of elements distributed over
thousands of nodes, while the distribution and model access
remain fast enough to react in near real-time. Our evaluation
is based on a smart grid case study, inspired from a real-
world smart grid project. We implemented and integrated our
approach into the Kevoree Modeling Framework. We first
introduce the smart grid case study before we evaluate our
approach and present the results.

A. The Smart Grid Case Study

We work together with our industrial partner Creos Luxem-
bourg S.A. to make the electricity grid able to dynamically
react and adapt itself to evolving contexts. For the context of
this project we define a model of the main grid devices and
use it during runtime for monitoring and reasoning purposes.

— : -
171
commMedias entities

CommunicationMedia Entity 0.1
7d: String <<id>> ‘name: Siring <<id>>
material: String connections | location: GpsPoint

. iy nsumed: double

Imax: double double
reactiveEnergyConsumed: double
ed: double

electricallLoad: double

SmartMeter
Customer ‘serialNumber: String
‘name: String <> _|_0..1 ; | maxPowerAllowed: double

address: String boolean
distance2concentrator: int

avgDuration2Read: long

customer

Fig. 5. Smart grid meta model

The main devices of the smart grid infrastructure are smart
meters and data concentrators [37]. Smart meters, installed at
customers’ houses continuously measure electric consumption,
quality of power supply and support load management. In
regular intervals (e.g., every 15 minutes), smart meters re-
port the consumption data to their associated concentrators.
Data concentrators collect and store consumption data from a
number of associated meters. Concentrators are able to send
commands to these smart meters, e.g., requesting consumption
data, restricting the maximum load, or shutting down the
electricity of a customer. Concentrators divide the smart grid
topology into smaller regions and enables what is referred to as
distributed control ability [6]. This also leads to a distribution
of data and processing. However, reasoning and decision-
making processes, e.g., electric load approximation, usually
need to aggregate and process data from several concentrators.
Therefore, we need to efficiently distribute our runtime models
over several concentrators but still be able to transparently
access all data from every node. Figure 5 shows a simplified
(stripped-down to focus on the essentials of the contribution
of this paper) excerpt of the meta model that we use in this
project. This meta model is also used for our evaluation.

B. Evaluation Setting

We evaluate our approach in terms of its capability to
tackle our three main requirements: i) large-scale models, ii)
distributed models, and iii) frequently changing models. We
use the smart grid model presented in IV-A and vary it in size
and distribution. Experiments are executed on a 2,6 GHz Core
i7 CPU with 16GB RAM and SSD drive using the Java version
of KMF. We use Docker (http.//www.docker.com/) containers
to distribute nodes. Every presented value is averaged from
10 measurements. The evaluation experiments are available
on GitHub (https://github.com/kevoree/xp-models15/).

C. Scalability for Large-Scale Models

In this benchmark we investigate the scalability charac-
teristics of our approach for large-scale models. Therefore,
we read a number of model elements and analyze how the
performance of this is impacted by the model size. As dis-
cussed, complex cyber-physical systems often need to leverage
very large models for their reasoning tasks. However, many

operations performed on shared models only use a small
fraction of the complete model for their reasoning activities.
As argued in this paper, this is often due to the distributed
nature of processing tasks. For instance, in the smart grid
scenario, every concentrator mainly needs the part of the
model representing its district. Therefore, we evaluate the
performance of reading a constant number of model elements
(25 elements) and analyze how this is impacted by the model
size. In this experiment, we increase the number of model
elements step by step to more than 1.5 million elements, while
the model is distributed over two nodes. In the next subsection
we analyze the effect of a highly distributed model. For
each model size, we read 25 elements from the model. More
specifically, we read consumption values of smart meters in
order to approximate the electric loading. The read operations
are performed on one node, which communicates through a
WebSocket communication protocol with the other node. Since
models are composed of object graphs, the performance of
read operations usually differs depending if a model is very
deep or wide. For this reason, we evaluated both scenarios:
once we increased the model size in depth and once in width.
Our results are presented in Figure 6. It is important to note

Milliseconds

=*=Scalability of Wide Models

Scalability of Deep Models

**“Linear Regression (Wide)

Linear Regression (Deep)

2 580 2146 4 5791 7411 3?52 sssal 311 s0L1 1620121

Elements in the Model

Fig. 6. Scalability of read operations for large-scale models

that the time to load the model elements is barely affected
by the model size. In fact, scalability for models which are
large in width, is nearly constant while for models which
are large in depth is nearly linear. In this experiment, we
demonstrated that our distributed models @run.time approach
allows distributed read operations in an order of magnitude of
milliseconds (between 12 and 28 ms) in a model with millions
of elements. From this experiment, we can conclude that our
concept of model elements, which act as proxies on a stream
of data chunks, is suitable for large-scale models @run.time.

D. Scalability for Large-Scale Distribution

In this experiment we investigate the ability of our dis-
tributed runtime model approach to collaborate with a huge
number of nodes through a shared common context. We eval-
uate the capacity of the model to propagate changes to a huge
amount of collaborating nodes. This large scale distribution
is representative for smart grid architectures. To conduct the
experiments we used five physical computers (Intel Core i7

with 16GB RAM), connected through a local area network.
On each computer we sequentially started 200 virtual docker
nodes using the Decking tool (http://decking.io) (from 200 up
to 1000 nodes) and measured the propagation time of model
updates. The 200 docker nodes per physical computer result
from a limit of the Linux Kernel. We simulate changes in the
smart grid topology which have to be propagated to all nodes.
For this, every five seconds one of the nodes (virtual machines)
in the network is updating a value and propagates this change.
We measure the required time for propagating the changes.
Figure 7 shows the results in five scales, represented by the
probability spectral density (grouped by 10 ms), reaching from
200 to 1000 collaborating nodes. The spectral density reflects

— ~200 connections

= *400 connections

= =800 connections

* * 1000 connections

Spectral density (grouped by 10 ms)

Model update latency in ms

Fig. 7. Spectral probability density of the model update latency

the probability of each latency depending on the number of
nodes. With this benchmark, we demonstrate that our approach
can handle a high number of collaborating nodes while the
latency remains low. The raw results are shown in Table 1.

Nodes Nb. | Min(ms) | Max(ms) | Avg(ms)

200 11 188 88.01

400 63 220 128.75

600 87 253 169.52

800 102 289 185.62

1000 141 355 224.66
TABLE I

MEASURED LATENCY (IN MS) TO PROPAGATE CHANGES

E. Scalability for Frequently Changing Models

Cyber-physical systems and their associated sensors lead to
frequent updates in their associated context models. Therefore,
in this benchmark we evaluate the ability of our distributed
data stream concept to partly update runtime models with a
high frequency. In the following benchmarks we use two nodes
connected through a WebSocket connection. In a first bench-
mark, we investigate the highest possible volatility of a model
element. On a model with 1.5 million elements, we evaluate
how frequently a single element can be updated per second.
We evaluated the time to update the value of an attribute on
one node and to send an update notification to the node. We
measured the maximal frequency our implementation is able to
handle: 998 updates per second for a model with 1.5 million
elements.

In a second benchmark we evaluated the ability of our
approach to handle changes of different size in large models.
Therefore, we first updated a small percentage of the model
and then increased the percentage of changes step by step.
We measured the time needed to update the model and inform
the other node about the change (context sharing). Figure 8
presents our results. The results show that our approach

“Commitand Send Time “Update Time

Seconds

Percentage of change (of 1.313.747 elts)

Fig. 8. Required time for update operations of different size

approximately scales linear to the percentage of changes. For
changes of a small part of the model (around 10% which is
equivalent to 150000 elements) our approach remains below
10 seconds. Only if 70% or more of the model changes the
update and propagation time exceeds one minute. These results
show that our approach is able to handle a high volatility of
model elements while still offering good latency properties.

V. DISCUSSION: DISTRIBUTION AND ASYNCHRONICITY

The border between large-scale data management systems
and models is becoming more and more fuzzy as mod-
els@run.time progressively gains maturity through large-scale
and distribution mechanisms. Therefore it is clearly impor-
tant to evaluate the limit and the potential reuse of each
domain. For instance, despite the feasibility of mapping a
models @run.time into a distributed database, which takes care
of the replication of data, it quickly leads to many limitations
in practice. Indeed, to mimic synchronous calls, heavy and
costly distributed algorithms have to be involved, such as
consensus or RAFT. However, because every communication
can fail, the uncertainty is at the heart of the distribution.
Instead of hiding it, most of nowadays software stacks exploit
explicit asynchronous programming to scale their distributed
computation. In this trend we can mention the well-known
AJAX, or even the API of Nodel]S server or distributed P2P
communication, which are by default asynchronous. There-
fore, beyond the ability to distribute in a scalable manner
models @run.time over nodes, our contribution also includes
at its core an asynchronous layer in models. We are convinced
that this change is inescapable if runtime models want to go
beyond the barrier of computer memory in order to exploit
the power of distributed systems. Moreover, asynchronous
modeling pave the way clearly to define the semantic of partial
and large scale models.

VI. RELATED WORK

The closest to the presented contribution is the work of
Fouquet et al., [38]. They discuss the challenge how to prop-
agate reconfiguration policies of component-based systems to
ensure consistency of architecture configuration models over
dynamic and distributed systems. They propose a peer-to-peer
distributed dissemination algorithm for the models @run.time
context based on gossip algorithms and vector clock tech-
niques that are able to propagate the reconfiguration policies.
While their goal is essentially to propagate changes made in
the model of one computation node to the model of other
computation nodes, their approach differs significantly from
ours. First, they focus mainly on architectural configuration
models [39], which are typically of manageable size and can
be exchanged in one piece. On the contrary, we focus on big
runtime models supporting millions of elements over several
thousand distributed instances, making it basically impossible
to exchange the complete model in reasonable time. Secondly,
our approach promotes observable streams and asynchronous
operations enabling a reactive programming style. Last but
not least, instead of using a gossip and vector clock-based
dissemination strategy to ensure model consistency, we rely
on protocols like web sockets or WebRTC together with lazy
loading to stream our models between distributed nodes.

Several authors identified the need of infinite, unbounded
models and some sort of model streaming. In [9] Combemale
et al., propose a formal definition of an infinite model as
an extension of the MOF formalism together with a formal
framework to reason on queries over these infinite models.
Their work aims at supporting the design and verification of
operations that manipulate infinite models. Particularly, they
propose formal extensions of the MOF upperbound attribute
of the Property element to define infinite, unbounded col-
lections and iterate over them. For similar reasons, we also
define models as infinite streams of model chunks. However,
our approach goes beyond this and allows the distribution
of model chunks over nodes and the definition of repeatable
asynchronous operations to lazily (re)load these chunks from
remote nodes. This is somewhat similar to what is proposed for
stream processing [40] in programming languages or database
management systems.

In [41] Cuadrado et al., discuss the motivation, scenarios,
challenges, and initial solutions for streaming model trans-
formations. They motivate the need for this new kind of
transformation with the fact that a source model might not
be completely available at the beginning of the transformation,
but might be generated step by step. They present an approach
and provide a prototype implementation, built on top of the
Electic transformation tool. In a similar direction goes the
work of David et al., [42]. They suggest to use incremental
model query techniques together with complex event process-
ing to stream model transformations. Their approach foresees
to populate event streams from elementary model changes
with an incremental query engine and to use a complex
event processing engine to trigger transformation rules. This

is applied for gesture recognition for data coming from a
KINECT sensor. On the contrary to [41] their approach uses
derived information regarding the model in the form of change
events, which decouples the execution from the actual model.
Réath [43] presents an approach for change-driven model
transformations, directly triggered by complex model changes
carried out by arbitrary transactions on the model. They
identify challenges for change-driven transformations and de-
fine a language for specifying change-driven transformations
as an extension of graph patterns and graph transformation
rules. Our and these approaches have in common that we
identify a need for continuous or infinite models. Unlike these
approaches we do not stream events or model transformations
and use complex event processing engines to detect complex
events, but view runtime models itself as continuous streams.

Several authors worked on the issues of large-scale models,
model persistence, and the fact that they might grow too big
to fit completely into main memory. Pagan et al., [29] propose
Morsa, an approach for scalable access to large models through
on demand loading. They suggest to use NoSQL databases for
model persistence and provide a prototype that integrates trans-
parently with EMF. In their evaluation they showed that they
have significantly better results than the EMF XMI file-based
persistence and CDO. In a similar direction goes the work of
Koegel and Helming [44], Gomez et al., [45], or Hartmann et
al., [26]. However, none of this work addresses distribution or
asynchronicity. To address the scalability of queries, Szdrnyas
et al., [46] present an adaption of incremental graph search
techniques, like EMF-IncQuery. They propose an architecture
for distributed and incremental queries.

VII. CONCLUSION AND FUTURE WORK

Cyber-physical systems, such as smart grids, are becoming
more and more complex and distributed. Despite the fact
that models@run.time enable the abstraction of such complex
systems during runtime and to reason about it, the combina-
tion of the i) large-scale, ii) distributed, and iii) constantly
changing nature of these systems is a big challenge. These
characteristics are closely interlinked: The increasing com-
plexity of cyber-physical systems naturally leads to bigger
models, which are —due to their size— also more difficult to
distribute or replicate. Finally, the distributed aspect inherently
leads to asynchronicity and this in turn requires the ability
to dynamically react to events instead of actively waiting.
Therefore this paper introduces a distributed models @run.time
approach, combining ideas from reactive programming, peer-
to-peer distribution, and large-scale models@run.time. First,
since models@run.time are continuously updated during the
execution of a system, they cannot be considered as bounded
but can change and grow indefinitely. We defined models
as observable streams of model chunks, where every chunk
contains data related to one model element. This stream-based
interpretation of models allows to process models chunk by
chunk regardless of their global size. Secondly, we distribute
and exchange these model chunks between nodes in a peer-
to-peer manner and on-demand to avoid the necessity to

exchange full runtime models. Nonetheless, the use of a lazy
loading strategy allows to transparently access the complete
virtual model from every node, although chunks are actually
distributed across nodes. Thirdly, we leverage observers, an
automatic reloading mechanism of model chunks (in case of
changes), and asynchronous operations to enable a reactive
programming style, allowing a system to dynamically react to
context changes. We integrated our approach into the Kevoree
Modeling Framework and evaluated on an industrial-scale
smart grid case study. We demonstrated that this approach can
enable frequently changing, reactive distributed models and
can scale to millions of elements distributed over thousands
of nodes, while the distribution and model access remains fast
enough to enable reactive systems.

In future work we plan to extend our approach to clas-
sical client-server applications, enabling a client and server
to operate on the same runtime model. All model changes
made in either the server or the client would be automatically
synchronized to the other one by considering the runtime
model as a distributed model. This would make the typical
data transform-send-transform process unnecessary, which is
in many of today’s architectures, like SOA, mandatory. The
reactive aspect of our approach would allow clients to dynam-
ically react to changes by updating the corresponding view. For
example, if a client shows stock prices and a value is changed
on the server, this change would be fully automatically and
transparently propagated to the client, which can react to it.
By using isomorphic models (models of different languages
which use the same API) this could also be used if client and
server applications are written in different languages, e.g., Java
und JavaScript. Another goal for a future work is to enable the
evolution of meta models, i.e., to enable different nodes to use
different versions of a model. This is currently not supported
in our approach. We rely on the fact that every node uses
runtime models conforming to the same meta model version.

ACKNOWLEDGMENT

The research leading to this publication is supported by the
National Research Fund Luxembourg (grant 6816126 and CoPAInS
project CO11/IS/1239572) and Creos Luxembourg S.A. under the
SnT-Creos partnership program.

REFERENCES

[1] G. S. Blair, N. Bencomo, and R. B. France, “Models@ run.time,” IEEE
Computer, vol. 42, no. 10, pp. 22-27, 2009.

[2] N. Bencomo, R. B. France, B. H. C. Cheng, and U. ABmann, Eds., Mod-
els@run.time - Foundations, Applications, and Roadmaps [Dagstuhl
Seminar 11481, November 27 - December 2, 2011], ser. Lecture Notes
in Computer Science, vol. 8378. Springer, 2014.

[3] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems:
The next computing revolution,” in Design Automation Conference
(DAC), 2010 47th ACM/IEEE, June 2010, pp. 731-736.

[4] E. A. Lee, “Cyber physical systems: Design challenges,” in Object
Oriented Real-Time Distributed Computing (ISORC), 2008 11th IEEE
International Symposium on. 1EEE, 2008, pp. 363-369.

[5] J. Taneja, R. Katz, and D. Culler, “Defining cps challenges in a
sustainable electricity grid,” in Proceedings of the 2012 IEEE/ACM Third
International Conference on Cyber-Physical Systems. 1EEE Computer
Society, 2012, pp. 119-128.

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

H. Farhangi, “The path of the smart grid,” Power and Energy Magazine,
IEEE, vol. 8, no. 1, pp. 18-28, 2010.

F. Fouquet, B. Morin, F. Fleurey, O. Barais, N. Plouzeau, and J.-M.
Jezequel, “A dynamic component model for cyber physical systems,”
in Proceedings of the 15th ACM SIGSOFT symposium on Component
Based Software Engineering. ACM, 2012, pp. 135-144.

A. Taherkordi, F. Loiret, R. Rouvoy, and F. Eliassen, “Optimizing
sensor network reprogramming via in situ reconfigurable components,”
ACM Trans. Sen. Netw., vol. 9, no. 2, pp. 14:1-14:33, Apr. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2422966.2422971

B. Combemale, X. Thirioux, and B. Baudry, “Formally defining and
iterating infinite models,” in Model Driven Engineering Languages and
Systems - 15th International Conference, MODELS 2012, September
30-October 5, 2012. Proceedings, 2012, pp. 119-133.

F. Fouquet, G. Nain, B. Morin, E. Daubert, O. Barais, N. Plouzeau,
and J. Jézéquel, “An eclipse modelling framework alternative to meet
the models @runtime requirements,” in Model Driven Engineering Lan-
guages and Systems - 15th International Conference, MODELS 2012,
September 30-October 5, 2012. Proceedings, 2012, pp. 87-101.

F. Francois, G. Nain, B. Morin, E. Daubert, O. Barais, N. Plouzeau, and
J.-M. Jézéquel, “Kevoree modeling framework (kmf): Efficient modeling
techniques for runtime use,” arXiv preprint arXiv:1405.6817, 2014.

E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and
W. d. Meuter, “A survey on reactive programming,” ACM Comput. Surv.,
vol. 45, no. 4, pp. 52:1-52:34, Aug. 2013.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.
E. Meijer, “Your mouse is a database,” Queue, vol. 10, no. 3, pp. 20:20-
20:33, Mar. 2012.

I. Maier, T. Rompf, and M. Odersky, “Deprecating the observer pattern,”
Tech. Rep., 2010.

G. H. Cooper and S. Krishnamurthi, “Embedding dynamic dataflow
in a call-by-value language,” in Proceedings of the 15th European
Conference on Programming Languages and Systems, ser. ESOP’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 294-308.

L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, and S. Krishnamurthi, “Flapjax: A programming language
for ajax applications,” in Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and
Applications, ser. OOPSLA ’09. ACM, 2009, pp. 1-20.

S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-
to-peer content distribution technologies,” ACM Comput. Surv.,
vol. 36, no. 4, pp. 335-371, Dec. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1041680.1041681

M. Kamel, C. Scoglio, and T. Easton, “Optimal topology design for
overlay networks,” in NETWORKING 2007. Ad Hoc and Sensor Net-
works, Wireless Networks, Next Generation Internet. Springer, 2007,
pp. 714-725.

Z.J. Haas, J. Y. Halpern, and L. Li, “Gossip-based ad hoc routing,”
IEEE/ACM Trans. Netw., vol. 14, no. 3, pp. 479—491, Jun. 2006.
[Online]. Available: http://dx.doi.org/10.1109/TNET.2006.876186

R. Matei, A. Iamnitchi, and I. Foster, “Mapping the gnutella network,”
Internet Computing, IEEE, vol. 6, no. 1, pp. 50-57, Jan 2002.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, Ser.
SIGCOMM °01. New York, NY, USA: ACM, 2001, pp. 149-160.
[Online]. Available: http://doi.acm.org/10.1145/383059.383071

M. Kaashoek and D. Karger, “Koorde: A simple degree-optimal dis-
tributed hash table,” in Peer-to-Peer Systems II, ser. Lecture Notes in
Computer Science, M. Kaashoek and 1. Stoica, Eds. Springer Berlin
Heidelberg, 2003, vol. 2735, pp. 98-107.

D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

T. Hartmann, F. Fouquet, G. Nain, B. Morin, J. Klein, and Y. L.
Traon, “Reasoning at runtime using time-distorted contexts: A mod-
els@run.time based approach,” in The 26th International Conference
on Software Engineering and Knowledge Engineering, Hyatt Regency,
Vancouver, BC, Canada, July 1-3, 2013., 2014, pp. 586-591.

T. Hartmann, F. Fouquet, G. Nain, B. Morin, J. Klein, O. Barais, and
Y. L. Traon, “A native versioning concept to support historized models at
runtime,” in Model-Driven Engineering Languages and Systems - 17th

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

International Conference, MODELS 2014, Valencia, Spain, September
28 - October 3, 2014. Proceedings, 2014, pp. 252-268.

D. Kolovos, D. Di Ruscio, A. Pierantonio, and R. Paige, ‘“Different
models for model matching: An analysis of approaches to support model
differencing,” in Comparison and Versioning of Software Models, 2009.
CVSM °09. ICSE Workshop on, May 2009, pp. 1-6.

L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558-565, Jul. 1978.

J. E. Pagédn, J. S. Cuadrado, and J. G. Molina, “Morsa: A scalable
approach for persisting and accessing large models,” in Model Driven
Engineering Languages and Systems. Springer, 2011, pp. 77-92.

F. Khunjush and N. J. Dimopoulos, “Lazy direct-to-cache transfer during
receive operations in a message passing environment,” in Proceedings
of the 3rd Conference on Computing Frontiers, ser. CF 06. New York,
NY, USA: ACM, 2006, pp. 331-340.

D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proc. USENIX Annual Tech. Conf., 2014, pp. 305-320.
P. Dutta, R. Guerraoui, and L. Lamport, “How fast can eventual
synchrony lead to consensus?” in Dependable Systems and Networks,
2005. DSN 2005. Proceedings. Int. Conf. on. 1EEE, 2005, pp. 22-27.
J. Wu, Z. Lu, B. Liu, and S. Zhang, “Peercdn: A novel p2p network
assisted streaming content delivery network scheme,” in Computer
and Information Technology, 2008. CIT 2008. 8th IEEE International
Conference on. 1EEE, 2008, pp. 601-606.

M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM
(JACM), vol. 32, no. 2, pp. 374-382, 1985.

S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones, “Calling hell
from heaven and heaven from hell,” in Proceedings of the Fourth ACM
SIGPLAN International Conference on Functional Programming, ser.
ICFP ’99. New York, NY, USA: ACM, 1999, pp. 114-125. [Online].
Available: http://doi.acm.org/10.1145/317636.317790

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, Jan. 2008.
T. Hartmann, F. Fouquet, J. Klein, Y. L. Traon, A. Pelov, L. Toutain, and
T. Ropitault, “Generating realistic smart grid communication topologies
based on real-data,” in 2014 IEEE International Conference on Smart
Grid Communications, SmartGridComm 2014, Venice, Italy, November
3-6, 2014, 2014, pp. 428-433.

F. Fouquet, E. Daubert, N. Plouzeau, O. Barais, J. Bourcier, and
J. Jézéquel, “Dissemination of reconfiguration policies on mesh net-
works,” in Distributed Applications and Interoperable Systems - 12th
IFIP WG 6.1 International Conference, DAIS 2012, Stockholm, Sweden,
June 13-16, 2012. Proceedings, 2012, pp. 16-30.

B. Morin, O. Barais, J. Jezequel, F. Fleurey, and A. Solberg, “Models @
run.time to support dynamic adaptation,” Computer, vol. 42, no. 10, pp.
44-51, Oct 2009.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proceedings of the Twenty-first
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, ser. PODS *02. New York, NY, USA: ACM, 2002, pp. 1-16.
J. S. Cuadrado and J. de Lara, “Streaming model transformations:
Scenarios, challenges and initial solutions,” in Theory and Practice of
Model Transformations. Springer, 2013, pp. 1-16.

I. David, I. Réth, and D. Varrd, “Streaming model transformations by
complex event processing,” in Model-Driven Engineering Languages
and Systems. Springer, 2014, pp. 68-83.

I. Réth, G. Varrd, and D. Varr6, “Change-driven model transformations,”
in Model Driven Engineering Languages and Systems, ser. Lecture Notes
in Computer Science, A. Schiirr and B. Selic, Eds. Springer Berlin
Heidelberg, 2009, vol. 5795, pp. 342-356.

M. Koegel and J. Helming, “Emfstore: A model repository for emf mod-
els,” in Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 2, ser. ICSE 10. New York, NY,
USA: ACM, 2010, pp. 307-308.

A. Gomez, M. Tisi, G. Sunyé, and J. Cabot, “Map-based transparent
persistence for very large models,” in Fundamental Approaches to
Software Engineering. Springer, 2015, pp. 19-34.

G. Szérnyas, B. 1zs6, I. Rath, D. Harmath, G. Bergmann, and D. Varrd,
“Incquery-d: A distributed incremental model query framework in the
cloud,” in Model-Driven Engineering Languages and Systems. Springer
International Publishing, 2014, pp. 653-669.

