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Abstract—This contribution proposes a new technique for
developing test cases for UML and OCL models. The technique
is based on an approach that automatically constructs object
models for class models enriched by OCL constraints. By guiding
the construction process through so-called classifying terms, the
built test cases in form of object models are classified into
equivalence classes. A classifying term can be an arbitrary OCL
term on the class model that calculates for an object model a
characteristic value. From each equivalence class of object models
with identical characteristic values one representative is chosen.
The constructed test cases behave significantly different with
regard to the selected classifying term. By building few diverse
object models, properties of the UML and OCL model can be
explored effectively. The technique is applied for automatically
constructing relevant source model test cases for model transfor-
mations between a source and target metamodel.

I. INTRODUCTION

As the complexity of model transformations grows, there is
an increasing need to count on more powerful and precise test-
ing techniques. One essential aspect of model transformation
testing (and, in general, of software testing) is the selection of
effective test cases [1].

One way to achieve this is by using Equivalence Partition-
ing, a software testing technique that divides the input data of
a software unit into partitions of equivalent data from which
test cases can be derived [2]. The fundamental concept of this
technique is based on the use of equivalence classes, and the
selection of one representative element from each class. An
advantage of this approach is the reduction of the total number
of test cases to a finite set of testable test cases, still covering
a maximum of requirements. Testing time is also significantly
reduced, due to lesser number of test cases.

The key idea of this approach is that we need to test only
one input model from each partition as we assume that all the
models in a certain partition will be treated in the same way
by the transformation. If one model belonging to a partition
has certain characteristics of interest, we assume all of the
models in that partition will have them too and thus will
behave the same. Therefore, there is no point in testing any
of these others. Similarly, if one of the models in a partition
does not work, then we assume that none of the models in
that partition will work. Again, there is little point in testing
any more in that partition. In sum, this is because all models
in a partition are equivalent.

The main issues are how to define the equivalence classes
that define the partitions in an expressive and flexible way,
and how to automatically select one representative element of
each class.

To achieve this, our contribution proposes a new technique
for developing test cases for UML and OCL models, based
on an approach that automatically constructs object models
for class models enriched by OCL constraints. By guiding
the construction process through so-called classifying terms,
the built test cases in form of object models are classified into
equivalence classes. Classifying terms are arbitrary OCL terms
on a class model that calculate a characteristic value for each
object model. Each equivalence class is then defined by the
set of object models with identical characteristic values and
with one canonical representative object model. By inspecting
these object models, a developer can explore properties of the
class model and its constraints.

In this contribution we also show how classifying terms can
be effectively used in combination with Tracts [3], a specifica-
tion and black-box testing approach for model transformations,
providing a sound and practical mechanism for the automated
generation of suitable test models for Tracts.

This paper is organized in 5 sections. After this Introduction,
Section II introduces classifying terms, describes how they
are specified, and presents the mechanism available for auto-
matically constructing the representative object models. Then,
Section III describes how classifying terms can be used in the
context of Tracts to implement model transformation testing.
Section IV relates our work to other similar approaches.
Finally, Section V concludes and outlines some future lines
of work.

II. CLASSIFYING TERMS

Classifying terms are an instrument to explore model
properties. We discuss their underlying concepts and their
implementation in the context of a tool, the UML-based
Specification Environment (USE). The underlying ideas can be
employed however in similar modeling tools. USE allows the
modeler to describe a system with a UML class model (class
diagram) and OCL constraints, among other description means
like, for example, UML protocol state machines. USE is
intended for validation and verification of UML models. One
central validation task is the automatic construction of object
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models (object diagrams) for the class model including the
OCL constraints. This task can be performed by a so-called
model validator that (a) transforms UML and OCL models
into the relational logic [4] of Kodkod [5], (b) analyzes the
relational logic results, and (c) transforms the results back in
terms of UML. The object model construction is guided by a
configuration that specifies how classes, associations, attributes
and data types are populated. Finite bounds must guarantee
that all model elements (classes, associations, attributes and
data types) are associated during the validation process with
finite sets.

The running example in this section is a very simple
Parenthood description as shown in Fig. 1 with a UML
class model and accompanying OCL invariants. Given an ap-
propriate configuration, the model validator can automatically
construct object models like the ones in Fig. 2.

Fig. 1. Example UML class model including OCL invariants.

Fig. 2. Different example object models with partly isomorphic structure.

In order to explain the need for classifying terms, the central
new notion in this contribution, let us consider the following
model exploration task: for a given class model and under a
particular configuration, the developer wants to scroll through
all valid object models, i.e., she wants to consider not only
a single object model but the collection of all valid object
models. This is currently realized in the USE approach through
the validation option scrolling that spans up all object models.

Problem: The general difficulty appearing now is that many
very similar object models will be taken into account. The de-
veloper might expect to be shown interesting, structurally dif-
ferent object models. For example, in the above Parenthood
model under a configuration requiring exactly three Person
objects and two Parenthood links, the two rightmost object

models in Fig. 2 will typically appear as distinct models,
although being different only in the first name of the Person
objects at the bottom. However, a development approach could
offer the option to prevent that isomorphic object models
with the same Parenthood patterns are presented as distinct
object models, when scrolling through the collection of valid
object models

Solution: As an answer, our approach gives the developer
an explicit option to formulate her understanding of two object
models being different. The technical realization is as follows:
the developer specifies a closed OCL query term, i.e., a term
without free variables, that can be evaluated in an object model
and returns an (for the time being) integer as a characteristic
value; in our approach, this term is called ‘classifying term’;
each newly constructed object model has to show a different
characteristic value. As sketched in Fig. 3, the classifying term
determines an equivalence relationship on all object models.
Two object models with the same characteristic value belong
into the same equivalence class. The approach decides to
choose only one representative from each equivalence class.
We will later lift the restriction that only one classifying term
of type Integer is considered.

Fig. 3. Object model equivalence classes w.r.t. a classifying term.

Example: As a first simple case, a classifying term can
specify the number of objects in a class. E.g., under a config-
uration requiring at least 2 and at most 4 Person objects, the
classifying term Person.allInstances()->size()
would yield three object models with 2, 3, and 4 Person
objects, respectively.

Example: Let us continue the Parenthood example and
configuration with exactly three Person objects and two Par-
enthood links from above. In order to prevent that the two
rightmost object models from Fig. 2 are presented as differ-
ent object models, the developer can employ the following
classifying term.

Person.allInstances()->select(p |
Person.allInstances()->exists(c,gc |

p.child->includes(c) and
c.child->includes(gc)))->size()

This term counts the number of Person objects that
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Fig. 4. Interplay between model validator and classifying term.

possess a child and a grandchild. The term rates the two
rightmost object models from Fig. 2 with the same value 1,
and thus only one object model would be chosen from the
corresponding equivalence class. The term rates the leftmost
object model from Fig. 2 with the value 0.

Classifying term handling: The USE model validator and
a classifying term play together as depicted in Fig. 4: as an
initial step, a first object model is constructed; then the value
value1 of the classifying term in the first object model is
stored; afterwards, a constraint is added to the validation pro-
cess, namely the constraint classifyingTerm<>value1;
employing this constraint, a second object model is computed;
the value value2 of the classifying term in the second
object model is stored, and a further constraint is added to
the validation process classifyingTerm<>value2; the
general rule is that when computing the object model N+1,
the values value1, ..., valueN of the classifying term in
the previous object models are used to distinguish the newly
computed object model from the already found ones; these
steps are repeated until no new object model is found. In our
approach, classes, associations, attributes and data types must
be populated with elements specified by finite sets, and thus
only a finite number of object models exists.

Example: We now consider a more practical classifying
term that generates structurally different object models. The
configuration requires that between 1 and 3 Person objects
and between 1 and 3 Parenthood links exist. The classify-
ing term uses the boolean properties wGp (with grandparent),
w2c (with 2 children) and w2p (with 2 parents).

let P=Person.allInstances in
let wGp=P->exists(g,p,c |

g.child->includes(p) and
p.child->includes(c)) in

let w2c=P->exists(p | p.child->size>=2) in
let w2p=P->exists(p | p.parent->size>=2) in
if wGp then 1 else 0 endif +
if w2c then 2 else 0 endif +

if w2p then 4 else 0 endif

In order to obtain as many combinations as possible, the
three boolean properties are considered as bits in a three-bit
integer representation. The classifying term encodes this rep-
resentation. The resulting object models are shown in Fig. 5.
The objects models show different structural characteristics
and are presented in the order in which the model validator
finds them. Please note that from the possible 8 combinations
of the basic boolean properties only 5 options are considered.
This is primarily due to the stated configuration (1 to 3 objects,
1 to 3 links). For example, the option (wGp=0,w2c=1,w2p=1)
cannot be reached with at most 3 objects, because combining
w2c=1 and w2p=1 would lead to solution 5 in which wGp=1
must hold; the option (wGp=0,w2c=1,w2p=1) can be reached
however by increasing in the configuration the number of
objects to 4 (resulting in, e.g., p1 with children {p2,p3} and
p3 with parents {p1,p4}).

As mentioned above, employing one classifying term of
type Integer is one option. In general, more than one classi-
fying term may employed. Each term is allowed to be of type
Integer or Boolean. Thus the same collection of object
models as in Fig. 5 may also be achieved by specifying three
Boolean terms.

[ wGp ] Person.allInstances->exists(g,p,c |
g.child->includes(p) and
p.child->includes(c))

[ w2c ] Person.allInstances->exists(p |
p.child->size>=2)

[ w2p ] Person.allInstances->exists(p |
p.parent->size>=2)

The example demonstrates two new aspects of classifying
terms. First, it is valuable to use multiple classifying terms
in one validation process. And second, with multiple terms
allowed, apart from integer expressions also boolean expres-
sions can be used, which on their own only allow for at most
two results. Whereas with n boolean classifying terms up to 2n
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Fig. 5. Structurally different objects models constructed by a classifying term.

possible solutions could be found. Consequently, the definition
of classifying terms is extended to allow for these features.

In order to find successively new object models for a given
class model plus classifying terms, the values of the classifying
terms are stored for each solution. Using the classifying terms
and these values, constraints are created and given to the solver
along with the class model during the validation process. In-
formally, the constraint schema reads: There exists no previous
object model, in which the evaluation of all classifying terms
in the object model currently under construction equals the
stored values of the previous object models. This statement
can be formally represented as:

¬
∨

om∈PreviousObjectModels

∧
ct∈ClassifyingTerms

ct = ct[om]

ct is a classifying term and ct[om] refers to the stored value of
the specific classifying term in the previous object model om.
With this formula, the example can be realized with three
distinct classifying terms and the overhead in form of the
binary addition disappears, providing a more efficient solution.
All described features have been implemented in the USE
model validator and are available for download1.

Advantages of classifying terms: Classifying terms can be
employed for exploring the class model in order to see few
diverse object models instead of many similar ones. The focus

1http://sourceforge.net/projects/useocl/ (USE and ModelValidator plugin)

of exploration is determined by the modeler through the terms.
By inspecting the constructed object models and checking their
properties, the modeler gains insight into the characteristics
of the class model including the OCL constraints and makes
them alive. Using boolean classifying terms, one can draw
conclusions which model properties (expressed as classifying
terms) are allowed simultaneously in an object model (see
the Table in the bottom right of Fig. 5). Thus one can ana-
lyze dependencies between requirements similar to invariant
independence [6] which checks whether a given invariant is a
logical consequence from other invariants. Classifying terms
can employ all OCL constructs (e.g., logical connectives and
collection operations as forAll, collect, closure or
size) supported by the transformation into relational logic
and allow to express quite general properties. They can be
used to generate test cases in form of object models based on
the idea of building equivalence classes.

III. USING CLASSIFYING TERMS IN THE
CONTEXT OF TRACTS

A. Building Tract Test Suites with Classifying Terms

Tracts: Tracts were introduced in [3] as a specification and
black-box testing mechanism for model transformations. They
are a particular kind of model transformation contracts [1, 7]
especially well suited for specifying model transformations in
a modular and tractable manner. Tracts provide modular pieces

4



Fig. 6. Building blocks of a tract as in [3].

of specification, each one focusing on a particular transforma-
tion scenario. Thus each model transformation can be specified
by means of a set of Tracts, each one covering a specific use
case—which is defined in terms of particular input and output
models and how they should be related by the transformation.
In this way, Tracts permit partitioning the full input space
of the transformation into smaller, more focused behavioral
units, and to define specific tests for them. Commonly, what
developers are expected to do with Tracts is to identify the
scenarios of interest (each one defined by one Tract) and
check whether the transformation behaves as expected in these
scenarios. Tracts also count on tool support for checking, in
a black-box manner, that a given implementation behaves as
expected—i.e., it respects the Tracts constraints [8].

Fig. 6 depicts the main components of the Tracts approach:
the source and target metamodels, the transformation T under
test, and the transformation contract, which consists of a Tract
test suite and a set of Tract constraints. In total, five different
kinds of constraints are present: the source and target models
are restricted by general constraints added to the language
definition, and the Tract imposes additional source, target,
and source-target Tract constraints for a given transformation.
These constraints serve as “contracts” (in the sense of contract-
based design [9]) for the transformation in some particular
scenarios, and are expressed by means of OCL invariants. They
provide the specification of the transformation.

If we assume a source model m being an element of the test
suite and satisfying the source metamodel and the source Tract
constraints given, the Tract essentially requires the result T (m)
of applying transformation T to satisfy the target metamodel
and the target Tract constraints, and the tuple < m,T (m) >
to satisfy the source-target Tract constraints.

Example: In order to illustrate Tracts, consider a simple
model transformation called BiBTex2DocBook that con-
verts the information about proceedings of conferences (in
BibTeX format) into the corresponding information encoded
in DocBook format2. The source and target metamodels
that we use for the transformation are shown in Fig. 7.
Seven constraint names are also shown in the figure. These
constraints are in charge of specifying statements on the
source models (e.g., proceedings should have at least one
paper; persons should have unique names); and on the target

2http://docbook.org/

Fig. 7. Source and target metamodels.

models (e.g., a book should have either an editor or an author,
but not both). The constraints for the source are shown below.

context Person inv isAuthorOrEditor:
inProc->size() + proc->size() > 0

context InProc inv booktitleOccursAsProcTitle:
Proc.allInstances->exists(prc |

prc.title=booktitle)

context Person inv uniqueName:
Person.allInstances->isUnique(name)

context Proc inv hasAtLeastOnePaper:
InProc.allInstances->exists(pap |

pap.booktitle=title)

context Proc inv uniqueTitle:
Proc.allInstances->isUnique(title)

context Proc inv withinProcUniqueTitle:
InProc.allInstances->select(pap |

pap.booktitle=title)->forAll(p1,p2 |
p1<>p2 implies p1.title<>p2.title)

context InProc inv titleDifferentFromPrcTitle:
Proc.allInstances->forAll(p| p.title<>title)

In addition to constraints on the source and target models,
tracts impose conditions on their relationship—as they are
expected to be implemented by the transformation’s execution.
In this case, the Tract class serves to define the source-target
constraints for the exemplar tract that we use (although several
tracts are normally defined for a transformation, each one
focusing on specific aspects or use-cases of the transformation,
for simplicity we will consider only one tract here). The
following conditions are part of the source-target constraints
of the tract:

context t:Tract inv sameSizes:
t.file->size() = t.docBook->size() and
t.file->forAll( f | t.docBook->exists( db |
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f.entry->size() = db.book->size() ) )

context prc:Proc inv sameBooks:
Book.allInstances->one( bk |
prc.title = bk.title and
prc.editor->forAll(pE | bk.editor->one(bE|

pE.name = bE.name )))

context pap:InProc inv sameChaptersInBooks:
Article.allInstances->one( art |
pap.title = art.title and
pap.booktitle = art.book.title and
pap.author->forAll(aP |

art.author->one(aA | aP.name=aA.name)) )

Tract Test Suites: In addition to the source, target and
source-target tract constraints, test suites play an essential
role in Tracts. Test suite models are pre-defined input sets
of different sorts aimed to exercise the transformation. Being
able to select particular patterns of source models (the ones
defined for a tract test suite) offers a fine-grained mechanism
for specifying the behaviour of the transformation, and allows
the model transformation tester to concentrate on specific
behaviours of the tract. Note that test suites may not only be
positive test models, satisfying the source constraints, but also
negative test models, used to know how the transformation
behaves with them.

Problem: So far, the generation of test suites for tracts
has been achieved using the ASSL language (A Snapshot
Sequence Language) [10], which was developed to generate
object diagrams for a given class diagram in a flexible way.
ASSL is basically an imperative programming language with
features for randomly choosing attribute values or association
ends. Although quite powerful, this approach to generate
source models for testing purposes presents some limitations.
In particular, it makes difficult to prove some of the properties
that any test suite should exhibit, such as completeness (are all
possible sorts of input models covered?) and correctness (are
all generated models valid and correct?). In general, analysing
the coverage of the test suite w.r.t. the given tract is far from
being a trivial task.

Solution: In this context, classifying terms can be of great
help. They permit guiding the construction process of the
test suites using equivalence classes that determine the sorts
of input models of the tract. The process to build the test
suite is then straightforward. We begin by identifying the
sorts of models that we would like to be included in the
test suite. Each sort is then specified by a classifying term,
that represents the equivalence class with all models that are
equivalent according to that class, i.e., which belong to the
same sort. Once the classifying terms are defined for a Tract,
the USE tool generates one representative model for each
equivalence class. These canonical models constitute the test
suite of the tract.

Example: For example, suppose that we want to con-
centrate on different characteristics of the input models of
the BibTex2DocBook transformation. First, proceedings
have two dates: the year in which the conference event was
held (yearE) and the year in which the proceedings were

published (yearP). We want to have input models in which
these two dates coincide in all proceedings, and other input
models with different conference event and publication years.
Second, we want to have some sample input models in which
two editors of proceedings invite the other to have a paper
there; respectively, we also want to have input models in which
this “manus-manum-lavat” situation does not happen. Finally,
we want to have some source models with proceedings edited
by one of the authors of the papers in the proceedings, and
other input models with no “self-edited” proceedings.

Producing test suite models to cover all these circumstances
by an imperative approach or by ASSL is normally tedious
and error prone. However, the use of classifying terms greatly
simplifies this task. It is enough to give three Boolean terms to
the model validator, each one defining the classifying term that
specifies the characteristic we want to identify in the model.
In this case, these Boolean terms are the ones shown below.

[ yearE_EQ_yearP ]
Proc.allInstances->forAll(yearE=yearP)

[ noManusManumLavat ]
not Person.allInstances->exists(p1,p2 |

p1<>p2 and p1.proc->exists(prc1 |
p2.proc->exists(prc2 | prc1<>prc2 and
InProc.allInstances->

select(booktitle=prc1.title)->
exists(pap2 |
pap2.author->includes(p2) and

InProc.allInstances->
select(booktitle=prc2.title)->

exists(pap1 |
pap1.author->includes(p1))))))

[ noSelfEditedPaper ]
not Proc.allInstances->exists(prc |

InProc.allInstances->exists(pap |
pap.booktitle=prc.title and
prc.editor->
intersection(pap.author)->notEmpty))

Using the specifications of these classifying terms, the
model validator finds 8 solutions, which are shown in Fig. 8
in the order the model validator finds them. For each solu-
tion the value of the three properties (yearE_EQ_yearP,
noManusManumLavat, noSelfEditedPaper) is indi-
cated in the figure with integer values (0, 1), indicating
whether the particular solution fulfills the condition (1) or
not (0).

In summary, we have been able to define a set of 8
equivalence classes that characterize the sorts of input models
we are interested in, and have the model validator find repre-
sentative (i.e., canonical) models for each class. In this way
we make sure the models that constitute the tract test suite
cover all cases of interest.

B. Further Analysis of Model Transformations

Due to the way in which classifying terms can be speci-
fied (by means of Boolean terms) for building the tract test
suites models, they define a set of equivalence classes that
constitute a (complete and disjoint) partition of the input model
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Fig. 8. The eight solutions found by the model validator.
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Fig. 9. Classifying terms for defining partitions of source and target spaces.

space of the transformation. This is useful to select sample
input models of different sorts (one per equivalence class),
making sure that (a) we do not miss any representative model
from any sort of model of interest (completeness), and (b) no
two sample models are of the same kind (disjointness), as
pictured in Fig. 9.

But we can also use the idea of partitioning a model space
with the target model space, and characterize the sorts of target
models which are of certain interest to the modeler (or to the
model transformation tester). The equivalence classes defined
by the target classifying terms are very useful for checking
several properties of the transformation. For example, we
could check that:
• All sorts of target models of interest are produced by

the transformation—i.e., full coverage of certain parts the
target model space.

• No target models of certain forms (sorts) are produced
because they would be invalid target models—i.e., the
transformation produces no junk.

• No target models of certain sorts are mapped to the same
sort of target model when they shouldn’t—i.e., the trans-
formation introduces no confusion when it shouldn’t (two
models are not mapped to equal target sorts unless they
belong to the same source sort).

Example: To illustrate this, let us go back to the
BibTeX2DocBook transformation, where we can identify
some sorts of models of interest in the target space.

For example, we can be interested in a property that was
also of relevance in the source target space, such as self edited
papers (i.e., whether the editor of a book is also the author
of one of the chapters). We can also be interested in normal
books, i.e., those which are not composition of papers selected
by an editor, but instead all chapters are written by the same
person, the book author. Finally, edited books in which no
author writes more than one paper could be of interest too.

In order to specify these properties and define the appropri-
ate equivalence classes we just need to write the corresponding
classifying terms:

[ noSelfEditedPaper ]
not Book.allInstances->exists(b |
b.editor->intersection(

b.article.author)->notEmpty() )

[ onlyNormalBooks ]
Book.allInstances->forAll(b |
b.editor->isEmpty() and
b.article->forAll(a | a.author=b.author))

Source Target
[0,0,0] → [0,0,1]
[0,0,1] → [0,0,1]
[0,1,0] → [0,0,0]
[0,1,1] → [0,0,0]
[1,0,0] → [1,0,0]
[1,0,1] → [1,0,1]
[1,1,0] → [1,0,1]
[1,1,1] → [1,0,0]

TABLE I
MAPPING EQUIVALENCE CLASSES.

[ noRepeatedAuthors ]
Book.allInstances->forAll(b |

b.author->forAll(a |
a.article->select(book=b)->size()=1 ) )

These three boolean classifying terms produce 8 equivalence
classes (8 = 23) in the target model space. It is now a matter
of determining the expected behaviour of the transformation
with the input models from the source equivalence classes. In
this respect, there are properties that should be preserved (e.g.,
noSelfEditedPaper) and others that cannot happen (e.g.,
given that proceedings must have at least one editor, no normal
book can be generated by the transformation).

In this respect, the model validator can also be very useful
to find counterexamples for situations that in principle should
not happen, but that are permitted by our specification because
the classifying terms are not properly defined.

With the set of equivalence classes in the source and target
model spaces, we can execute the model transformation on the
test suite and check whether the output models belong to the
appropriate equivalence classes in the target model space.

In order to prove that, it is a matter of analysing the
behaviour of the model transformation with the representative
models of each source equivalence class. In this case, the
mapping done by transformation for the 8 representative
models of the equivalence classes (which are shown in Fig. 8)
is as described by Table I.

In the table, each equivalence class is represented by a tuple
[x1, x2, x3] where xi ∈ {0, 1} indicates if the model satisfies
condition i of the corresponding classifying term. Thus, in
the source model space [1, 1, 1] means that the model sat-
isfies noSelfEditedPaper, noManusManumLavat and
yearE_EQ_yearP, while in the target model space the
tuple [1, 1, 1] corresponds to a model that satisfies con-
ditions noSelfEditedPaper, onlyNormalBooks and
noRepeatedAuthors (in this order). In this way we can
check how in effect no normal books are produced. We can
also see that with these input models, all the rest of the
equivalence classes that we have defined for the target space
have been reached.

C. Selecting more than One Sample per Classifying Term

So far, we have been able to check that indeed the behaviour
of the transformation is as expected for the selected sample
models. However, this does not prove that the transformation
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will always work. What would have happened if the model
validator would have selected other representative models for
the equivalence classes?

This may happen, for instance, when the equivalence classes
are not defined at the appropriate level of granularity (either
in the source or target model spaces). In this case, two
input models of the same source equivalence class would be
transformed into two different target equivalence classes.

This is why it would be interesting to ask the model
validator to produce more than one model for each equivalence
class. There is another good reason for that: we know that not
all sorts of input models have the same likelihood of happening
in the source model space. Thus, we can select more sample
models for those equivalence classes that we think are more
frequent. In this way we can exercise the model transformation
in a more focused manner, and produce a richer test suite for
the tract (and hence for the transformation).

In order to ask the model validator to produce more than
one object model for each equivalence class, one could specify
additional ‘second-level classifying terms’ that only apply to
non-empty ‘first-level’ equivalence classes. For example, a
second-level classifying term for the source model of the
BibTeX2DocBook example could be:

[ exactlyOnePaperInProc ]
Proc.allInstances->forAll(prc |
InProc.allInstances->select(pap |

pap.booktitle=prc.title)->size()=1)

This term could produce for the second equivalence class
in Fig. 8 (in which the proceedings object has two papers)
another representative with only one paper within a proceed-
ings. Working out the details for this sketch is left for future
work. However, in this way one could declaratively select a set
of input models that will constitute the test suite of the tract,
deciding not only the sorts of models that we are interested
in, but also how many different sample models of each sort
we want.

IV. RELATED WORK

With respect to the contribution of this paper, we first
present related approaches which are dedicated to generate
object models in a (semi-)automated manner, and second we
discuss related work considering approaches for testing and
verifying model transformations.

A. Generating Object Models

The USE model validator, used in this work, is based on
the transformation of UML and OCL into relational logic [11].
Many approaches exist to generate object models from class
models using different languages and tools. Another approach
within the same tool, USE, is the Automatic Specification
Snapshot Language (ASSL) [10], which uses an iterative
method to generate an object model from a given specification.

Further approaches rely on different technological corner-
stones like logic programming and constraint solving [12],
relational logic and Alloy [13], term rewriting with Maude [14]
or graph grammars [15]. In contrast to the tool used in this

work, these approaches either do not support full OCL (e.g.,
higher-order associations [13] or recursive operation defini-
tions [12] are not supported) or do not facilitate full OCL
syntax checks [14]. Also, the feature to automatically scroll
through several valid object models from one verification task
is not possible in all of the above approaches.

(Semi)-automatic proving approaches for UML class prop-
erties have been put forward on the basis of description
logics [16], on the basis of relational logic and pure Alloy [13]
using a subset of OCL, and in [17] focusing on model incon-
sistencies by employing Kodkod. A classification of model
checkers with respect to verification tasks can be found in [18].

The idea of classifying terms has similarities to the analysis
of invariant independence [6]. The goal is to find invariants
that are fully covered by means of other invariants or class
model inherent constraints (e.g. multiplicities). The goal can
be achieved using boolean classifying terms, resulting in
detailed information about which invariants can be satisfied
independently of others.

B. Testing and Verifying Model Transformations

In the field of Model-Driven Engineering, testing and
analysis of model transformations has been subject to in-
vestigations (see, for example, [19, 20]). Regarding dynamic
approaches, for which the model transformation execution
is needed and therefore input models, the authors in [21]
and [22] present their contribution for debugging model trans-
formations. Also, the work in [23] analyse the execution
traces between the source and target models in order to find
errors, and in [24] a white-box test model generation approach
for testing the transformations is proposed. In this context,
Tracts [25] are a complementary approach that establishes
contracts between the source and target metamodels which
define the transformation specification.

In addition to Tracts, other static approaches have been pro-
posed such as [26] that allows the specification of contracts in
a visual manner, and [27] that looks at the differences between
the actual output model generated by the transformation and
the expected output model. The first one also relies on OCL to
give the user full expressiveness while the second one needs
the developer to provide output models – which is not always
a feasible task, and if feasible, it might require a lot of time
and effort.

A test-driven method [28] is also proposed in the field
of model transformation for which the model transformation
implementation itself is annotated by the transformation de-
veloper removing the need of an independent specification
description. A solution for the QVTo language [29] is available
and presented in [30]. Although achieving its goal, making the
specification of the transformation implementation-dependent
prevents the separation of concerns, which is even more
serious in the field of MDE as there is no dedicated standard
transformation language.

Finally, equivalence partitioning [2] is a software testing
technique that assumes that the inputs of the program can
be divided into mutually exclusive classes according to the
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behavior of the program on those inputs and, in some cases,
on the outputs. In this regard, the work in [1] proposed to
pick a set of relevant properties for the input models, define
ranges of values for each property and check that there is
at least one instance of each property that has one value in
each range. Nevertheless, this proposal is less expressive than
classifying terms as they do not consider the use of OCL,
less flexible and lacks full automation. In [31], a mechanism
for generating test cases by analysing the OCL expressions
in the source metamodel in order to partition the input model
space was presented. This is a systematic approach similar
to ours, but focusing on the original source model constraints.
Our proposal allows the developer partitioning the source (and
target) model space independently from these constraints, in a
more flexible manner.

V. CONCLUSIONS

This contribution has introduced classifying terms, an in-
strument for exploring object models in the context of a UML
class model and accompanying OCL constraints. Classifying
terms allow the developer to construct relevant test cases in
form of object models in a goal-oriented way. Classifying
terms determine equivalence classes of test cases, selection
of representatives and exploration of model properties. Their
usefulness has been demonstrated by generating input test
models for model transformations.

Our work can be continued in various directions. The
translation to relational logic can be improved and extended,
for example, by considering further collection kinds. The
current user interface for classifying terms is minimal, names
could be given to the terms, and these names together with
the values could be indicated in the resulting object models.
The restriction, that only integer and boolean terms are used,
can be weakened, at least enumerations do not present any
problem. It would be interesting to consider more than one
equivalence class representative by distinguishing between first
and second level classifying terms, where second level terms
are only applied for non-empty first level equivalence classes.
Larger case studies should give more feedback on the features
and scalability of the approach. Last but not least, particular
tool support for model transformations with different options
for source and target is needed.
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[15] K. Ehrig, J. M. Küster, and G. Taentzer, “Generating instance models
from meta models,” SoSyM, vol. 8, pp. 479–500, 2009.

[16] A. Queralt, A. Artale, D. Calvanese, and E. Teniente, “OCL-Lite:
Finite reasoning on UML/OCL conceptual schemas,” Data Knowl. Eng.,
vol. 73, pp. 1–22, 2012.

[17] R. V. D. Straeten, J. P. Puissant, and T. Mens, “Assessing the Kodkod
Model Finder for Resolving Model Inconsistencies,” in ECMFA, ser.
LNCS, vol. 6698. Springer, 2011, pp. 69–84.

[18] S. Gabmeyer, P. Brosch, and M. Seidl, “A Classification of Model
Checking-Based Verification Approaches for Software Models,” 2013,
Proc. of the 1st VOLT Workshop.

[19] Proc. of the AMT WS., ser. CEUR WS. Proc., vol. 1277, 2014.
[20] Proc. of the VOLT WS., ser. CEUR WS. Proc., vol. 1325, 2014.
[21] M. Hibberd, M. Lawley, and K. Raymond, “Forensic debugging of

model transformations,” in Proc. of MODELS’07, ser. LNCS, vol. 4735.
Springer, 2007, pp. 589–604.

[22] M. Wimmer, G. Kappel, J. Schönböck, A. Kusel, W. Retschitzegger,
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ger, J. Schönböck, and W. Schwinger, “Automated verification of model
transformations based on visual contracts,” Autom. Softw. Eng., vol. 20,
no. 1, pp. 5–46, 2013.

[27] A. Garcı́a-Domı́nguez, D. S. Kolovos, L. M. Rose, R. F. Paige, and
I. Medina-Bulo, “EUnit: a unit testing framework for model management
tasks,” in Proc. of MODELS’11, ser. LNCS, no. 6981. Springer, 2011,
pp. 395–409.

[28] P. Giner and V. Pelechano, “Test-driven development of model transfor-
mations,” in Proc. of MODELS’09, ser. LNCS. Springer, 2009, vol.
5795, pp. 748–752.

[29] OMG, Meta Object Facility (MOF) 2.0 Query/View/Transformation.
Version 1.1, Object Management Group, 2011.

[30] A. Ciancone, A. Filieri, and R. Mirandola, “MANTra: Towards model
transformation testing,” in Proc. of QUATIC’10. IEEE, 2010, pp. 97–
105.

10
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