
This is a repository copy of Bridging Proprietary Modelling and Open-Source Model
Management Tools : The Case of PTC Integrity Modeller and Epsilon.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/118522/

Version: Accepted Version

Proceedings Paper:
Zolotas, Athanasios, Rodriguez, Horacio Hoyos, Kolovos, Dimitrios S. orcid.org/0000-
0002-1724-6563 et al. (2 more authors) (2017) Bridging Proprietary Modelling and Open-
Source Model Management Tools : The Case of PTC Integrity Modeller and Epsilon. In:
Proceedings - ACM/IEEE 20th International Conference on Model Driven Engineering
Languages and Systems, MODELS 2017. 20th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, MODELS 2017, 17-22 Sep 2017
IEEE , USA , pp. 237-247.

https://doi.org/10.1109/MODELS.2017.18

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Bridging Proprietary Modelling and

Open-Source Model Management Tools:

The Case of PTC Integrity Modeller and Epsilon

Athanasios Zolotas, Horacio Hoyos Rodriguez

Dimitrios S. Kolovos, Richard F. Paige

University of York, United Kingdom

Email:{thanos.zolotas, horacio.hoyos,

dimitris.kolovos, richard.paige}@york.ac.uk

Stuart Hutchesson

Rolls Royce, United Kingdom

Email: stuart.hutchesson@rolls-royce.com

Abstract—While the majority of research on Model-Based
Software Engineering revolves around open-source modelling
frameworks such as EMF, the use of commercial and closed-
source modelling tools such as RSA, Rhapsody, MagicDraw and
PTC Integrity Modeller appears to be the norm in industry at
present. This technical gap can prohibit industrial users from
reaping the benefits of state-of-the-art research-based tools in
their practice. In this paper, we discuss an attempt to bridge
a proprietary UML modelling tool (PTC Integrity Modeller),
which is used for model-based development of safety-critical
systems at Rolls-Royce, with an open-source family of languages
for automated model management (Epsilon). We present the
architecture of our solution, the challenges we encountered in
developing it, and a performance comparison against the tool’s
built-in scripting interface.

I. INTRODUCTION

Large enterprises often use proprietary and closed-source

software and system modelling tools, such as MagicDraw [7],

Rhapsody [5] and PTC Integrity Modeller [12] as these come

with extensive documentation and are backed by commercial

vendors offering guaranteed maintenance and support. By con-

trast, the majority of research in Model-Based Software En-

gineering (MBSE) is conducted using open-source modelling

tools and frameworks (e.g., EMF [13]). This technological gap

means that research outcomes are more often than not largely

inaccessible to enterprise users. This is clearly detrimental to

both enterprise users, who are often unable to readily exploit

recent advances in MBSE research, and to researchers, who

would benefit from the feedback of enterprise users on the use

of research outcomes in industrial-scale applications.

In this paper, we present the results of collaboration be-

tween researchers at the University of York and practitioners

at Rolls-Royce, on bridging the gap between a proprietary

UML modelling tool (PTC Integrity Modeller1), which is

used extensively at Rolls-Royce to support MBSE activities,

and the open-source Epsilon family of model management

languages (eclipse.org/epsilon), which is driven by MBSE

research primarily conducted at York and Birmingham. In

1We will refer to PTC Integrity Modeller as “PTC IM” or just “IM” in the
rest of the paper for brevity.

particular, we discuss the design and implementation of an

interoperability layer through which Epsilon model manage-

ment programs (validation constraints, model-to-model and

model-to-text transformations etc.) can query and modify IM

models without needing to transform them to an intermediate

representation (e.g. XMI) first. We also report on the findings

of experiments which evaluate the performance and maintain-

ability of equivalent model validation rules defined using IM’s

built in scripting language (Visual Basic) and Epsilon’s EVL

language.

The rest of the paper is structured as follows. Section II

discusses the current practice of MBSE at Rolls-Royce and

motivates our work. Section III then describes the design

and implementation of the IM-Epsilon interoperability layer

(driver), and in Section IV, the driver is evaluated by executing

validation rules on models of real systems provided by Rolls-

Royce. Section VI, concludes the paper and presents directions

for future work.

II. BACKGROUND AND MOTIVATION

Rolls-Royce has successfully used a combination of UML

class and structure models to define the software architecture

for Full-Authority Digital Engine Control (FADEC) systems

for over 15 years. This approach uses class models to describe

the software structure, and employs model-to-text transfor-

mation to generate a SPARK [1] implementation. A SPARK

profile is used to extend the UML, allowing the structure of the

SPARK program to be fully described at the lowest modelled

level of abstraction.

The UML modelling environment is used to define the

architectural framework and the design details for the hosted

components. Design artefacts are produced from the UML

models through automatic report generation. These are used

as configured design artefacts to support the software system

approval (certification) process.

The company has more recently started to employ Model-

Based Systems Engineering approaches to design and analyse

the FADEC system at a higher level of abstraction. This makes

use of SysML [3] to produce functional and physical models of

the control system and perform early validation of the design

choices.

Automated validation scripts are executed against both the

systems and software-level models to ensure consistency, cor-

rectness (where possible) and compliance to modelling stan-

dards. Currently the development of these validation scripts is

a specialist activity as it requires a relatively deep knowledge

of the underlying meta-model used by the modelling tool (IM),

Visual Basic programming skills to interact with the tool’s

scripting interface. This approach is also highly coupled with

the particular modelling tool, so the validation checks are not

easily portable across modelling environments. To leverage

higher-level model management (e.g. model validation, M2M

and M2T transformation) languages that provide support for

different environments the only available option is to use

IM’s model exporting facilities which can serialise models

in the form of XMI documents. This option has two notable

shortcomings:

1) It imposes a significant overhead as even when small

changes are made to models within the tool, large XMI

files need to be fully re-exported;

2) Some of the information in the native model representa-

tion (particularly diagram layout information) cannot be

exported to XMI, which in practice makes programmatic

modification and re-importing of the XMI prohibitive.

To overcome these challenges, particularly with a view to

enabling heterogeneous modelling, analysis and code genera-

tion in the future, in this work we developed a direct bridge

between IM and the Epsilon family of task-specific model

management languages, which provides Epsilon programs

with direct and full (read/write) access of in-memory IM

models.

III. BRIDGING EPSILON WITH

PTC INTEGRITY MODELLER

In this section, we briefly introduce Epsilon and the Epsilon

Model Connectivity (EMC) layer atop which the IM driver

has been developed. We also provide a brief overview of IM

before and then discuss the architecture and implementation

of the driver along with appropriate examples.

A. Epsilon

Epsilon is a mature open-source family of interoperable

task-specific languages that can be used to manage models of

diverse metamodels and technologies. At the core of Epsilon

is the Epsilon Object Language (EOL) [8], an OCL-based

imperative language that provides support for querying and

modifying models conforming to diverse modelling technolo-

gies. Although EOL can be used as a general-purpose model

management language, its primary aim is to be embedded as an

expression language in hybrid task-specific languages. Indeed,

a number of task-specific languages have been implemented

atop EOL, including languages for model-to-model (ETL) and

model-to-text (EGL) transformation (ETL), model comparison

(ECL), merging (EML), validation (EVL), refactoring (EWL),

and pattern matching (EPL) as illustrated in Figure 1.

Fig. 1. Architecture of Epsilon2

One of the notable features of Epsilon is that its languages

are not bound to any particular metamodelling architecture.

To treat models of different technologies in a uniform manner

and to shield the languages of the platform (and the develop-

ers of model management programs) from the intricacies of

underlying technologies, Epsilon provides the Epsilon Model

Connectivity (EMC) layer (illustrated at the lower part of

Figure 1).

The core abstractions provided by EMC are the IModel,

IPropertyGetter and IPropertySetter interfaces, which provide

methods for creating, retrieving (by ID or by type) and deleting

model elements, and for retrieving and setting the values of

their properties respectively. These interfaces are discussed in

more detail in the section that follows while presenting the

implementation of the IM driver for Epsilon.

B. PTC Integrity Modeler

PTC Integrity Modeller (formerly known as Atego Artisan

Studio) allows the definition of UML and SysML models

and diagrams. Among other functionality, IM offers facil-

ities for synchronization with other modelling tools (e.g.,

Simulink [14], Doors [6]) and automatic code synchronization

for many programming languages (e.g., C, Ada, Java).

In IM, models are stored in a centralised object database

called Enabler [4], developed by Fujitsu. The model repository

consists of three layers: the repository services, the integration

services and the user access layer. Models, model elements,

relationships, attributes and their values are stored in Enabler’s

datastore kernel files. The datastore also provides a cache that

stores recently accessed elements to improve performance.

Figure 2 shows the organisation of an IM model repository.

The Projects item holds all the projects in the repository. Each

project consists of one Dictionary where all model elements

(Dictionary Item) and diagrams are stored. Each model el-

ement has a set of attributes and associations (collectively

referred to as properties) that are common between all types.

For example, each element has a unique id, a name and a

type attribute. There are also properties which are specific for

2From https://www.eclipse.org/epsilon/doc/

each type of elements (e.g., elements of type Class have a

boolean attribute called IsAbstract). In addition, each property

is characterized by four boolean flags: isReadOnly, isAsso-

ciation, isMultiple and isPublic. These flags allow the tool to

identify which operations are permitted on each property (e.g.,

if a property is read-only then setting its value is not allowed).

Fig. 2. Metamodel hierarchy in IM repository

Engineers are able to access and manipulate model elements

programmatically through a scripting API in Visual Basic.

Listing 1 shows an example VB script that prints the names

of all the elements of type Class in the HSUV model which

is one of the examples that ship with the tool.

Dim p r o j e c t s = CreateObject (”OMTE. P r o j e c t s ”)
Dim p r o j e c t = p r o j e c t s . I t em (” R e f e r e n c e ” , ”\\

E n a b l e r \Desktop\Examples\HSUV\0 ”)
Dim d i c t i o n a r y = p r o j e c t . I t em (” D i c t i o n a r y ” , ”

D i c t i o n a r y ”)
Dim c l a s s e s = d i c t i o n a r y . Items (” C l a s s ”)
Do While c l a s s e s . MoreI tems

c = c l a s s e s . Next I tem
Conso le . WriteLine (c . P r o p e r t y (”Name”))

Loop

Listing 1. Example of a Visual Basic program that queries an IM model

Figure 3 shows the high level architecture of the developed

bridge between IM and Epsilon. IM models are exposed

through a Windows COM layer that provides model query

and modification operations. Our integration (labelled IM

Driver in Figure 3) implements the interfaces of the Epsilon

Model Connectivity Layer and uses the open-source Jawin [11]

library to realise Java/COM communication.

Fig. 3. High level architecture of the solution

C. The Epsilon IM Bridge

Using the Epsilon driver, users are able to query the IM

models and access and modify all model element properties

exposed through the COM interface. Examples of properties

include the name, isAbstract and id attributes, and the Child

Object, Owned Constraint and Super Class associations. A

comprehensive list of supported types, attributes and refer-

ences (i.e. IM’s metamodel) can be found in the IM docu-

mentation [12].

Figure 4 shows a class diagram of the driver. As stated

in Section III-A, every Epsilon driver consists of three main

classes that implement the IModel, IPropertyGetter and IProp-

ertySetter interfaces. In the driver presented in this paper, these

are the PtcimModel, PtcimPropertyGetter and PtcimProperty-

Setter classes (see Figure 4). The PtcimModel class provides

(among other) implementations of functions that return all

elements in a model, retrieve all elements of a specific type,

return an element by its id, create new elements and remove

them from the model. The following list explains the core

methods in the PtcimModel class and maps them to the

equivalent methods in IM’s COM interface.

• getAllOfTypeFromModel(type : String) : PtcimObject[]:

This method returns all the elements in the model that are

instances of the specified type (e.g., Package, Class). This

is achieved by invoking the IM method named Items(type)

which accepts a parameter specifying the type of interest

and returns the unique ids of all the elements of the given

type.

• allContentsFromModel() : PtcimObject[]: This method

returns all the elements in the model. It leverages the

same method as above (Items(“”)) but this time an empty

string is passed as the type argument.

• getElementById(id : String) : PtcimObject: As hinted

above, elements in IM have unique ids. This method

returns the element that has a specific id by invoking

the ItemById(id) method in IM.

• createInstance(type : String) : PtcimObject: One of the

core capabilities of every Epsilon driver is creating new

elements of a specified type. In this driver this is realized

by calling the Add(type) method in IM which creates an

element in the model.

• deleteElementInModel(element : PtcimObject): This

method can be used to remove elements from the model.

This is achieved by invoking the Remove(id) method in

IM. IM also automatically removes all the elements that

are connected to this element via associations that are

flagged with the Propagate Delete value set to true.

• getAllOfKindFromModel(kind) : PtcimObject[]: IM does

not have a notion of meta-type hierarchy thus, this

method delegates its functionality to getAllOfTypeFrom-

Model(. . .).

A PtcimModel consists of a number of PtcimObjects which

are proxies for the elements of the model and which provide

the following methods.

PtcimModel

+allContentsFromModel(): Collection<PtcimObject>

+deleteElementInModel(instance: PtcimObject): boolean

+getAllOfKindFromModel(kind: String): Collection<PtcimObject>

+getAllOfTypeFromModel(kind: String): Collection<PtcimObject>

+getElementById(id: String): PtcimObject

+getElementId(instance: PtcimObject): String

+createInstance(type: String, params: Collection<Object>): PtcimObject

PtcimObject

-id: String

+getType(): String

+equals(obj: Object): boolean

+getProperty(name: String): Object

+setProperty(name: String, value: Object)

PtcimProperty

-name: String

-isReadOnly: Boolean

-isMultiple: Boolean

-isAssociation: Boolean

-isPublic: Boolean

PtcimPropertyGetter

+invoke(object: Object, property: String): PtcimObject

PtcimPropertySetter

-comProperty: PtcimProperty

+invoke(value: Object)

PtcimPropertyManager

+getPtcProperty(obj: PtcimObject, property: String): PtcimProperty

+normalise(propertyName: String): String

AbstractPropertySetter AbstractPropertyGetter

+propertyManager1

«interface»

IPropertyGetter
+getter

1

«interface»

IModel
«interface»

IPropertySetter
+setter

1

+elements

0..*

+properties

0..*

Fig. 4. Class diagram of the IM Epsilon driver

• getType() : String: This method returns the type of the

element by invoking the Property(“Type”) method of the

IM automation interface.

• getProperty(name : String) : Object: This method re-

trieves the value of a property. If the property is an

attribute, this is achieved by invoking the Property(arg)

method, else the Items(property) or Item(property) are

invoked depending on whether the association is multi-

valued or single-valued. This method is re-used by Ptcim-

PropertyGetter which is explained later.

• setProperty(name : String, value : Object): This method

sets the value of a model element property by invoking

the Add(value) method of the COM API if the property is

an association or the PropertySet(value) method in case

of an attribute.

• equals(obj : Object) : Boolean: Java’s default equality

method is overridden as there are cases where the same

IM element might be accessed via multiple paths that

result in different proxy PtcimObjects. For example,

a Class element can be retrieved through the Owned

Contents relationship of the package that contains it or

via the Scoping Item association of one of its attributes.

In this scenario, two different proxy objects are created

that refer to the same IM element. As such, equality in

the driver is checked based on the ids of elements.

Each model element has a number of properties which

are represented as instances of the PtcimProperty class. As

discussed above, each property in IM has four boolean flags

that characterise it (e.g., isReadOnly, etc.). These flags are

retrieved by a method in the PtcimPropertyManager class

which is described below.

• getPtcProperty(obj, property): This method invokes the

Property(“All Property Descriptors”) method of the IM

automation interface. The later returns a string containing

the four boolean values, separated by the new line char-

acter (\n), which are used to create a newPtcimProperty.

In addition, a getter and a setter are instantiated for each

PtcimModel and are attached to it. The getter and and set-

ter include methods for getting and setting the value(s) of

model element properties respectively, which delegate to the

getProperty(. . .) and setProperty(. . .) methods of PtcimObject

discussed above.

All property names are normalised using the nor-

malise(propertyName : String) method of the PtcimProper-

tyManager class (see Figure 4) which strips all white space

and turns all characters to lower case. As a result, the user can

refer to the Child Object association using any of the following

aliases: childObject, childobject, Child Object, etc.

D. Caching

In order to be able to offer comparable performance to the

built-in scripting interface, the driver provides two different

caches. The first one caches the boolean flags for each property

and the second the actual value of each property. Both are

implemented as instances of the WeakHashMap data structure.

WeakHashMaps allow the key to be garbage-collected when

PtcimModel

-propertiesValuesCache: WeakHashMap<String, Object>

-propertiesValuesCacheEnabled: Boolean

+setPropertiesValuesCacheEnabled(flag: boolean)

PtcimCachedPropertyGetter

+invoke(obj: Object, property: String): PtcimObject

PtcimCachedPropertySetter

+invoke(value: Object)

PtcimCachedPropertyManager

+elementPropertiesNamesCache: WeakHashMap<String, PtcimProperty>

+getPTCProperty(obj: PtcimObject, property: String): PtcimProperty

PtcimPropertyGetterPtcimPropertySetter

PtcimPropertyManager

AbstractPropertySetter AbstractPropertyGetter

+propertyManager1

«interface»

IPropertyGetter
+getter

1

«interface»

IModel
«interface»

IPropertySetter +setter

1

Fig. 5. Class diagram of the caches in IM Epsilon driver

there is no reference to it outside the map, making them

useful for the implementation of caches. Figure 5 shows

the additional classes needed to implement caching and their

relationships with the other classes described above. Three

new classes are created for this purpose which are explained

below.

• PtcimCachedPropertyManager: This class extends Ptcim-

PropertyManager and hosts the first of the caches (i.e.,

elementPropertiesNamesCache). As the properties of el-

ements of the same type are common and thus they

share the same boolean flags, this cache maps the fully

qualified name of each property to the property’s boolean

flags following a type.propertyName → PtcimProperty

pattern. For example, all elements of type Class have

a property called isAbstract. The first time an element

of type Class is accessed an entry in the map is created

with Class.isAbstract as key. The four boolean values are

queried when creating the PtcimProperty object using the

overridden getPtcProperty(...) method. If the key (e.g.,

Class.isAbstract) exists in the cache the boolean values

are returned. Of course, if a property of a type has

not be visited before (thus the key is not in the cache)

this method delegates to the super getPtcProperty(...)

method which queries the boolean flags through the COM

interface and stores them in the cache.

• PtcimCachedPropertyGetter: This class extends Ptcim-

PropertyGetter and uses the second cache (i.e., prop-

ertiesValuesCache) which is hosted in the PtcimModel

class. This cache stores the actual values of the properties

of each element. The key used in this cache is constructed

by concatenating the unique id of the element and the

name of the property that is accessed. For example, the

value of the name attribute of an element with id 5eg4-94

is mapped using the key 5eg4-94.name to its value. Ptcim-

CachedPropertyGetter overrides the invoke(...) method of

PtcimPropertyGetter. Every time the value of a property

needs to be retrieved, the invoke method queries the cache

first. If a property has not be accessed before (hence the

key is not in the cache) the invoke method delegates to

its superclass implementation to query the value through

the COM interface, and then stores it in the cache.

• PtcimCachedPropertySetter: When value caching is en-

abled, a PtcimCachedPropertySetter is created instead of

the default PtcimPropertySetter. The former overrides the

invoke(...) method of its superclass. This method adds or

updates the mapping id.property → value to the values

cache and then calls its superclass method that updates

the property’s value in IM.

It is important to highlight that value caching can lead

to inconsistencies when opposite references in a model are

modified. Consider the following example: the user retrieves

the package in which a class is contained via the Scoping

Item relationship. The package will be stored in the values

cache. Next, the user retrieves the contents of that package

by navigating the Child Object relationship and removes the

aforementioned class from its contents (effectively removing

the class from the package). The cache will be updated (thus

the Child Object relationship of the package will not include

the class). However, if now the user navigates again the

Scoping item relationship of the class, the returned value will

be the same package (while it should now be null). This is

because IM does not expose a special relationship between the

two properties (in Ecore terminology these would be opposite

references) and as such the driver fails to update the cache on

both ends consistently. As such, value caching is only safe to

use when an IM model is accessed in read-only mode.

Moreover, even in read-only mode, the property values

cache – like all caches – has a memory overhead which may

not be justifiable (i.e. if the majority of property accesses occur

only once). As such, value caching is optional and needs to

be enabled/disabled by the developer (see Figure 6) according

to the nature of the model management program.

E. Demonstration

Figure 6 shows a configuration dialog which is part of the

driver’s user interface and allows developers to select and

configure IM models to be used in Epsilon programs. The

dialog allows developers to set

• the name through which the Epsilon program can refer

to the model (in case the program operates on more than

one models concurrently)

• the server that hosts the repository of interest

• the repository that holds the model of interest

• the name of the model in the repository

• whether property value caching should be enabled during

execution

• the element to be treated as the root of the model (to

limit the scope of a program to a sub-tree of the model)

Fig. 6. The IM model configuration dialog in Epsilon

Listings 2 and 3 show a validation constraint (in EVL) and

a fragment of a model-to-model transformation (in ETL) that

can be executed against IM models. The constraint of Listing 2

checks that the names of all elements is the IM model which

are of type Class start with an uppercase letter. In line 1

the context keyword is used to define the elements to which

the constraint applies. In line 2 we declare that this is a soft

constraint (critique) and in line 3 of the script the condition

to be satisfied is provided following the check keyword. If the

condition is not satisfied for a particular class, a context-aware

warning message is produced in line 4.

1 c o n t e x t C l a s s {
2 c r i t i q u e NameShouldStar tWi thUpperCase {
3 check : s e l f . name . s u b s t r i n g (0 , 1) = s e l f .

name . s u b s t r i n g (0 , 1) . toUpperCase ()
4 message : ” The name of c l a s s ” + s e l f .

name + ” (” + s e l f . I d + ”) s h o u l d
s t a r t w i th an upper−c a s e l e t t e r ”

5 }
6}

Listing 2. Example of an EVL critique which checks if the name of a class
starts with upper-case letter

One of the distinguishing features of Epsilon is that it is

metamodeling technology agnostic and thus its languages can

manage different types of models. Listing 3 demonstrates a

fragment of a model-to-model transformation that produces

an Eclipse/Papyrus [9] UML model from an IM model. The

Package2Package rule in line 1 transforms all packages in

the IM model to packages in the Eclipse UML model. In

particular, it copies across the name of the IM package (line

5), it recursively transforms the IM package’s sub-packages

(line 6), and then it populates the owned types of the UML

package with the transformed equivalents of classes under the

IM package (lines 7 and 8). The Class2Class rule in line

12 transforms IM classes to Eclipse UML classes and copies

names across.

1 r u l e Package2Package
2 transform s : IM ! Package
3 to t : UML! Package {
4
5 t . name = s . name ;
6 t . n e s t e d P a c k a g e : : = s . s copedPackage ;
7 t . ownedType : : = s . package I t em .
8 s e l e c t (p i | p i . i sTypeOf (IM ! C l a s s)) ;
9 }

10
11 r u l e C l a s s 2 C l a s s
12 transform s : IM ! C l a s s
13 to t : UML! C l a s s {
14
15 t . name = s . name ;
16 }

Listing 3. Fragment of an ETL M2M transformation that produces
Eclipse/Papyrus UML models from IM models.

IV. EVALUATION

Having presented the architecture and implementation of

the Epsilon-IM driver, in this section, we present a series

of experiments conducted to evaluate its performance. We

achieve this by comparing the performance of a set of valida-

tion constraints expressed in Epsilon’s EVL (which exercise

the new driver) against equivalent constraints expressed in

IM’s native Visual Basic. The complete EVL and Visual Basic

implementations are listed in the appendix of the paper. We

have chosen model validation as a representative of model

management activities that can now be realised with Epsilon

through the new driver; other activities such as model-to-model

or model-to-text transformation could have been used instead.

TABLE I
THE EVALUATED CONSTRAINTS

Id Description

#1 Classes’ names should start with upper-case letter

#2 Attributes’ names should start with lower-case letter

#3 Classes should not have more than seven operations

#4 Operations should not have more than seven parameters

#5 Classes must not have multiple inheritance

#6 The upper multiplicity of aggregation ends must be 1

#7a The lower bound of an association start must be smaller than its upper bound

#7b The lower bound of an association start must be smaller than its upper bound

#8a Numeric upper bounds of association starts must be positive integers

#8b Numeric upper bounds of associations ends must be positive integers

A. Experiment Setup

Our experiments involved the execution of ten constraints

that look for common errors and violations of naming conven-

tions in IM models. Table I summarizes the constraints, which

were implemented both in Visual Basic and in EVL.

We executed the constraints on three real models of Rolls-

Royce engine controllers constructed using IM and ranging

from 13,823 to 116,251 model elements, and on 16 smaller

example models that ship with IM. Column # Elements of

Table II, summarizes the sizes of all 19 models used for our

experiments.

Five configurations were used in total: (1) Visual Basic, (2)

EVL and the Epsilon-IM driver without caching, (3) with both

caches enabled and finally (4, 5) two experiments with only

one of the two caches enabled each time. The constraints were

executed three times on each model and the execution time was

logged for each iteration. The first run of each experiment was

ignored to avoid any overheads due to warm-up effects.

B. Results

Table II summarizes the execution times3 of evaluating

the constraints on all models for all five configurations. The

models marked with an asterisk are the real-world models

constructed by Rolls-Royce. Two line graphs (see Figures 7

and 8) present the execution times of Visual Basic and EVL

(with both caches turned on).

As illustrated in Table II, the native Visual Basic implemen-

tation is faster than all four EVL configurations. In particular,

EVL (with both caches enabled) is up to almost 10x slower

than Visual Basic for the biggest model we have experimented

with (116K model elements). This is to be expected given that

EVL execution has the overhead of crossing the (expensive)

Java-COM bridge every time it needs to fetch new information

from the model. Indeed, by profiling the EVL execution we

observed that the majority of the execution time (more than

90%) is consumed in the method of the Jawin interface that

invokes the COM layer of IM.

The driver configuration that uses no caching is up to five

times slower than the configuration that uses both caches.

Looking at the respective columns of Table II, this is largely

3Execution environment. Operating System: Windows 10 Pro 64-bit, CPU:
Intel Core i7-6560 @ 2.2GHz, RAM: 16GB @ 1066MHz, Disk: Toshiba XG3
SSD (512GB)

due to the use of the first (property flags) cache as the con-

straints do not make heavy reuse of the same property values in

order to benefit substantially from the second (property values)

cache. This justifies the design decision to make property value

caching optional, as its cost (memory overhead) can sometimes

outweigh its benefits (performance).

0

200

400

600

800

1
3

8
2

3

9
0

2
2

1

1
1

6
2

5
1

se
co

n
d

s

of model elements

Visual Basic Epsilon (both caches)

Fig. 7. Execution time of the constraints using VB and Epsilon (both caches
enabled) with Rolls-Royce real models

0

1

2

3

4

5

6

2
1

3
2

1
0

9

1
2

3

1
5

9

2
2

7

2
9

7

3
9

5

6
7

5

6
9

5

8
1

5

1
3

2
3

1
4

0
5

1
5

1
9

2
1

8
6

5
9

5
6

se
co

n
d

s

of model elements

Visual Basic Epsilon (both caches)

Fig. 8. Execution time of the constraints using VB and Epsilon (both caches
enabled) with the IM example models

C. Threats to Validity

For all models, the constraints were violated 12,901 in

total in the case of the Visual Basic and 12,887 for the

Epsilon script. By examining the error report we identified that

TABLE II
EXECUTION TIME FOR DIFFERENT MODELS FOR ALL 5 CONFIGURATIONS

Average execution time (in seconds)

Model Name #Elements VB
Epsilon
(both

caches)

Epsilon
(flags
cache)

Epsilon
(values
cache)

Epsilon
(no cache)

Template - Small Project 21 0.024 0.066 0.072 0.064 0.068

Template - Incremental Process 32 0.037 0.082 0.082 0.088 0.088

Heart Monitor C 109 0.015 0.196 0.163 0.224 0.284

BallCpp 123 0.024 0.296 0.296 0.400 0.520

Heart Monitor Java 159 0.022 0.212 0.218 0.274 0.306

Template - Component-based Products 227 0.328 0.390 0.380 0.402 0.392

Traffic Lights 297 0.067 0.446 0.442 0.814 0.948

Distributed Ball Game MDA Example 395 0.074 0.476 0.469 1.035 1.133

VB Another Block (Tetris) Example 675 0.295 2.046 2.050 4.780 5.021

C# Another Block (Tetris) Example 695 0.301 2.098 2.119 4.607 5.144

Waste System 815 0.152 1.273 1.304 2.856 3.296

Traffic Lights - SySim 1323 0.267 1.517 1.586 4.206 5.984

Speed Controller 1405 0.442 2.143 2.264 5.946 8.191

Filling Station 1519 1.010 3.432 3.556 7.636 8.363

HSUV 2186 1.304 5.210 5.504 12.693 16.602

Search and Rescue 5956 0.965 3.886 4.083 11.418 15.450

Large Civil Aero-Engine 1 Small Model* 13823 7.974 42.797 46.167 141.310 216.010

Large Civil Aero-Engine 2 Control SW* 90221 65.091 410.509 489.496 851.138 1450.564

Large Civil Aero-Engine 3 Control SW* 116251 79.721 713.034 708.492 1474.994 2243.216

12,887 errors and warnings were identical while the 14 extra

constraint violations in the Visual Basic implementation were

on model elements whose name started with a special character

(i.e., <) or a space. The Epsilon script treated the upper-

case of this special character as the same of the lower-case,

which was not the case in Visual Basic. These 14 additional

violations do not significantly impact the logged execution

times as the properties and the values of the elements were

actually accessed to check the constraint conditions in both

cases.

The experiments were run three times on each model. The

first execution was ignored to avoid any overhead due to

the Enabler database warm-up. Additional iterations would be

beneficial; we run a small scale experiment on the example

models provided by the tool where we evaluated all five

solutions by running the constraints for ten iterations and

we identified that the execution time was consistent after the

second (first, if one does not take into account the warming-up

run) execution. As a result, we do not have reasons to believe

that the same would not be the case for the three remaining

larger models constructed by Rolls-Royce.

V. OBSERVATIONS AND LESSONS LEARNT

This section summarises the main observations and lessons

learnt through our attempt to bridge Epsilon with IM.

a) Performance: Despite using caching aggressively, the

performance of the Epsilon IM driver is still substantially

inferior (up to 10x) to that of IM’s native Visual Basic. While

this may not be an issue for smaller models and simple

model management activities, it can become disruptive as

models and model management programs grow in size and

complexity. This observation is consistent with our experiences

from attempting to bridge out to other modelling tools such as

MetaEdit+4 and Simulink5 in a live manner through their APIs.

This highlights the value of open/standard model persistence

formats for which performant support can be implemented

across different platforms, and demonstrates that an externally

accessible API is not a good enough substitute (at least

performance-wise) for an open model persistence format.

b) Incrementality: While the constraints in Visual Basic

execute significantly faster than those in EVL, their execution

time for large models is far from negligible (almost 80 seconds

for the largest model in our experiments), which means that

re-evaluating them upon every model change to discover prob-

lems as they are being introduced is not a realistic option. To

provide near-instant feedback, constraints need to be executed

incrementally as demonstrated in [2]. While this is not easy to

achieve using a general-purpose language like Visual Basic, it

is straightforward to implement using a task-specific language

such as EVL or OCL, whose engines provide support for

recording property access events [2], [10]. Our investigation

has revealed that IM provides a built-in facility for recording

fine-grained model element changes, which is another essential

component for achieving performant incremental re-execution

of model management programs [10].

c) Interoperability: The development of the Epsilon-

IM driver has opened a wide range of possibilities for

further model-based activities in Rolls-Royce, which were

not considered previously, including bespoke Epsilon-based

transformation and consistency checking facilities between IM

and Simulink, transformations between IM and EMF-based

models, and synchronisation facilities between IM models and

Ada source code (the latter can be parsed into XML using the

4https://github.com/epsilonlabs/emc-metaedit
5https://github.com/epsilonlabs/emc-simulink

AdaCore GNAT toolkit6).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a solution that bridges a propri-

etary modelling tool used for modelling safety-critical systems

in Rolls-Royce with the Epsilon open-source model manage-

ments suite. The Epsilon-IM driver enables programs written

in languages of the Epsilon platform to read and write IM

models in the context of a wide range of model management

activities such as model validation and model-to-model and

model-to-text transformation in conjunction with artefacts cap-

tured using different technologies such as Simulink, EMF and

Excel spreadsheets.

Our evaluation has demonstrated that the cost of bridging

the gap between Epsilon’s Java-based execution engines and

IM’s COM interface becomes significant as models grow in

size. On the other hand using task-specific languages such

as EVL is promising as, unlike Visual Basic, they have the

potential to be executed in an incremental way.

We are currently working on a robust and extensible

implementation of incremental model management

infrastructure for Epsilon (a proof of concept has already been

implemented for EGL [10]), which will enable Epsilon to

strengthen its position as the preferred option for interacting

with IM models in Rolls-Royce not only from a conciseness

and openness but also from a performance point of view.

Acknowledgments This work was partially supported

by Innovate UK and the UK aerospace industry through the

SECT-AIR project.

APPENDIX

Listing 4 presents the EVL implementation of the evaluation

constraints of Section IV, and Listing 5 presents the equivalent

implementations in Visual Basic.

1 c o n t e x t C l a s s {
2 c r i t i q u e NameShouldStar tWi thUpperCase {
3 check : s e l f . name . s u b s t r i n g (0 , 1) = s e l f . name . s u b s t r i n g (0 , 1) . toUpperCase ()

4 message : ” The name of c l a s s ” + s e l f . name + ” (” + s e l f . I d + ”) s h o u l d s t a r t

w i th an upper−c a s e l e t t e r . [# 1] ”

5 }
6 }
7

8 c o n t e x t A t t r i b u t e {
9 c r i t i q u e NameShouldNotStar tWithUpperCase {

10 check : s e l f . name . s u b s t r i n g (0 , 1) = s e l f . name . s u b s t r i n g (0 , 1) . toLowerCase ()

11 message : ” The name of a t t r i b u t e ” + s e l f . name + ” (” + s e l f . I d + ”) s h o u l d

not s t a r t w i th an upper−c a s e l e t t e r . [# 2] ”

12 }
13 }
14

15 c o n t e x t C l a s s {
16 c r i t i q u e O p e r a t i o n s S h o u l d e B e L e s s T h a n T h r e e {
17 check : s e l f . ‘ operat ion ‘ . s i z e <= 3

18 message : ” C l a s s ” + s e l f . name + ” (” + s e l f . I d + ”) has more t h a n 3 o p e r a t i o n s

. [# 3] ”

19 }
20 }
21

22 c o n t e x t O p e r a t i o n {
23 c r i t i q u e O p e r a t i o n s S h o u l d H a v e L e s s T h a n S e v e n P a r a m e t e r s {
24 check : s e l f . p a r a m e t e r . s i z e <= 3

25 message : ” O p e r a t i o n ” + s e l f . name + ” (” + s e l f . I d + ”) has more t h a n 7

p a r a m e t e r s . [# 4] ”

26 }
27 }
28

29 c o n t e x t Package {
30 c r i t i q u e PackagesShouldNotBeEmpty {
31 check : s e l f . o w n e d c o n t e n t s . s i z e > 0

32 message : ” Package ” + s e l f . name + ” (” + s e l f . I d + ”) i s empty . [# 5] ”

6https://docs.adacore.com/gnat ugn-docs/html/gnat ugn/gnat ugn/gnat
utility programs.html#the-ada-to-xml-converter-gnat2xml

33 }
34 }
35

36 c o n t e x t C l a s s {
37 c o n s t r a i n t M u l t i p l e I n h e r i t a n c e I s N o t A l l o w e d {
38 check : s e l f . s u p e r c l a s s . s i z e − s e l f . s u p e r c l a s s . s e l e c t (i | i . i s I n t e r f a c e . e q u a l s (”

TRUE”)) . s i z e () < 1

39 message : ” C l a s s ” + s e l f . name + ” (” + s e l f . I d + ”) has m u l t i p l e i n h e r i t a n c e .

[# 6] ”

40 }
41 }
42

43 c o n t e x t A s s o c i a t i o n {
44 c o n s t r a i n t A g g r e g a t e S t a r t M u l t i p l i c i t y S h o u l d B e A l w a y s O n e {
45 check {
46 i f (s e l f . a g g r e g a t e . e q u a l s (” S t a r t ”) and (not s e l f . EndMul t ip l i c i tyUML . e q u a l s

(” 1 ”))) {
47 re turn f a l s e ;

48 }
49 re turn t r u e ;

50 }
51 message : ” A g g r e g a t i o n ” + s e l f . name + ” (” + s e l f . I d + ”) has m u l t i p l i c i t y

d i f f e r e n t t h a n 1 . [# 7] ”

52 }
53 }
54

55 c o n t e x t A s s o c i a t i o n {
56 c o n s t r a i n t LowerBoundShouldBeSmal le rThanUpperBoundStar t {
57 check {
58 var s t a r t M u l t i p l i c i t y = s e l f . s t a r t M u l t i p l i c i t y U M L ;

59 i f (s t a r t M u l t i p l i c i t y . matches (”(−)?[0−9]+\\.{2}(−)?[0−9]+”)) {
60 var lowerBound = s t a r t M u l t i p l i c i t y . s p l i t (”\\.{2}”) . g e t (0) ;

61 var upperBound = s t a r t M u l t i p l i c i t y . s p l i t (”\\.{2}”) . g e t (1) ;

62 i f (lowerBound . a s I n t e g e r () > upperBound . a s I n t e g e r ()) {
63 re turn f a l s e ;

64 }
65 }
66 re turn t r u e ;

67 }
68 message : ” Lower bound i s b i g g e r t h a n uppe r bound in t h e s t a r t o f a s s o c i a t i o n ”

+ s e l f . name + ” (” + s e l f . I d + ”) . [#8 a] ”

69 }
70 }
71

72 c o n t e x t A s s o c i a t i o n {
73 c o n s t r a i n t LowerBoundShouldBeSmallerThanUpperBoundEnd {
74 check {
75 var e n d M u l t i p l i c i t y = s e l f . endMul t i p l i c i t yUML ;

76 i f (e n d M u l t i p l i c i t y . matches (”(−)?[0−9]+\\.{2}(−)?[0−9]+”)) {
77 var lowerBound = e n d M u l t i p l i c i t y . s p l i t (”\\.{2}”) . g e t (0) ;

78 var upperBound = e n d M u l t i p l i c i t y . s p l i t (”\\.{2}”) . g e t (1) ;

79 i f (lowerBound . a s I n t e g e r () > upperBound . a s I n t e g e r ()) {
80 re turn f a l s e ;

81 }
82 }
83 re turn t r u e ;

84 }
85 message : ” Lower bound i s b i g g e r t h a n uppe r bound in t h e end of a s s o c i a t i o n ” +

s e l f . name + ” (” + s e l f . I d + ”) . [#8 b] ”

86 }
87 }
88

89 c o n t e x t A s s o c i a t i o n {
90 c o n s t r a i n t U p p e r B o u n d S h o u l d B e P o s i t i v e S t a r t {
91 check {
92 var s t a r t M u l t i p l i c i t y = s e l f . s t a r t M u l t i p l i c i t y U M L ;

93 i f (s t a r t M u l t i p l i c i t y . matches (”(−)?[0−9]+\\.{2}(−)?[0−9]+”)) {
94 var upperBound = s t a r t M u l t i p l i c i t y . s p l i t (”\\.{2}”) . g e t (1) ;

95 i f (upperBound . a s I n t e g e r () <= 0) {
96 re turn f a l s e ;

97 }
98 }
99 re turn t r u e ;

100 }
101 message : ” Upper bound in t h e s t a r t o f a s s o c i a t i o n ” + s e l f . name + ” (” + s e l f .

I d + ”) s h o u l d be a p o s i t i v e i n t e g e r . [#9 a] ”

102 }
103 }
104

105 c o n t e x t A s s o c i a t i o n {
106 c o n s t r a i n t UpperBoundShouldBePos i t iveEnd {
107 check {
108 var e n d M u l t i p l i c i t y = s e l f . endMul t i p l i c i t yUML ;

109 i f (e n d M u l t i p l i c i t y . matches (”(−)?[0−9]+\\.{2}(−)?[0−9]+”)) {
110 var upperBound = e n d M u l t i p l i c i t y . s p l i t (”\\.{2}”) . g e t (1) ;

111 i f (upperBound . a s I n t e g e r () <= 0) {
112 re turn f a l s e ;

113 }
114 }
115 re turn t r u e ;

116 }
117 message : ” Upper bound in t h e end of a s s o c i a t i o n ” + s e l f . name + ” (” + s e l f . I d

+ ”) s h o u l d be a p o s i t i v e i n t e g e r . [#9 b] ”

118 }
119 }

Listing 4. Evaluation constraints implemented in EVL

1 P r i v a t e Funct ion C h e c k C o n s t r a i n t 1 (d i c t i o n a r y As O b j e c t)

2 Dim e r r o r B u i l d e r As New S t r i n g B u i l d e r

3 Dim c

4 Dim Number As I n t e g e r

5 Dim c l a s s e s = d i c t i o n a r y . Items (” C l a s s ”)

6 Do While c l a s s e s . MoreI tems

7 c = c l a s s e s . Next I tem

8 Dim cName = c . P r o p e r t y (”Name”)

9 I f ((Not I n t e g e r . T r y P a r s e (cName . S u b s t r i n g (0 , 1) , Number)) And (Not Char .

I sUppe r (cName , 0))) Then

10 e r r o r B u i l d e r . AppendLine (” [VB] , C l a s s ” + cName + ” (” + c . P r o p e r t y (” Id ”)

+ ”) does n o t s t a r t w i th u p p e r c a s e . , [# 1] ”)

11 n u m b e r O f T o t a l E r r o r s += 1

12 End I f

13 Loop

14 R e t u r n e r r o r B u i l d e r . T o S t r i n g

15 End Funct ion

16

17 P r i v a t e Funct ion C h e c k C o n s t r a i n t 2 (d i c t i o n a r y As O b j e c t)

18 Dim e r r o r B u i l d e r As New S t r i n g B u i l d e r

19 Dim a

20 Dim Number As I n t e g e r

21 Dim a t t r i b u t e s = d i c t i o n a r y . Items (” A t t r i b u t e ”)

22 Do While a t t r i b u t e s . MoreI tems

23 a = a t t r i b u t e s . Next I tem

24 Dim aName = a . P r o p e r t y (”Name”)

25 I f ((Not I n t e g e r . T r y P a r s e (aName . S u b s t r i n g (0 , 1) , Number)) And (Char . I sUppe r

(aName , 0))) Then

26 e r r o r B u i l d e r . AppendLine (” [VB] , A t t r i b u t e ” + aName + ” (” + a . P r o p e r t y (”

Id ”) + ”) s h o u l d n o t s t a r t w i th u p p e r c a s e . , [# 2] ”)

27 n u m b e r O f T o t a l E r r o r s += 1

28 End I f

29 Loop

30 R e t u r n e r r o r B u i l d e r . T o S t r i n g

31 End Funct ion

32

33 P r i v a t e Funct ion C h e c k C o n s t r a i n t 3 (d i c t i o n a r y As O b j e c t)

34 Dim e r r o r B u i l d e r As New S t r i n g B u i l d e r

35 Dim c

36 Dim c l a s s e s = d i c t i o n a r y . Items (” C l a s s ”)

37 Do While c l a s s e s . MoreI tems

38 c = c l a s s e s . Next I tem

39 Dim cName = c . P r o p e r t y (”Name”)

40 I f (c . I t emCount (” O p e r a t i o n ”) > 7) Then

41 e r r o r B u i l d e r . AppendLine (” [VB] , C l a s s ” + cName + ” (” + c . P r o p e r t y (” Id ”)

+ ”) has more t h a n 7 o p e r a t i o n s . , [# 3] ”)

42 n u m b e r O f T o t a l E r r o r s += 1

43 End I f

44 Loop

45 R e t u r n e r r o r B u i l d e r . T o S t r i n g

46 End Funct ion

47

48 P r i v a t e Funct ion C h e c k C o n s t r a i n t 4 (d i c t i o n a r y As O b j e c t)

49 Dim e r r o r B u i l d e r As New S t r i n g B u i l d e r

50 Dim o

51 Dim o p e r a t i o n s = d i c t i o n a r y . Items (” O p e r a t i o n ”)

52 Do While o p e r a t i o n s . MoreI tems

53 o = o p e r a t i o n s . Next I tem

54 Dim oName = o . P r o p e r t y (”Name”)

55 I f (o . I temCount (” P a r a m e t e r ”) > 7) Then

56 e r r o r B u i l d e r . AppendLine (” [VB] , O p e r a t i o n ” + oName + ” (” + o . P r o p e r t y (”

Id ”) + ”) has more t h a n 7 p a r a m e t e r s . , [# 4] ”)

57 n u m b e r O f T o t a l E r r o r s += 1

58 End I f

59 Loop

60 R e t u r n e r r o r B u i l d e r . T o S t r i n g

61 End Funct ion

62

63 P r i v a t e Funct ion C h e c k C o n s t r a i n t 5 (d i c t i o n a r y As O b j e c t)

64 Dim e r r o r B u i l d e r As New S t r i n g B u i l d e r

65 Dim p

66 Dim p a c k a g e s = d i c t i o n a r y . Items (” Package ”)

67 Do While p a c k a g e s . MoreI tems

68 p = p a c k a g e s . Next I tem

69 Dim pName = p . P r o p e r t y (”Name”)

70 I f (p . I temCount (” OwnedContents ”) = 0) Then

71 e r r o r B u i l d e r . AppendLine (” [VB] , Package ” + pName + ” (” + p . P r o p e r t y (” Id

”) + ”) i s empty . , [# 5] ”)

72 n u m b e r O f T o t a l E r r o r s += 1

73 End I f

74 Loop

75 R e t u r n e r r o r B u i l d e r . T o S t r i n g

76 End Funct ion

77

78 P r i v a t e Funct ion C h e c k C o n s t r a i n t 6 (d i c t i o n a r y As O b j e c t)

79 Dim e r r o r B u i l d e r As New S t r i n g B u i l d e r

80 Dim c

81 Dim c l a s s e s = d i c t i o n a r y . Items (” C l a s s ”)

82 Do While c l a s s e s . MoreI tems

83 c = c l a s s e s . Next I tem

84 Dim cName = c . P r o p e r t y (”Name”)

85 Dim s u p e r C l a s s e s = c . Items (” S u p e r C l a s s ”)

86 ’Dim numOfSuperClasses = c . I t emCount (” S u p e r C l a s s ”)

87 Dim numOfNonIn te r f aces = 0

88 Dim s

89 Do While s u p e r C l a s s e s . MoreI tems

90 s = s u p e r C l a s s e s . Next I tem

91 I f (s . P r o p e r t y (” I s I n t e r f a c e ”) = ”FALSE”) Then

92 numOfNonIn te r f aces += 1

93 End I f

94 Loop

95 I f (numOfNonIn te r f aces > 1) Then

96 e r r o r B u i l d e r . AppendLine (” [VB] , C l a s s ” + cName + ” (” + c . P r o p e r t y (” Id ”)

+ ”) has m u l t i p l e i n h e r i t a n c e . , [# 6] ”)

97 n u m b e r O f T o t a l E r r o r s += 1

98 End I f

99 Loop

100 R e t u r n e r r o r B u i l d e r . T o S t r i n g

101 End Funct ion

102

103 P r i v a t e Funct ion C h e c k C o n s t r a i n t 7 (d i c t i o n a r y As O b j e c t)

104 Dim e r r o r B u i l d e r As New S t r i n g B u i l d e r

105 Dim a

106 Dim a s s o c i a t i o n s = d i c t i o n a r y . Items (” A s s o c i a t i o n ”)

107 Do While a s s o c i a t i o n s . MoreI tems

108 a = a s s o c i a t i o n s . Next I tem

109 Dim aName = a . P r o p e r t y (”Name”)

110 I f (a . P r o p e r t y (” Aggrega t e ”) = ” S t a r t ”) Then

111 I f (a . P r o p e r t y (” EndMul t ip l i c i tyUML ”) <> ” 1 ”) Then

112 e r r o r B u i l d e r . AppendLine (” [VB] , A g g r e g a t i o n ” + aName + ” (” + a .

P r o p e r t y (” Id ”) + ”) has m u l t i p l i c i t y d i f f e r e n t t h a n 1 . , [# 7] ”)

113 n u m b e r O f T o t a l E r r o r s += 1

114 End I f

115 End I f

116 Loop

117 R e t u r n e r r o r B u i l d e r . T o S t r i n g

118 End Funct ion

119

120 P r i v a t e Funct ion C h e c k C o n s t r a i n t 8 a (d i c t i o n a r y As O b j e c t)

121 Dim e r r o r B u i l d e r As New S t r i n g B u i l d e r

122 Dim a

123 Dim a s s o c i a t i o n s = d i c t i o n a r y . Items (” A s s o c i a t i o n ”)

124 Do While a s s o c i a t i o n s . MoreI tems

125 a = a s s o c i a t i o n s . Next I tem

126 Dim aName = a . P r o p e r t y (”Name”)

127 Dim s t a r t M u l t i p l i c i t y = a . P r o p e r t y (” S t a r t M u l t i p l i c i t y U M L ”)

128 I f (Regex . I sMatch (s t a r t M u l t i p l i c i t y , ”(−)?[0−9]+\.{2}(−)?[0−9]+ ”)) Then

129 Dim s p l i t M u l t i p l i c i t y = s t a r t M u l t i p l i c i t y . S p l i t (New S t r i n g () {” . . ”} ,

S t r i n g S p l i t O p t i o n s . None)

130 Dim lowerBound = s p l i t M u l t i p l i c i t y (0)

131 Dim upperBound = s p l i t M u l t i p l i c i t y (1)

132 I f (lowerBound > upperBound) Then

133 e r r o r B u i l d e r . AppendLine (” [VB] , Lower bound i s b i g g e r t h a n upper

bound i n t h e s t a r t o f a s s o c i a t i o n ” + aName + ” (” + a .

P r o p e r t y (” Id ”) + ”) . , [# 8 a] ”)

134 n u m b e r O f T o t a l E r r o r s += 1

135 End I f

136 End I f

137 Loop

138 R e t u r n e r r o r B u i l d e r . T o S t r i n g

139 End Funct ion

140

141 P r i v a t e Funct ion C h e c k C o n s t r a i n t 8 b (d i c t i o n a r y As O b j e c t)

142 Dim e r r o r B u i l d e r As New S t r i n g B u i l d e r

143 Dim a

144 Dim a s s o c i a t i o n s = d i c t i o n a r y . Items (” A s s o c i a t i o n ”)

145 Do While a s s o c i a t i o n s . MoreI tems

146 a = a s s o c i a t i o n s . Next I tem

147 Dim aName = a . P r o p e r t y (”Name”)

148 Dim e n d M u l t i p l i c i t y = a . P r o p e r t y (” EndMul t ip l i c i tyUML ”)

149 I f (Regex . I sMatch (e n d M u l t i p l i c i t y , ”(−)?[0−9]+\.{2}(−)?[0−9]+ ”)) Then

150 Dim s p l i t M u l t i p l i c i t y = e n d M u l t i p l i c i t y . S p l i t (New S t r i n g () {” . . ”} ,

S t r i n g S p l i t O p t i o n s . None)

151 Dim lowerBound = s p l i t M u l t i p l i c i t y (0)

152 Dim upperBound = s p l i t M u l t i p l i c i t y (1)

153 I f (lowerBound > upperBound) Then

154 e r r o r B u i l d e r . AppendLine (” [VB] , Lower bound i s b i g g e r t h a n upper

bound i n t h e end of a s s o c i a t i o n ” + aName + ” (” + a . P r o p e r t y

(” Id ”) + ”) . , [# 8 b] ”)

155 n u m b e r O f T o t a l E r r o r s += 1

156 End I f

157 End I f

158 Loop

159 R e t u r n e r r o r B u i l d e r . T o S t r i n g

160 End Funct ion

161

162 P r i v a t e Funct ion C h e c k C o n s t r a i n t 9 a (d i c t i o n a r y As O b j e c t)

163 Dim e r r o r B u i l d e r As New S t r i n g B u i l d e r

164 Dim a

165 Dim a s s o c i a t i o n s = d i c t i o n a r y . Items (” A s s o c i a t i o n ”)

166 Do While a s s o c i a t i o n s . MoreI tems

167 a = a s s o c i a t i o n s . Next I tem

168 Dim aName = a . P r o p e r t y (”Name”)

169 Dim s t a r t M u l t i p l i c i t y = a . P r o p e r t y (” S t a r t M u l t i p l i c i t y U M L ”)

170 I f (Regex . I sMatch (s t a r t M u l t i p l i c i t y , ”(−)?[0−9]+\.{2}(−)?[0−9]+ ”)) Then

171 Dim s p l i t M u l t i p l i c i t y = s t a r t M u l t i p l i c i t y . S p l i t (New S t r i n g () {” . . ”} ,

S t r i n g S p l i t O p t i o n s . None)

172 Dim upperBound = s p l i t M u l t i p l i c i t y (1)

173 I f (upperBound <= 0) Then

174 e r r o r B u i l d e r . AppendLine (” [VB] , Upper bound i n t h e s t a r t o f

a s s o c i a t i o n ” + aName + ” (” + a . P r o p e r t y (” Id ”) + ”) must be

a p o s i t i v e i n t e g e r . , [# 9 a] ”)

175 n u m b e r O f T o t a l E r r o r s += 1

176 End I f

177 End I f

178 Loop

179 R e t u r n e r r o r B u i l d e r . T o S t r i n g

180 End Funct ion

181

182 P r i v a t e Funct ion C h e c k C o n s t r a i n t 9 b (d i c t i o n a r y As O b j e c t)

183 Dim e r r o r B u i l d e r As New S t r i n g B u i l d e r

184 Dim a

185 Dim a s s o c i a t i o n s = d i c t i o n a r y . Items (” A s s o c i a t i o n ”)

186 Do While a s s o c i a t i o n s . MoreI tems

187 a = a s s o c i a t i o n s . Next I tem

188 Dim aName = a . P r o p e r t y (”Name”)

189 Dim e n d M u l t i p l i c i t y = a . P r o p e r t y (” EndMul t ip l i c i tyUML ”)

190 I f (Regex . I sMatch (e n d M u l t i p l i c i t y , ”(−)?[0−9]+\.{2}(−)?[0−9]+ ”)) Then

191 Dim s p l i t M u l t i p l i c i t y = e n d M u l t i p l i c i t y . S p l i t (New S t r i n g () {” . . ”} ,

S t r i n g S p l i t O p t i o n s . None)

192 Dim upperBound = s p l i t M u l t i p l i c i t y (1)

193 I f (upperBound <= 0) Then

194 e r r o r B u i l d e r . AppendLine (” [VB] , Upper bound i n t h e end of a s s o c i a t i o n

” + aName + ” (” + a . P r o p e r t y (” Id ”) + ”) must be a p o s i t i v e

i n t e g e r . , [# 9 b] ”)

195 n u m b e r O f T o t a l E r r o r s += 1

196 End I f

197 End I f

198 Loop

199 R e t u r n e r r o r B u i l d e r . T o S t r i n g

200 End Funct ion

Listing 5. Evaluation constraints implemented in Visual Basic

REFERENCES

[1] Barnes, J.: High integrity Ada: the SPARK approach. Addison-Wesley
Professional (1997)

[2] Egyed, A.: Instant consistency checking for the uml. In: Proceedings of
the 28th International Conference on Software Engineering. pp. 381–
390. ICSE ’06, ACM, New York, NY, USA (2006)

[3] Friedenthal, S., Moore, A., Steiner, R.: A practical guide to SysML: the
systems modeling language. Morgan Kaufmann (2014)

[4] GmbH, F.E.S.T.: Enabler Administration, Release 7.0 Service Pack 1
(2006)

[5] IBM: IBM - rational rhapsody family. Online (2017), http://www-03.
ibm.com/software/products/en/ratirhapfami

[6] IBM: Rational doors. Online (2017), http://www-03.ibm.com/software/
products/en/ratidoor

[7] No Magic Inc.: MagicDraw. Online (2017), https://www.nomagic.com/
products/magicdraw

[8] Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon object language
(EOL). In: Model Driven Architecture–Foundations and Applications.
pp. 128–142. Springer (2006)

[9] Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier,
P., Schnekenburger, R., Dubois, H., Terrier, F.: Papyrus UML: an open
source toolset for MDA. In: Proc. of the Fifth European Conference on
Model-Driven Architecture Foundations and Applications (ECMDA-FA
2009). pp. 1–4 (2009)

[10] Ogunyomi, B., Rose, L.M., Kolovos, D.S.: Property Access Traces
for Source Incremental Model-to-Text Transformation, pp. 187–202.
Springer International Publishing, Cham (2015)

[11] Project, T.J.: Jawin - a java/win32 interoperability project. Online (2005),
http://jawinproject.sourceforge.net/

[12] PTC: PTC Integrity Modeller. Online (2017), http://www.ptc.com/
model-based-systems-engineering/integrity-modeler

[13] Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse
Modeling Framework. Pearson Education (2008)

[14] The MathWorks, I.: Simulation and model-based design. Online, https:
//www.mathworks.com/products/simulink.html

