
Bridging the Gap between Requirements Modeling
and Behavior-driven Development

Mauricio Alferez∗, Fabrizio Pastore∗, Mehrdad Sabetzadeh∗, Lionel C. Briand∗†, Jean-Richard Riccardi§
∗SnT Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg

†School of Engineering and Computer Science, University of Ottawa, Canada
§Clearstream Services SA, Luxembourg

Email: {alferez, pastore, sabetzadeh, briand}@svv.lu, jean-richard.riccardi@clearstream.com

Abstract—Acceptance criteria (AC) are implementation ag-
nostic conditions that a system must meet to be consistent
with its requirements and be accepted by its stakeholders.
Each acceptance criterion is typically expressed as a natural-
language statement with a clear pass or fail outcome. Writing
AC is a tedious and error-prone activity, especially when the
requirements specifications evolve and there are different analysts
and testing teams involved. Analysts and testers must iterate
multiple times to ensure that AC are understandable and feasible,
and accurately address the most important requirements and
workflows of the system being developed.

In many cases, analysts express requirements through models,
along with natural language, typically in some variant of the
UML. AC must then be derived by developers and testers from
such models. In this paper, we bridge the gap between require-
ments models and AC by providing a UML-based modeling
methodology and an automated solution to generate AC. We
target AC in the form of Behavioral Specifications in the context
of Behavioral-Driven Development (BDD), a widely used agile
practice in many application domains. More specially we target
the well-known Gherkin language to express AC, which then can
be used to generate executable test cases.

We evaluate our modeling methodology and AC generation
solution through an industrial case study in the financial domain.
Our results suggest that (1) our methodology is feasible to apply
in practice, and (2) the additional modeling effort required by
our methodology is outweighed by the benefits the methodology
brings in terms of automated and systematic AC generation and
improved model precision.

Index Terms—Software testing, BDD, modeling, requirements
engineering, text generation, Gherkin, and FinTech.

I. INTRODUCTION

Business-critical information systems, for example those
used in banking and securities services, are often subject to
extensive testing at different stages of development. Accep-
tance testing aims at ensuring that a completed system as
a whole meets its specified requirements [1]. This type of
testing typically involves users and other individuals who have
strong domain knowledge. A key step in acceptance testing
is to define Acceptance Criteria (AC) to distinguish correct
behaviors from potentially incorrect ones. AC are typically
written in natural language to facilitate communication among
the stakeholders, from clients, to project management and
to the development team. In the context of Behavior-Driven
Development (BDD), the Gherkin language [2] is commonly
used to express AC using a Given-When-Then structure: Given
[initial context] When [event or action] Then [expected result].

For example, “Given there is enough money on my account
When I make a withdrawal Then I get the expected amount
of money from the ATM”. This Given-When-Then structure
is known as a Gherkin scenario. An acceptance criterion
specification describes an execution scenario (hereafter, accep-
tance testing scenario), and is usually captured by means of a
sequence of Gherkin scenarios. The popularity of the Gherkin
language is, in large part, due to its ability to enforce the use of
high-level, domain-specific terms and supporting traceability
from AC to executable test cases [2]. More precisely, the
Gherkin syntax enables the automated generation of executable
test cases based on matching AC text to APIs, thus leading to
test case traceability.

Information systems typically support and manage human
processes, including multiple automated and manual tasks
(e.g., evaluation of loan applications), and their requirements
are often (partly) captured by means of behavioral models
(e.g., UML activity diagrams). There is a disconnect between
such requirements models, produced by analysts, and AC
specifications, written by developers and testers in the con-
text of BDD. Such specifications are manually derived from
models in a tedious and error-prone process, in which there
are many opportunities for misunderstanding. For example,
activity diagrams are often partially specified and lack pre- and
postconditions, thus complicating the identification of context
information and expected results in AC. Also, being high-
level, requirements models cannot help determine which are
the outputs (e.g., GUI, logs) to be inspected during acceptance
testing, thus preventing the clear specification of expected re-
sults in AC and complicating the implementation of executable
test cases (e.g., to automatically load the generated results and
print the test outcome). Finally, requirements models capture
complex behaviors including blocking conditions and parallel
flows – elements that may lead to incomplete identification of
AC.

To address the above challenges, we propose an approach,
named AGAC (Automated Generation of Acceptance Criteria),
which supports the automated generation of AC specifications
in Gherkin. AGAC provides the following key benefits. First,
requirements analysts no longer need to verify whether exist-
ing AC are still valid, since they are automatically generated.
Second, AC are now produced systematically, thus decreasing
the likelihood that critical system-level scenarios would be

1

Mauricio ALFEREZ
Accepted for publication in the Proceedings of the 22nd IEEE / ACM International Conference on
Model Driven Engineering Languages and Systems (MODELS), IEEE Computer Society, 2019�

 1. System Specifications

State : T2S InstructionState
…

T2S Settlement Ins

State : T2S InstructionState
…

T2S Settlement Ins

Use Case Diagrams
(Actors)

…

Domain Model

State : T2S InstructionState

T2S Settlement Ins

ToValidate
Valid
Settled
…

<<enumeration>>
T2S Instruction

State

…

Step 1:
Create Specifications

Step 2:
Derive Acceptance Criteria

Input/Output
Automated Step

Manual Step
Notation

Activity Diagrams

act Perform a settlement

Settle
Instruction

Inx : T2S Settlement Ins

…

State == Settled

T2S : Settlement Platform

2. Templates

3. Acceptance Criteria Written in Gherkin
@Intent Create
Scenario: Settle Instruction
Given Inx of type T2S Settlement Ins does not exist in T2S of type Settlement Platform.
When T2S Settle Instruction,
Then Inx exists in T2S
 And the property state of Inx is equal to Settled
… more Gherkin Scenarios follow.

<<actor>>
Settlement
Platform

…more
actions

@Intent: Create # Tag
Scenario: <action>
Given <domainEntity> (of type <class>)? # The type is optional
 does not exist in <actor> (of type <class>)?, # The type is optional
 # Zero or more previous guard conditions and local preconditions
(And <constraint.expression>)*
When <actor> <action>,
Then <domainEntity> exists in <actor>
(And <constraint.expression>)* # Zero or more local postconditions
Zero or more constraints depending on the properties that are initialised
(And the property <property> of <domainEntity> is <operator> <value>) *

…

Fig. 1. Main steps of AGAC and a fragment of the Perform a settlement AD from Figure 3

overlooked, and third, AGAC motivates requirements analysts
to make their models more precise (for example, AGAC entails
the modeling of inputs and outputs). Last, augmented precision
helps improve the understandability of models and facilitate
further automation opportunities such as change impact anal-
ysis and regression testing.

Contributions: Motivated and inspired by current practice
in requirements engineering and BDD, AGAC makes three
contributions: (1) Modeling Methodology. UML is only a
notation. To be able to effectively model requirements, one
needs a specific methodology tailored to the problem domain
and the objectives. Such a methodology typically includes a
subset of the UML and tool-supported, modeling steps. We
propose a methodology to support the derivation of AC in
the context of BDD and Gherkin. Our methodology enforces
compliance through a profile and dedicated tool, thus ensuring
that all the information required for deriving AC and test cases
is available. (2) AC templates capturing acceptance criteria
patterns that we identified based on the analysis of 841 test
specifications for three projects in the financial technology
(FinTech) domain. Such patterns are a basis for analysis
and automation. (3) Algorithms and tool for automated
AC generation. The inputs to the AC generation process
are requirements models and AC templates. The algorithms
process the inputs, create test models, identify test model
paths corresponding to valid acceptance testing scenarios, and
translate these paths into sequences of Gherkin scenarios using
AC templates. (4) Industrial Case Study. We apply AGAC to
a representative financial system, to demonstrate its feasibility
and benefits in a realistic context.

AGAC targets system requirements modeled using Activ-
ity Diagrams (ADs), Class Diagrams (CDs) and Use Case
Diagrams (UCDs) [3]. ADs specify the SUT behaviors and
CDs describe the types and properties of the data or objects
manipulated in the ADs by actors defined in the UCDs. In
our case, ADs, CDs and UCDs are the most suitable notations
since they are commonly and increasingly used in Software
Requirements Analysis (SRA), for example in financial in-
stitutions such as our industry partner, Clearstream Services
SA Luxembourg [4]. Moreover, it is common to see large
financial institutions use these diagrams to communicate with

other parties. For example, the European Central Bank (ECB)
uses ADs to describe parts of the pan-European platform for
securities settlement, called Target2Securities (T2S) [5].

The rest of this paper is organized as follows. Section II
provides an overview of AGAC. Section III describes our
modeling methodology. Section IV presents some simplified
versions of the diagrams in our industrial case study. Section V
elaborates our AC generation procedures and templates. Sec-
tion VI reports the results of our case study. Section VII re-
flects on the lessons learned from the case study. Section VIII
discusses related work. Section IX concludes the paper.

II. APPROACH OVERVIEW

AGAC consists of two steps, Create Specifications and
Derive Acceptance Criteria, depicted in Figure 1 along with
their inputs and outputs.

The first step, Create Specifications, is performed manually
by the engineers and consists of producing requirements mod-
els by following AGAC. These requirements models include
ADs, CDs and UCDs. Actors are defined in UCDs (e.g.,
Settlement Platform in Figure 1) and execute Actions that
are part of the Activities represented in ADs. Domain Entities
and their properties are characterized by a Domain Model,
represented using CDs and referenced within the ADs. For
example, all the types and actors appearing in the AD in
Figure 1 are specified in the CD and UCD shown in the same
figure. In Figure 1, according to UML notation, the activity
partition named T2S : Settlement Platform contains the ac-
tions performed by a Settlement Platform actor named T2S .
The action Settle Instruction creates the object Inx of type
T2S Settlement Ins , which is specified in the domain model.
Also, after T2S executes the action Settle Instruction , the
object Inx is expected to have its State set to Settled , one of
the possible values according to the domain model.

The second step, Derive Acceptance Criteria, is automated
and consists of matching the requirements models created by
the first step with a set of predefined AC templates to generate
Gherkin AC based on the intent of actions. The templates
define fixed parts of the text in the Given-When-Then structure
of a Gherkin scenario and leave some variable parts that will
be replaced with text generated by AGAC. For example, the

2

Elicit Use Cases

Use Case
Diagram

Domain ModelCreate Domain Model

Create Activity
Diagrams

Internal documents,
customer and

experts information

Specify
Constraints

Structure

Behavior

Specify
Intents

Activity
Diagrams

Fig. 2. Overview of the “Create Specifications” step

variable parts <actor> and <action> in Box 2 of Figure 1
are replaced with the fragments T2S and Settle Instruction
to generate the acceptance criterion shown in Box 3 of
Figure 1. The resulting acceptance criterion means that when
the settlement platform T2S executes Settle Instruction , if
the domain entity instance Inx does not exist, then Inx is
created and its State is Settled .

What enables the identification of the template to be used
to derive the AC for a particular action is the tag @Intent,
which is specified in every AC template. Two key charac-
teristics of our approach are the capability to automatically
determine the intent of certain actions (e.g., creating an object
in the case of Settle Instruction in Figure 1) and to enable
engineers to clarify an intent when it is not possible to
automatically derive it. The following sections describe in
detail these two steps.

III. CREATE SPECIFICATIONS

Figure 2 outlines our methodology for creating system
specifications. Our methodology has been inspired by object-
oriented analysis (OOA) [6] and current practice adopted
by our industry partner; it includes three widely adopted
OOA activities (i.e., Elicit Use Cases, Create Domain Model
and Create Activity Diagrams) and two additional activities
(i.e., Specify Constraints and Specify Intents) that enable the
automated generation of AC. In the following, we provide an
overview of the three standard OOA practices adopted by our
methodology and provide a detailed description of the two
activities that are specific to our methodology.

According to standard OOA practice, use cases are elicited
based on different sources of information such as internal doc-
uments, and information from customers and experts. Usually
one UCD describes the main system Use Cases and Actors.
Moreover, the analysts create at least one Activity for each
Use Case, and represent the process of each Activity using at
least one AD. ADs are divided in Activity Partitions (modeled
by means of boxes with a title) and each Activity Partition
is associated to an Actor. The actor associated to an activity
partition is the one who is supposed to perform the activities
it includes. A Domain Model is used to capture the types of
Domain Entities (i.e., data or objects) handled by the activities.

Figure 3, shows example diagrams produced according to
our methodology, based on a large-scale case study from the
financial domain provided by our industrial partner. Given
the use case Perform a settlement , the analyst creates an
AD named Perform a settlement and populates the Domain
Model with all the domain entities produced, modified or
verified in the AD. In Figure 3, the AD Perform a settlement

includes two activity partitions P and T2S , the former being
executed by the actor Participant , the latter by the actor
Settlement Platform . The association between activity par-
titions and actors is captured in the title box of the activity
partition.

A. Specify Constraints

Constraints are defined as Boolean expressions used to
describe pre- and postconditions of actions and activities,
and guards on control flows to restrict the execution of
actions. Constraints can be shown as a note box linked
to any node or edge of a diagram, or in a constraints
compartment. Constraints linked to Actions are called lo-
cal pre- and postconditions. Figure 3 includes an example
of a precondition for the Activity Perform a settlement in
its constraints compartment. The expression of that pre-
condition is Pre : SettlementPlatform.allInstances() →
forAll(t | t .isInitialised = true). A note box is instead used
to show the local postcondition Lp1 linked to the action
Settle Instruction .

Constraints play a crucial role in our approach since they
enable the identification of the Given (i.e., the test case
precondition) and Then (i.e., expected postcondition to be
verified during testing) elements for Gherkin scenarios. Our
methodology does not require all the constraints to be specified
manually, sparing the engineers the need to specify implicit
constraints that can be identified by analyzing the diagrams.

Implicit constraints are derived according to the following
rules. If an action updates the attributes of a domain entity,
then our toolset derives a precondition indicating that the do-
main entity instance is expected to exist. This is the case for the
action Settle Instruction in Figure 1, which updates the state
of the object Inx and thus implies that Inx exists (otherwise
the action would not be able to change its state). If an action
follows a condition node (represented by diamonds in the
AD) then our toolset derives a precondition that matches the
expression satisfying the condition node. If an action produces
an object (represented by a squared box in the diagram) and
one or more attribute values are specified for that object, then
our toolset derives a postcondition from the specified attribute
values. This is the case for Settle Instruction in Figure 1, for
which we derive a postcondition indicating that the property
State of Inx is expected to be equal to Settled .

B. Specify Intents

To enable the automated generation of AC, our methodology
requires that analysts specify the intent of actions by relying
on a set of predefined stereotypes. Figure 4 shows the Intents
profile provided by AGAC. Intents capture the observable
behavior of an action that should be verified during testing.
The stereotypes Create, Read , Update and Send indicate
that the domain entity connected to the outgoing edge of
the action has been created, read, updated or sent by the
action. The stereotypes Delete , Receive and Validate , instead,
indicate that the domain entity connected to the incoming
edge has been deleted, received or validated by the action,

3

P: Participant T2S: Settlement Platform

InterruptibleActivityRegion1

Merge2

ActivityInitial

Send settlement
Instruction

Inx: T2S Settlement Ins

State = ToValidate

Receive and
Generate InstructionpInx: Participant

Settlement Ins

Validate Ins: Validate
Instruction

Inx: T2S
Settlement Ins

Settle Instruction

Inx.SettlementDate >
T2S.CurrentDate

Inx.SettlementDate
starts

Merge1

Inx: T2S Settlement Ins

State = Settled

Send
Notification

Inx: T2S
Settlement Ins

Run Matching Process
X

days
passed

Inx: T2S Settlement Ins

State = Matched

Process Instruction
Rejection

Inx: T2S
Settlement Ins Inx: T2S Settlement Ins

State = Valid

Inx: T2S Settlement Ins

State = Rejected

«localPostcondition» Lp1:

FlowFinal

Receive
notification

notif:
Participant
Notification

[No]

[Inx.State == Valid]

[Yes]

Domain Model (Class diagram)

Participant Settlement Ins

T2S Settlement Ins

State: T2S Instruction State

Participant Notification

Reason: String [0..1]
Message: String

Settlement Instruction

SettlementDate: Date

«enumeratio...
T2S Instruction

State

ToValidate
Valid
Settled
Rejected
Matched

0..*Participant
Instruction

uc Actors

Participant

«actor»
Settlement Platform

isInitialised: Boolean

«Pre-condition»
{SettlementPlatform.allInstances() -> forAll (t / t.isInitialised= true)}

Fig. 3. Simplified diagrams describing how to perform a settlement

respectively. The stereotypes Display , Enable , Disable , and
NotDisplay indicate that the action affects the user interface.
More specifically, Display and NotDisplay indicate that the
domain entity connected to the outgoing edge of the action is
expected to be displayed or hidden from the GUI, respectively.
Enable and Disable indicate that the GUI enables or prevents
an actor from accessing or modifying the domain entity.

Similarly to constraints, intents may not be explicitly de-
clared if they can be automatically derived. This occurs in the
following cases. (Case-1) The Update stereotype is automati-
cally assigned to an action when the input and output edges of
the action are connected to domain entities with the same iden-
tifier. This is the case for the action Run Matching Process
in Figure 1 which is expected to update the State property
of the domain entity instance named Inx. (Case-2) The Create
stereotype is assigned to an action when the output edge of
an action is connected to a domain entity with an identifier
that is not encountered when processing previous actions.
(Case-3) Any stereotype can be automatically assigned to
an action if the name of the stereotype matches the verb
appearing in the action’s name, or one of its synonyms
(e.g., Receive Instruction and Validate Instruction match
the stereotypes Receive and Validate).

To support engineers in the definition of ADs, the AGAC
toolset displays warnings when inconsistencies are encoun-
tered in the stereotypes, the verbs appearing in the action
names, or the inputs and outputs of the actions, based on the
derivation rules described above. For example, AGAC would
display a warning if an action does not create any output data,
but (1) its main verb is create or a synonym (e.g., produce,
generate), or (2) the action has the Create stereotype.

«metaclass»
Action

CreateRead Update DeleteSend ReceiveValidate

Intent

DisplayNot Display Enable

UI Intent

Disable

Fig. 4. Intents profile that makes explicit the intent of actions in ADs

IV. MODELING EXAMPLE

In the following, we provide additional details about the
example in Figure 3, which is required to exemplify the
Derive Acceptance Criteria step of AGAC (Section V). The
AD starts at the InitialNode (a black circle) followed by
the action called Send Settlement Instruction (the rounded
rectangle) performed by a Participant (e.g., a transfer
agent referred in the diagram as P). That action creates
the Participant Settlement Ins object pInx that is received
by the actor T2S (Target2Securities) of type Settlement
Platform . Based on pInx , T2S creates the settlement instruc-
tion Inx that will be processed during the entire activity and
whose property State is initially set to ToValidate.

The CallBehavior action Validate Ins invokes the activity
Validate Instruction (not shown in the diagram) that makes
business validations (e.g., checks for duplicates, restrictions
and privileges), and updates the Inx state to Valid if it passes
the validation. If the state is different than Valid , it is reset
to Rejected and a notification, which includes the Reason of
rejection, is sent to the participant. If the instruction is Valid ,
T2S executes three actions in parallel: (1) Send Notification ,
which informs the participant that its instruction is valid and
waits for a matching instruction to arrive before being settled.
(2) Run Matching Process , which compares the settlement
details of the settlement instructions provided by the deliverer
and the receiver of securities to ensure that both parties agree
on the settlement terms of the transaction. (3) Wait for the
time event X days passed to occur. If the matching process
finishes before the time event X days passed occurs, Inx will
be Matched , otherwise, it will be Rejected .

If the SettlementDate of Inx is in the future (see the
constraint Inx .SettlementDate > T2S .CurrentDate), T2S
will wait until that date before executing Settle Instruction
(as shown by the AcceptTimeEventAction node labeled as
Inx .SettlementDate). Finally, after the instruction is settled,
the State property of the Inx object will change to Settled
and a notification will be sent to the participant.

Figure 3 shows a CD representing the domain model
(fragment) related to the AD shown in the same figure.
The domain model shows that Settlement Instruction has
the property SettlementDate , and there are two types of

4

Settlement Instructions, one for the participant and the other
for T2S . A Participant Instruction can have zero or more
Participant Notifications which contain a message and, in
some cases, a reason as to why the instruction was rejected.
The domain model also shows an enumeration of the possible
states of T2S Settlement Ins .

V. DERIVE ACCEPTANCE CRITERIA

Figure 5 shows an overview of the Derive Acceptance
Criteria step, which is fully automated by our toolset. This step
consists of three sub-steps: Generate Test Model(s), Generate
Paths and Generate AC.

Generate Test
Model(s)

Test Model(s)

Test
Model(s)

Paths

Generate
Paths

Generate
Acceptance Criteria

Acceptance Criteria
written in GherkinTemplates

System
Specifications

Fig. 5. Overview of the “Derive Acceptance Criteria” step

A. Test model

Test models capture, in explicit form, information that is
necessary for the correct generation of acceptance testing
scenarios. More precisely, a test model captures the control
flow explicitly modeled by an AD and augments it with
information that is implicitly modeled in the AD, thus enabling
a clear identification of (1) inputs and outputs, (2) events
that start the processes depicted by the AD, and (3) events
that interrupt the execution of regions of the AD. These
elements are not explicitly indicated in an AD (e.g., it is not
possible to identify an interrupting event without analyzing
its outgoing edges) but are required to enable test generation.
AGAC automatically derives this information by processing
the ADs produced following our methodology.

Figure 6 shows the test model metamodel used by our ap-
proach. The metamodel consists of two groups of metaclasses:
metaclasses representing the elements in an AD (in gray) and
metaclasses capturing the control flow information necessary
for building acceptance testing scenarios.

The structure of the AD is captured using an ordered pair
Graph composed of a set of Vertices together with a set of
Edges . Each edge is associated with two different vertices
and can have a Label and Type . Each vertex belonging to
a graph represents one element in an AD (e.g., an Action).
For completeness, an excerpt of the metamodel of ADs is
available online [7]. Vertex is defined as a 12-tuple 〈Id, Name,
Type, Actor, ActorType, Parent, Classifier, LocalPreconditions,
LocalPostconditions, NextList, PreviousList, Properties〉. Id is
a unique identification of the node, Name is an optional text
by which a node is known, Type is the node’s UML metaclass
(e.g., Action), Actor is the role played by a system that
executes the node, Parent is a reference to the node that
contains the node in the diagram (e.g., an ActivityPartition),
Classifier is a reference to the corresponding domain entity in
the domain model, LocalPre and LocalPost are the local pre-
and postconditions of a node, Properties are defined in the
domain model as class properties. NextList and PreviousList

TestModel

Name: string

Sequence

Step

Pre: Constraint [0..*]
Post: Constraint [0..*]

Condition

Exit

ParallelStart

Include

TargetId: ID
In: DomainEntity [0..1]
Out: DomainEntity [0..1]

Input

Out: DomainEntity

Internal

In: DomainEntity
Out: DomainEntity

Other

In: DomainEntity [0..1]
Out: DomainEntity [0..1]

Start

Constraint

Expression: string

Interrupt

InterruptedSteps: Step [0..*]

BiFlowCondition

MultiFlowCondition

Alternatives: Edge [3..*]

StartAndInput

Out: DomainEntity

Graph Vertex

Id: ID
Name: string [0..1]
Type: string
Actor: string [0..1]
ActorType: string [0..1]
Parent: Vertex [0..1]
Classifier: Vertex [0..1]
LocalPre: Constraint [0..*]
LocalPost: Constraint [0..*]

Edge

Label: Constraint [0..1]
Type: string

DomainEntity Node
Property

Type: string
Operator: string
Value: string

ParallelEnd

Merge

In: DomainEntity [0..1]
Out: DomainEntity [0..1]

Constraint

True

NextList

0..*

PreviousList

0..*

False

DomainEntities
0..*

Properties 0..*Vertex

Interrupts

0..*

Next

Enabling

Target

1

Start

Vertices

1..*

Diagram

Edges 0..*

Next

2..*

Fig. 6. Test model metamodel

contain the edges to the next and previous vertices in the AD.
For example, the vertex representing the action “Settle Instruc-
tion” in Figure 3 is represented by the tuple 〈Id: an-id, Name:
Settle Instruction, Type: Action, Actor: T2S, Parent: a refer-
ence to the Activity “Perform a settlement”, Classifier: null,
LocalPreconditions: null, LocalPostconditions: Lp1, NextList:
[Inx], PreviousList: [Merge1, Inx], Properties: [null]〉.

The test model control flow is captured by Node classes.
Each Node class is associated to the Vertex it has been derived
from. Nodes can be either DomainEntities or Steps . A Step
has zero or more pre- and postconditions. These conditions
include the ones in the LocalPre and LocalPost attributes of
the associated vertex but are not limited to them since our
toolset may automatically derive pre- and postconditions as
indicated in Section III-A. A Step refers to four types of
nodes that differ regarding the number of following steps
they are connected to: (1) Sequence has a single next step;
(2) Exit does not have any next step; (3) ParallelStart has
two or more next steps that will be executed concurrently;
(4) Condition has two or more possible next steps and a
reference to a Constraint . Among the subtypes of Condition ,
a BiF lowCondition has two next steps (True and False),
while a MultiF lowCondition is associated to three or more
alternative next steps.

There are eight types of Sequence nodes: Start ,
StartAndInput , Input , Internal , Interrupt , Include ,
ParallelEnd and Other . Start and StartAndInput represent
the beginning of an activity. Input indicates that the
acceptance testing scenario should include an operation that
provides a DomainEntity to the system. Internal indicates
that the system alters its internal state. The effects of an
internal step are specified as postconditions (see the Post
property in Step). Interrupt indicates the presence of input

5

TABLE I
TRANSFORMATION RULES USED BY AGAC FOR CREATING TEST MODEL

NODES FROM AN AD.
Generated Test
Model Node

Transformation Rule

Input The type of the vertex is not ControlNode and (1) the vertex
has one output and no input domain entities or (2) the vertex has
one input and one output domain entity with different names.

Internal The type of the vertex is not ControlNode and the vertex has
one input and one output domain entity with the same name.

Start The type of the vertex is (1) InitialNode, or (2) an
AcceptEventAction or AcceptTimeEventAction that
does not have incoming edges and is not an Interrupt .

Exit The type of the vertex is ActivityFinal or FlowFinal .
Include The type of the vertex is CallBehaviourAction .
Interrupt The type of the vertex is AcceptEventAction or

AcceptTimeEventAction , the vertex belongs to an
InterruptibleActivityRegion , and is connected to an
InterruptFlow exiting from that region.

BiFlowCondition The type of the vertex is Decision and the vertex has two
outgoing edges.

MultiFlowCondition The type of the vertex is Decision and the vertex has three
or more outgoing edges.

DomainEntity The type of the vertex is an object node such as InputPin ,
OutputPin or ActivityParameterNode.

ParallelEnd The type of the vertex is Join .
ParallelStart The type of the vertex is Fork .
Other The vertex does not match any of the rules above.

events that enable the termination of the activities belonging
to the steps listed in the property InterruptedSteps , if the
associated Condition evaluates to true. Include invokes the
test model associated to the activity specified in the TargetId
property. ParallelEnd joins two or more steps that run
concurrently. Other is a node that has a next step but was
not recognized as one of the other seven types of Sequence.

B. Generating Test Model(s) from AD

We generate a test model by performing a depth first
traversal of the AD that visits all the vertices that are connected
to the root of the AD. For each vertex visited we generate
a corresponding Node in the test model (i.e., an instance
of the metaclass Step or DomainEntity). To determine the
type of Node to be created for a vertex in the AD, we
defined a set of transformation rules that take into account the
type of the Vertex and its connections to other vertices. The
transformation rules are summarized in Table I, with a more
detailed description of each rule provided in the following
paragraphs. In our implementation, to perform the traversal
of the AD, we rely on the C# UML API of Enterprise
Architect [8]. Figure 7 represents the test model created for
the example in Figure 3 using a UML object diagram.

Input . A vertex represents an Input node if it is not an
AD ControlNode (e.g., Fork , Decision , Merge, Join) and
one of the two following cases hold: (1) The vertex has one
output and no input domain entities, which indicates that the
vertex provides a new domain entity to the system. (2) The
vertex has one input and one output domain entity, but they
are different, thus indicating that, after receiving some input
entity, the vertex provides a new domain entity to the system.

Internal . A vertex represents an Internal node if it is not an
AD ControlNode and has one input and one output domain
entity with the same name, which indicates that the vertex
performs some processing on the given domain entity.

Start and StartAndInput . A Start node is created
for every vertex of type InitialNode in an AD. A
StartAndInput node is created for every AcceptEventAction
and AcceptTimeEventAction (e.g., X days passed in Fig-
ure 3), which are the vertices that start flows in an AD
after an event is received or after a given timer expires,
respectively. For both Start and StartAndInput , we add
as preconditions all the local preconditions of the corre-
sponding vertex in the AD and the preconditions of the
parent vertices. For example, the initial activity in Figure 3
does not have any local precondition, but its container, the
Perform a settlement Activity, has the precondition starting
by Pre : SettlementPlatform.allInstances(). . . We associate
this precondition to the Start node, ActivityInitial. In general,
for every created Node , we add the local pre- and postcondi-
tion connected to the corresponding vertices.

DomainEntity , Exit , ParallelStart , ParallelEnd , Include .
These nodes are created when the vertex’s type matches one
of those indicated in the corresponding lines of Table I.

Condition nodes that are generated from vertices of type
Decision . The condition subtype (i.e., BiFlowCondition or
MultiFlowCondition) depends on the number of outgoing
edges; more precisely, a MultiFlowCondition is created if the
number of outgoing edges is greater than two. The Expression
of the Constraint associated to the condition node is based
on the label of the vertex. In the case of BiFlowCondition ,
if the vertex has a name, we use this name as the expression
(Boolean expressions are often written within the diamonds in
ADs). If the vertex does not have a name, we use the label
associated to one of the outgoing edges. For nodes of type
MultiFlowCondition , we rely on the labels appearing on each
outgoing edge (if a label is missing, AGAC reports a warning).

Interrupt . An interrupt is caused by the presence of input
events that enable the evaluation of a condition that may
terminate the execution of the steps. More precisely, in an
AD, an InterruptibleActivityRegion is represented as a dotted
rectangle that surrounds a group of Activity elements, all af-
fected by certain interrupting events (i.e., AcceptEventAction
or AcceptTimeEventAction). Any activity occurring within
the bounds of an Interruptible Activity Region is terminated
when an execution flow originating from an interrupting
event belonging to the region exits from the region through
an InterruptFlow (represented using a zig-zag connector).
This is the case of the Interruptible Activity Region in Fig-
ure 3, which is interrupted when the AcceptTimeEventAction
X days passed is triggered and InterruptFlow reaches the
action Process Instruction Rejection .

Interrupt nodes cannot be directly identified from a spe-
cific set of metaclasses because AcceptEventAction and
AcceptTimeEventAction are used also to model the be-
ginning of normal processing flows. AGAC identifies the
AcceptEventAction or AcceptTimeEventAction vertices that
are connected to an InterruptFlow , itself exiting from an In-
terruptible Activity Region, to determine if a vertex represents
an Interrupt .

6

(Id: 10) Merge1 :
Merge

(Id: 2) Send
settlement

Instruction : Input

(Id: 3) Receive and
Generate

Instruction : Input

(Id: 4) Validate Ins :
Include

(Id: 5) Inx.State ==
Valid

: BiflowCondition

(Id: 6) : ParallelStart (Id: 7) Run Matching
process : Internal

(Id: 1) ActivityInitial :
Start

(Id: 9)
Inx.SettlementDate

starts : Other
(Id: 13) X days

passed: Interrupt

(Id: 11) Settle
Instruction : Internal

(Id: 12) Merge2 :
Merge

(Id: 15) Send
Notification : Input

(Id: 16) Receive
notification : Other

(Id: 17) FlowFinal :
Exit

(Id: 14) Process
Instruction

Rejection : Internal

(Id: 8)
Inx.SettlementDate >

T2S.CurrentDate
: BiflowCondition

Next

Next

Next

Next
Next

Next1

NextNext0

Next

False

Next

Next

Next

True
Next

No

Next

Next

Yes

Fig. 7. Test model for the AD in Figure 3. Nodes’ properties have been hidden to simplify reading. The numbers in brackets (Id:n) show the identifiers
referred to in the paper.

C. Generation of test paths

Test models can be traversed as directed graphs and we use
the term test path to refer to a traversal of the test model. A
path is a sequence [n1 ,n2 , ...nM] of nodes connected by an
edge. A test path p shows the order of actions executed during
a complete execution of the process described by an AD. p is
said to visit node n if n is in p.

In our approach, each test path starts in a Start ,
StartAndInput or Interrupt node and ends in an Exit node.
The types of nodes found in test paths are Steps , while the
types of edges connecting the nodes are the valid relationships
between the Steps, i.e., Next , True , False , or Next i where i
represents a thread i originating from a ParallelStart node.

AGAC uses standard depth- and breadth-first search algo-
rithms [9] to traverse non-concurrent and concurrent nodes, re-
spectively. These algorithms are used by prior works in graph-
based generation of test cases (some example approaches can
be seen in a survey made by Shirole and Kumar [10]).

In AGAC, the breadth-first traversal of the graph G starts
at the ParallelStart node and explores all of the immediately
next nodes at the present depth prior to proceeding with the
nodes at the next depth level. The breadth-first traversal en-
ables the maximization of the number of threads interleavings
by exercising, in sequence, actions that belong to different
threads. This is a common heuristic to find deadlocks or race
conditions that cause null pointer exceptions or assertion vio-
lations [11]. In addition, AGAC enables engineers to specify
the maximum number of times a node belonging to a loop
should be visited. More details about how AGAC traverses
concurrent nodes are available online [7].

AGAC produces four valid test paths for the
test model in Figure 7: p1=[1 , 2 , 3 , 4 , 5 , 6 , 12 ,
7 , 15 , 8 , 16 , 9 , 17 , 10 , 11 , 12 , 15 , 16 , 17] (executed
when Inx .State = Valid and Inx .SettlementDate >
T2S .CurrentDate); p2=[1 , 2 , 3 , 4 , 5 , 6 , 12 , 7 , 15 , 8 , 16 ,
10 , 17 , 11 , 12 , 15 , 16 , 17] (executed when Inx .State =
Valid and ¬(Inx .SettlementDate > T2S .CurrentDate);
p3=[1 , 2 , 3 , 4 , 5 , 14 , 12 , 15 , 16 , 17] (executed when
Inx .State 6= Valid); and p4=[13 , 14 , 12 , 15 , 16 , 17]
(executed after X days passed).

D. Generation of Acceptance Criteria

AGAC generates acceptance criteria (AC) based on a pre-
defined set of templates derived from a study of 841 tests
specifications created by our industry partner for three recent

509

110 104 101 80 24 4 4

Update Create Display Validate Send Read Receive Enable
0

100
200
300
400
500
600

Ax
is

Tit
le

0%
20%
40%
60%
80%
100%

Fig. 8. Distribution of each intent type for the 841 test specifications

and representative projects, involving three distinct testing
teams. In comparison to the AC generated by AGAC, the 841
test specifications written by the testers included many imple-
mentation details and were not derived from any requirement
model. We analyzed and identified the test intents of each
test specification and created a template for each intent type.
We found eight intent types and their distribution is shown in
Figure 8. Update was the most frequent intent, counting for
almost half of the total. We added the Delete, Interrupt
and Disable to the set of intent types because they were
not found in the 841 test cases, but our partners deemed them
necessary, though infrequent.

The bottom rows of Figure 9 show the templates, while the
uppermost rows specify the keywords used in each template.
In the following, we describe the testing activities performed
by every template and provide additional information on how
each of these activities can be automated in the generated test
cases.
Create verifies that an entry (i.e., an instance of a domain

entity) does not exist before the execution of the action and
that the entry is created after the execution of the action.
Delete verifies that a certain entry existed in the system
before the execution of the action but no longer exists after
its execution. Send verifies that a certain entry exists in the
system before the execution of the action and has been sent
after its execution. Receive verifies that (1) an entry does
not exist in the system before the execution of the action, (2)
the entry has been received, and (3) the entry exists after the
execution of the action. Read verifies that an entry exists in
the system and the actor reads it (usually after a request for
retrieving, searching or visualizing data). Update verifies that
an entry exists in the system, that the actor reads it, and that
certain properties (i.e., the postcondition in the test model)
hold after the execution of the action. Interrupt verifies
that an action belonging to the interruptible set of actions is
running on the system and then, after the interrupting action is
executed (i.e., a given clock has been triggered or an event has
been received), all the actions belonging to the interruptible
set of actions have been terminated. Validate verifies
that a certain postcondition holds after the execution of an

7

@Intent: Enable # This tag can also be “@Intent: DISABLE”
SCENARIO_NAME Given EXISTS # Exists is used for DISABLE and ENABLE
(And FREE_EXPR) * # Previous conditions and local preconditions
WHEN Then <domainEntity> is enabled in the <actor> UI # Or “is disabled”

N_EXISTS

CREATE

Scenario: <action>

DELETE

FEATURE_NAME

WHEN When <actor> <action>,

READ

INTERRUPT

Feature : <Activity>

VALIDATE

Background :
 Given <FREE_EXPR> # First Activity precondition
 (And FREE_EXPR)* # Zero or more preconditions from the Activity

PROP_EXPR

PROP_EXPR | EXISTS | N_EXISTS | FREE_EXPR

SCENARIO_BLOCK
(a.k.a, AC_RULE)

FREE_EXPR

Acceptance_
Criterion_File

@Intent: Validate # Tag
SCENARIO_NAME ((Given FREE_EXPR)
(And FREE_EXPR) *)? # Previous conditions and local preconditions
WHEN Then FREE_EXPR (And FREE_EXPR) * # Post. related to validate

FEATURE_NAME # The AD name.
BACKGROUND ? # Common preconditions
SCENARIO_BLOCK + # One or more scenario blocks

BACKGROUND

<domainEntity> (of type <class1>)? does not exist in <actor> (of type <class2>)?

@Intent: Interrupt # Tag
SCENARIO_NAME Given <action> is running in <actor># First interruptible step
(And <action> is running in <actor>) * # Other interruptible steps
(And FREE_EXPR) * # Previous conditions and local preconditions
(And PROP_EXPR) *
When the event “<event>” happens in <actor>,
Then <action> is interrupted in <actor> # First step to be interrupted
(And <action> is interrupted in <actor>) * # Other steps to be interrupted

UPDATE

@Intent: Receive # Tag
SCENARIO_NAME Given N_EXISTS
(And FREE_EXPR) * # Previous conditions and local preconditions
(And PROP_EXPR) *
WHEN Then <domainEntity> was received and exists in <actor>

(CREATE | READ | UPDATE | DELETE |SEND | RECEIVE |
ENABLE | DISABLE | DISPLAY | NOTDISPLAY | INTERRUPT)
 (And FREE_EXPR)* # Zero or more extra local-postconditions

@Intent: Display # This tag can also be “@Intent: Not Display”
SCENARIO_NAME # There is no Given template for Display and Not Display
(Given FREE_EXPR) * # Previous conditions and local preconditions
WHEN Then <domainEntity> is displayed in the <actor> UI # Or “is not displayed”

@Intent: Read # Tag
SCENARIO_NAME Given EXISTS
(And FREE_EXPR) * # Previous conditions and local preconditions
WHEN Then <actor> reads <domainEntity>

TEXT # Any text that expresses a constraint

<domainEntity> (of type <class1>)? exist in <actor> (of type <class2>)?

EXPRESSION

EXISTS

SCENARIO_NAME

DISPLAY /
NOT DISPLAY

@Intent: Delete # Tag
SCENARIO_NAME Given EXISTS
(And FREE_EXPR) * # Previous conditions and local preconditions
WHEN Then <domainEntity> does not exists in <actor>

@Intent: Update # Tag
SCENARIO_NAME Given EXISTS
(And FREE_EXPR) * # Previous conditions and local preconditions
(And PROP_EXPR) + # The properties that will be updated
WHEN Then <actor> reads <domainEntity> from <actor>
(And PROP_EXPR) + # The updated properties

SEND

@Intent: Send # Tag
SCENARIO_NAME Given EXISTS
(And FREE_EXPR) * # Previous conditions and local preconditions
(And PROP_EXPR) *
WHEN Then <actor> sent <domainEntity>

the property <property> of <domainEntity> is <operator> <value>

ENABLE /
DISABLE

@Intent: Create # Tag
SCENARIO_NAME Given N_EXISTS
(And FREE_EXPR) * # Previous conditions and local preconditions
WHEN Then EXISTS
(And PROP_EXPR) * # Optionally, the initialised properties

RECEIVE

Fig. 9. Templates based on acceptance criteria types

action. Display (Not Display) verifies that a certain
entry is displayed (not displayed) on the user interface after
the execution of an action. Enable (Disable) verifies
that, upon the execution of an action, a given user-interface
widget (e.g., a button or a text box) becomes enabled /
modifiable (alternatively, disabled / unmodifiable). From these
short descriptions, we can see that these AC types are likely
to generalize to many other information systems.

In AGAC, each valid test path produces one AC. Nodes in
the test path will produce “Given-When-Then” structures (i.e.,
Gherkin scenarios). Guard expressions of the edges between
the nodes will produce preconditions that will complement the
local preconditions of the node.

A template is instantiated by replacing the parameters of
the template with the corresponding properties extracted from
the test model node. The selection of the template depends
on the stereotypes applied to the vertex associated to a
node (see Section III-B). AGAC can automatically assign a

stereotype to most of the nodes. Input and StartAndInput
nodes are assigned the stereotype Create because they are
expected to introduce new data into the system. Internal
nodes are assigned the stereotype Update since they modify
the system state. Start and Exit nodes are not assigned any
stereotype because the former leads to the instantiation of the
Background template while the latter leads to the verification
of the AD’s postconditions. The cases where a stereotype
(e.g., Display, Not Display, Enable and Disable) needs to
be specified manually are for the nodes classified as Other .
The AC generated for the test model shown in Figure 7 are
available online [7].

VI. EVALUATION

We have performed an empirical evaluation of AGAC aimed
at addressing the following research questions:
RQ1. Is AGAC feasible to apply in a real setting? We
elaborate this question into two sub-questions: RQ1.1. Can
practitioners conveniently model all the requirements using our
methodology? RQ1.2. Can our automated algorithms analyze
the resulting requirements models and generate appropriate
test specifications in the Gherkin language?
RQ2. Is the additional effort associated with using AGAC
justified by its benefits?

A. Object of the study
We perform our evaluation in the context of an industrial

case study. The object of the study is an online banking system
being developed by our collaborating partner. This system
provides a suite of investment fund services with a single
point of entry and a standardized procedure for transactions
related to more than 190K investment funds around the world.
The system is representative of the large majority of the IT
systems developed by our partner. A team of four analysts
(three senior and one junior) at the partner followed our
proposed methodology to build a complete set of functional
requirements models for the system. The team had already
been trained in the methodology prior to modeling using
model examples such as the one shown in Figure 3. The
training took about 1 hour and was focused mostly on how
to model object flows in ADs. The researchers were not
involved in model construction, supporting the practitioners
only by answering their questions about the methodology and
reviewing the models to ensure the methodology had been
followed correctly. The resulting models are composed of: (i)
a domain model with 176 elements, an element being a class,
enumeration, property, association or generalization, (ii) 14
activities, each of which is elaborated using an individual AD.
Collectively, the 14 ADs contain 434 elements, an element
being an activity parameter, action, stereotype, pin, object,
decision/synchronization/merge node, partition or interruptible
region.
B. Methods and results

RQ1.1. The practitioners were able to successfully apply the
methodology for modeling the requirements of the system in
our study. All the team members participated in the modeling

8

of the 14 ADs. While two members focused on creating
the models, the others discussed and suggested changes. The
modeling activities were completed within the time budget
they had set aside for the task (over one month, 2 hours per
week).

Based on the feedback we received from the practitioners
and our own review of the models, no major issues were found
that would impede the adoption of the methodology. Neverthe-
less, we note that turning AC into executable test cases may
require formal constraints, which can be automatically derived
from textual representations using dedicated natural language
processing solutions [12].

RQ1.2. We applied the AC generation process of Sec-
tion V-D to the 14 ADs in our case study. Our algorithm
successfully handled all the models and generated a total of
137 AC. The minimum and maximum number of Gherkin
scenarios per acceptance criterion is 1 and 13, respectively.
In total, the 137 AC include 990 Gherkin scenarios, yield-
ing an average of 7 scenarios per acceptance criterion. The
AC generation process further confirmed the effectiveness
of our strategy for the automated identification of intents.
Specifically, out of the 990 Gherkin scenarios, 977 were
derived from intents that were identified automatically. The
execution time of AC generation was negligible: all the 137
AC were generated in 25 seconds on a computer with an
Intel i7 CPU and 4GB of memory.

We verified the quality of the 137 AC by randomly selecting
14 (10%) of them to be validated with the experts in our
case study. The experts confirmed that all the AC were
understandable and correct. By correctness, we mean that the
tool accurately inferred the intents types of all the actions in
the AC, all the expected scenarios were covered, and all the
pre- and post-conditions were translated from the models to
the Given and Then blocks of individual Gherkin scenarios.

RQ2. Our proposed methodology requires information that
is additional to what our partner’s current modeling practice
would capture. It is thus important to examine whether the
benefits that our approach brings outweigh the modeling
overhead. We argue about the benefits of our approach in-
directly by measuring the number of additional elements that
our methodology requires. Upon investigating our case study
models, we determined that out of the total of 610 elements in
these diagrams, 461 (76%) can be traced back to the existing
modeling practice at the partner. Only 149 model elements
(24%) are imposed by our methodology.

In return for the extra modeling effort, and noting that the
overall effort is still within an acceptable range (see RQ1.1),
our approach provides three key benefits. First, it eliminates
the need to specify and revise AC manually. This is particularly
important in an agile setting, where requirements change
frequently. While we do not have a detailed effort breakdown
for the different requirements analysis tasks performed by our
partner, the experts in our study estimated that as much as
50% of the entire requirements analysis effort in any given
project would go to creating and updating the AC. Considering
that the generated AC include 990 Gherkin scenarios, they

found automated AC generation to present a major cost
advantage. A second important benefit of our approach is
that the AC are now produced systematically, thus decreasing
the likelihood that critical system-level scenarios would be
overlooked. A final benefit of our approach has to do with
making the models more precise. Doing so not only helps
increase the understandability of the models but also increases
automation opportunities for other challenging tasks such as
change impact analysis and regression testing. Although user
studies are required, our case study results strongly suggest
that the benefits of our approach justify its modeling overhead.

We also probed the opinion of practitioners regarding the
AGAC tool support. One main factor facilitating the adoption
of the tool was its tight integration with a modeling environ-
ment that is familiar to them (i.e., Enterprise Architect [8]).

The future of AGAC is promising within the industry
partner organization. There are groups related to DevOps and
functional analysis that are interested in AGAC. Also, there is
already a support service provider that will provide long-term
technical support for AGAC, thus making the adoption and
evolution of AGAC possible on the long term in the production
environment.

C. Threats to validity

Internal validity. Internal validity concerns how well an
empirical study is performed, particularly in terms of avoiding
confounding factors. The main confounding factor to mitigate
in our case study is the influence of the researchers on the
modeling activities. Due to our proposed methodology being
new to the collaborating partner, we inevitably had to mentor
the practitioners to ensure that the models were built correctly.
Nevertheless, our level of involvement was not more than
what one would expect from an expert consultant. All the
modeling activities were led by the practitioners, with the
researchers’ role being limited to question answering and
providing comments on the models built. Assuming that the
practitioners are adequately trained, we do not believe that
the researchers’ involvement in the case study influenced the
empirical observations.

External validity. External validity concerns the general-
izability of our results. Although our empirical evaluation
is based on a single case study, the system in this case
study is representative of a broader class of business-critical
systems, namely banking and securities systems providing
services through the Web. We thus anticipate that the observed
results will generalize to other systems of the same nature.
Additional case studies involving other types of systems
that are commonly modeled by means of ADs, e.g., public
administration services, are nevertheless necessary to improve
external validity.

VII. LESSONS LEARNED

The application of AGAC on pilot projects led to a number
of lessons learned that are summarized below.

AC are a strong motivator for building better models.
Developers may question the cost of applying a systematic

9

modeling methodology. The ability to automatically generate
AC serves as a compelling motivation for building better
models, due to the immediate cost reductions brought about
by AC automation. The resulting models, in addition to
supporting AC generation, have additional benefits such as:
traceability between requirements and test cases, improved
understandability and better maintainability.

Using a template format for AC is beneficial. Our partners
did not use predefined templates and this led to vagueness and
ambiguity. Experts saw the use of our Gherkin templates as
a good strategy for mitigating the plethora of potential issues
that can arise when unrestricted natural language is used for
writing test specifications. Furthermore, the templates provide
a direct path to executable test cases via the extended facilities
and infrastructure around Gherkin (e.g., Cucumber [2]).

AC provide a feedback loop for detecting incompleteness
in models and incrementally improving the models. Prac-
titioners can quickly generate AC and review them to verify
that all the information is complete in the AC. If there is any
incomplete information (e.g., the Actor name is missing in a
When block in Gherkin), the practitioners can complete their
requirements models and regenerate the AC. This cycle of gen-
erating AC, reviewing the results, and addressing inaccuracies
in models, enables incremental improvement.

Analysts and testers unlikely generate system-level AC
systematically. Generating system-level AC involves system-
atically exercising different model paths while trying to max-
imize certain properties such as interleaving, coverage, etc.
This activity is cognitively very difficult for humans due to
the very large number of possible paths. Going from ad-hoc to
systematic system-level AC necessarily involves automation.
Our approach provides a direct solution to this problem.

Engineers need a dedicated language for constraints.
We observed that the practitioners in our case study were not
proficient at specifying formal constraints (e.g., OCL) beyond
those that could be expressed using property/operator values
and simple arithmetic. Since the target language for the AC
is textual, the analysts had the flexibility to specify the more
complex constraints in natural language – what mattered here
was for the constraints to be explicit; the exact representation
does not play a role if the constraints are understandable by
the engineers and at the same time structured enough to be
transformed into precise formulae, e.g., OCL, that can be
verified over the models (e.g., the work of Wang et al. [13]
about OCL constraints generation in use case specifications).

VIII. RELATED WORK

The benefits of automatic generation of test artifacts are
widely acknowledged today [14], [15]. There are two main
types of research proposed for generating test cases from
requirements specifications. The first one relies on models [10]
and the second one on textual descriptions [16]. Model-
based approaches [10], [17] differ in terms of the model
types they process and generate. Approaches targeting UML
activity diagrams aim at identifying sequences of actions that
satisfy certain properties, such as guaranteeing some form of

structural coverage [18], [19] or exercising concurrent behav-
iors [20], [21]. Approaches that generate test cases directly
from textual descriptions [16], [22]–[25] seek to minimize the
use of models, by relying mostly on requirements specifica-
tions in natural language. For example, UMTG [22] generates
executable system test cases from use case specifications
and a domain model. These approaches cannot be adopted
in contexts where requirements capture the characteristics of
business processes and are represented using ADs.

In general, the main factors that distinguish different ap-
proaches to requirements-driven test generation are (1) the
form and content of the requirements specifications, and
(2) the target representation for the tests. In the case of AGAC,
the former is tailored to complex processes expressed as ADs,
and the latter is targeting a well-known agile methodology
(BDD) and the Gherkin language. While our work is grounded
in the financial domain, we note that BDD is a common
practice in many sectors, and that the AC types we have
identified are expected to generalize to many other domains.

Furthermore, AGAC provides a modeling methodology
aimed at ensuring that the requirements specifications contain
the information both required by analysts and for generating
AC. Finally, the approach takes advantage of lightweight
natural language processing (i.e., generation of stereotypes
based on action names) in order to simplify modeling activities
and reduce their associated costs.

IX. CONCLUSIONS

In this paper, we bridge the gap between requirements mod-
els and acceptance criteria (AC) in the context of agile devel-
opment and more specifically, Behavior-Driven Development
(BDD). We provide a UML-based modeling methodology and
an automated solution to generate AC in the form of sequences
of Gherkin scenarios, Gherkin being a common language in
the context of BDD. The resulting AC can subsequently be
used for generating executable test scenarios.

Our modeling methodology augments traditional modeling
practices with the possibility to specify the testable intents of
the activities in UML activity diagrams (ADs). The methodol-
ogy further comes equipped with an algorithm to automatically
derive the intents in most of the cases. Given a set of
models built according to our methodology, our approach then
automatically identifies test paths in the ADs and, relying
on a set of templates derived from a study of more than
800 test specifications in the financial domain, automatically
transforms the paths into AC represented in the Gherkin
language.

Our empirical evaluation, which was conducted by means
of an industrial case study in the financial domain, provides
initial but strong evidence of the feasibility and benefits of our
approach.

ACKNOWLEDGMENT

We acknowledge funding from Clearstream, FNR Luxembourg
(grant BRIDGES18/IS/13234469/IMoReF), and the European Re-
search Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 694277).

10

REFERENCES

[1] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

[2] M. Wynne and A. Hellesoy, The Cucumber Book: Behaviour-Driven
Development for Testers and Developers. Pragmatic Bookshelf, 2017.

[3] OMG, “OMG unified modeling language (OMG UML). version 2.5,”
Object Management Group, Inc. http://www.omg.org/spec/UML/2.5/,
Tech. Rep. formal/2015-03-01, 2015. [Online]. Available:
http://www.omg.org/spec/UML/2.5/

[4] Clearstream, “Clearstream services SA,” https://www.clearstream.com.
[5] ECB, “Target2-Securities. User detailed func-

tional specifications. v3.0,” European Central Bank,
https://www.ecb.europa.eu/paym/t2s/html/index.en.html, Tech. Rep.,
March 2018.

[6] C. Larman, Applying UML and Patterns:An Introduction to Object-
Oriented Analysis and Design and the Unified Process. Prentice Hall
Professional, 2002.

[7] M. Alferez, F. Pastore, M. Sabetzadeh, L. C. Briand, and J.-
R. Riccardi, “Bridging the gap between requirements model-
ing and behavior-driven development, supplementary materials,”
http://hdl.handle.net/10993/39710, 2019.

[8] SPARX, “Enterprise architect,” https://sparxsystems.com/products/ea/.
[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 3rd Edition. MIT Press, 2009.
[10] M. Shirole and R. Kumar, “UML behavioral model based test

case generation: a survey,” ACM SIGSOFT Software Engineering
Notes, vol. 38, no. 4, pp. 1–13, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2492248.2492274

[11] A. Groce and W. Visser, “Heuristic model checking for java programs,”
in SPIN, ser. Lecture Notes in Computer Science, vol. 2318. Springer,
2002, pp. 242–245.

[12] C. Wang, F. Pastore, and L. Briand, “Automated generation of constraints
from use case specifications to support system testing,” in 2018 IEEE
11th International Conference on Software Testing, Verification and
Validation (ICST), April 2018, pp. 23–33.

[13] C. Wang, F. Pastore, and L. C. Briand, “Automated generation of
constraints from use case specifications to support system testing,” in
ICST. IEEE Computer Society, 2018, pp. 23–33.

[14] A. Orso and G. Rothermel, “Software testing: A research travelogue
(2000–2014),” in Proceedings of the on Future of Software Engineering,
ser. FOSE 2014. New York, NY, USA: ACM, 2014, pp. 117–132.

[15] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. Mcminn, “An
orchestrated survey of methodologies for automated software test case
generation,” J. Syst. Softw., vol. 86, no. 8, pp. 1978–2001, Aug. 2013.

[16] M. J. E. Cuaresma, J. J. Gutiérrez, M. Mejı́as, G. Aragón, I. M.
Ramos, J. T. Valderrama, and F. J. D. Mayo, “An overview on
test generation from functional requirements,” Journal of Systems and
Software, vol. 84, no. 8, pp. 1379–1393, 2011. [Online]. Available:
https://doi.org/10.1016/j.jss.2011.03.051

[17] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos,
“A survey on model-based testing approaches: A systematic review,”
in Proceedings of the 1st ACM International Workshop on Empirical
Assessment of Software Engineering Languages and Technologies: Held
in Conjunction with the 22Nd IEEE/ACM International Conference on
Automated Software Engineering (ASE) 2007, ser. WEASELTech ’07.
New York, NY, USA: ACM, 2007, pp. 31–36.

[18] A. Nayak and D. Samanta, “Synthesis of test scenarios using UML
activity diagrams,” Software and System Modeling, vol. 10, no. 1, pp.
63–89, 2011. [Online]. Available: https://doi.org/10.1007/s10270-009-
0133-4

[19] D. Kundu, M. Sarma, and D. Samanta, “A uml model-based approach
to detect infeasible paths,” J. Syst. Softw., vol. 107, no. C, pp. 71–92,
Sep. 2015.

[20] C. Sun, Y. Zhao, L. Pan, X. He, and D. Towey, “A transformation-based
approach to testing concurrent programs using UML activity diagrams,”
Softw., Pract. Exper., vol. 46, no. 4, pp. 551–576, 2016. [Online].
Available: https://doi.org/10.1002/spe.2324

[21] V. Arora, R. Bhatia, and M. Singh, “Synthesizing test scenarios in
uml activity diagram using a bio-inspired approach,” Comput. Lang.
Syst. Struct., vol. 50, no. C, pp. 1–19, Dec. 2017. [Online]. Available:
https://doi.org/10.1016/j.cl.2017.05.002

[22] C. Wang, F. Pastore, A. Goknil, L. C. Briand, and M. Z. Z.
Iqbal, “Automatic generation of system test cases from use case
specifications,” in Proceedings of the 2015 International Symposium
on Software Testing and Analysis, ISSTA 2015, Baltimore, MD,
USA, July 12-17, 2015, 2015, pp. 385–396. [Online]. Available:
http://doi.acm.org/10.1145/2771783.2771812

[23] G. Carvalho, D. Falcão, F. Barros, A. Sampaio, A. Mota, L. Motta, and
M. Blackburn, “NAT2TEST SCR: Test case generation from natural lan-
guage requirements based on SCR specifications,” Science of Computer
Programming, vol. 95, no. P3, pp. 275–297, Dec. 2014.

[24] T. Yue, S. Ali, and M. Zhang, “Rtcm: A natural language based,
automated, and practical test case generation framework,” in Proceedings
of International Symposium on Software Testing and Analysis, ser.
ISSTA 2015. New York, NY, USA: ACM, 2015, pp. 397–408.

[25] E. Sarmiento, J. C. Leite, E. Almentero, and G. S. Alzamora, “Test
scenario generation from natural language requirements descriptions
based on petri-nets,” Electronic Notes in Theoretical Computer Science,
vol. 329, pp. 123 – 148, 2016.

11

