
Assessing the Usefulness of a Visual Programming
IDE for Large-Scale Automation Software

Bianca Wiesmayr∗, Alois Zoitl∗†, Member, IEEE, Rick Rabiser∗†
†CDL VaSiCS, ∗LIT CPS Lab, Johannes Kepler University Linz, Austria

{bianca.wiesmayr, alois.zoitl, rick.rabiser}@jku.at

Abstract—Industrial control applications are usually designed
by domain experts instead of software engineers. These experts
frequently use visual programming languages based on standards
such as IEC 61131-3 and IEC 61499. The standards apply model-
based engineering concepts to abstract from hardware and low-
level communication. Developing industrial control software is
challenging due the fact that such systems are usually one-
of-a-kind systems that have to be maintained for many years.
These challenges, together with the growing complexity of control
software, require very usable model-based development envi-
ronments for visual programming languages. However, so far
only little empirical research exists on the practical usefulness
of such environments, i.e., their usability and utility. In this
paper, we discuss common control software maintenance tasks
and tool capabilities based on existing research and show the
realization of these capabilities in 4diac IDE. We first performed a
walkthrough of the demonstrated capabilities using the cognitive
dimensions of notations framework from the field of human-
computer interaction. We then improved the tool and conducted
a user study involving ten industrial automation engineers, who
used 4diac IDE in a realistic control software maintenance
scenario. Our findings demonstrate how the usefulness of IDEs
can be successfully investigated using a multi-phase approach
that includes a walkthrough and a user study. We discuss lessons
learned and derive general implications with respect to large-scale
applications for developers of IDEs that we deem applicable in
the context of (visual) model-based engineering tools.

Index Terms—Usefulness study, Open source software,
IEC 61499, Modeling tools, Model-driven engineering

I. INTRODUCTION

Visual programming languages can improve the commu-
nication and collaboration between software developers. In
comparison to textual languages, visual representations can
stimulate more active discussions and improve the mem-
orability of design details [1]. Additionally, the subjective
satisfaction of developers can be higher for visual notations,
as Meliá et al. [2] showed in their study in which students
performed maintenance tasks on software models in both a
textual and a visual notation. The measured efficiency and
effectiveness of the performed tasks were, however, reduced
in the visual model.

Several visual languages are well-established in their re-
spective domains. LabView [3] is a language targeted at
data acquisition and manipulation. Simulink [4] is a block-
based language that is used for control engineering. Domain-
specific languages (DSLs) for control software in automated
production systems are defined in industrial standards and are
the focus of our work. IEC 61131-3 standardizes three visual

languages: (1) Ladder Diagram resembles electrical plans,
(2) Sequential Function Chart (SFC) is a state diagram, and in
a (3) Function Block (FB) Diagram, blocks are connected via
data signals [5]. An event-triggered Function Block Diagram is
defined in IEC 61499 [6]. Algorithms in textual language can
be integrated in these models. Control software is developed
based on industrial standards (i.e., ISO/IEC) because of the
long life cycles of production plants [7]. These languages are
targeted at automation engineers, not software engineers, and
abstract the control logic from hardware and low-level com-
munication. As requirements for control software are derived
from electrical and mechanical plans, the DSLs are optimized
for matching the mental model of automation engineers.

Several challenges arise when developing industrial control
software: automated production systems are produced as one-
of-a-kind and are tailored to the needs of a customer. Hence,
reusing control software is challenging and requires extensive
support for managing variability [8]. Furthermore, the life
cycles of the physical equipment by far exceed those of the
software: control software has to be evolved over decades [9].
The requirements for modern automated production systems
lead to growing complexity of control software: an increasing
number of interacting (cyber-)physical components, complex
communication between components, and unwanted physical
effects that become more relevant due to the high accuracy
that is required [10]. Regarding the usability of tools, it has to
be considered that automation engineers tend to have a strong
background in electrical and mechanical engineering, but not
in software engineering [9]. As the control application is
typically finalized only at the factory or plant during commis-
sioning of the machine, further user groups are involved [9].

IDEs for block-based software have been evaluated mostly
with a focus on creating new software, but not on software
maintenance. Only little empirical research exists regarding
their usefulness in practical environments and for industrial
users. Usefulness regards a tool’s utility, i.e., to what degree
its functionality allows users to do what is needed, and its
usability, i.e., how well users can exploit the offered func-
tionality [11], [12]. Assessing usefulness requires qualitatively
studying users and their behavior [13]. A study covering
programming editors that support Scratch and related lan-
guages revealed usability flaws that are relevant for any visual
language, but was conducted only with students of a single
discipline [14]. Several studies evaluated the programming
languages that are relevant for industrial automation. In a



multi-modal usability study of the IEC 61499-IDE Eclipse
4diac, various editors and views were evaluated from the
perspective of a broad user group. However, this study did not
cover the handling of large-scale applications [15]. Obermeier
et al. [16] have compared a Function Block Diagram to
a modeling approach utilizing simplified variants of UML
diagrams. Their study focused on new applications and was
performed with a large group of participants consisting of
both students and industrial practitioners. The visual language
SFC was compared to the UML Activity Diagrams and State
Charts in [17] with a focus on process technology, showing
that Activity Diagrams are best suited for designing flexible
and modular sequences. The study evaluated the languages
based on the cognitive effectiveness, but does not include
experimental results. We therefore conclude that existing user
studies do not evaluate the usability of handling large-scale
automation software in a realistic maintenance scenario.

Empirical studies can increase the acceptance of tools in
industry, as they help engineers to select and adapt tool
capabilities that are relevant for their application context [18].
Following this goal, this paper provides the following contri-
butions: (i) we discuss common control software maintenance
tasks and tool capabilities based on existing research. (ii) We
show the realization of these capabilities in 4diac IDE [19] and
assess them in a walkthrough using the Cognitive Dimensions
of Notations (CD) Framework [20]. (iii) Based on the findings
of this assessment, we conducted a usefulness study involving
industrial automation engineers, who used 4diac IDE in a re-
alistic control software maintenance scenario. (iv) We discuss
lessons learned and derive general implications for developers
of IDEs for visual languages.

II. BACKGROUND

We first briefly describe common scenarios for developing
and maintaining control software. We further describe existing
IDEs for control software that support these tasks.

A. Control software development and maintenance tasks

During the development of production systems, even in late
stages such as commissioning, frequent adaptations of the
software are required to address changing requirements [21].
In addition to creating new software, maintenance of existing
software is highly relevant, particularly in automation engi-
neering. Industrial production plants have life cycles of several
decades. During this time, the software is typically updated
more frequently than the hardware, roughly every six to twelve
months [9], to allow adaptations of the production process
when additional products are manufactured and to benefit from
technological advances [21].

Common tasks for control software maintenance have been
discussed in the literature. For instance, typical programming
tasks for machine and plant automation were identified by
Obermeier et al. [22] to form a basis for usability studies in
the domain. The authors suggest an adequate task complexity
to limit the number of programming errors, while still receiv-
ing sufficient feedback. The resulting task descriptions cover

requirements elicitation, identifying interfaces to the environ-
ment, and implementing the actual system functionality. Tasks
for evolving automation software were discussed by Legat et
al. [23]. Relevant scenarios include adding new components
that operate in parallel to increase the capacity, adding new
variants of supply material, introducing redundancy to im-
prove reliability, or replacing mechanical submodules. Another
typical workflow involves reusing legacy control software.
First, code fragments that are suitable for reuse are identified.
Adaptions are typically needed to ensure that the code is
sufficiently abstract and can be parameterized if variability
has to be considered. Finally, the code fragment is stored in a
library for reuse [24].

B. IDEs for control software

IEC 61499 is a domain-specific modeling language (DSML)
and well-suited to support developers and maintainers in
the tasks described in the previous section. Several actively
maintained IDEs support IEC 61499-models [25], [26]:

• NxT Technology IDE from nxtControl GmbH [27]
• ISaGRAF Workbench from Rockwell Automation [28]
• FBDK from Holobloc Inc. [29]
• 4diac IDE, an open source project that is hosted by the

Eclipse foundation [19]
The offered assistance during development and maintenance
varies among these tools. Furthermore, some tools extend
the language: for instance, NxT Technology IDE [27] sup-
ports comment areas and special automation components
that include support for human-machine-interaction (HMI).
4diac IDE [19] supports aggregating FB instances without
affecting the library, which is recommended for large-scale
applications [30]. We use 4diac IDE as a tool environment for
our study, as it is based on widely applied Eclipse technologies
for creating DSML editors. Some usability flaws we identify,
which are related to the underlying Eclipse platform, may thus
also affect other modeling tools that are based on it. As it is
available as an open source project, we can extend 4diac IDE
with plug-ins and provide bug fixes.

III. RESEARCH APPROACH

Our study investigated two research questions on the use-
fulness of control software development tools’ capabilities as
implemented in the tool 4diac IDE:

RQ1 What is the usability of the tool capabilities for
maintaining an unknown and complex software?

RQ2 What is the utility of the tool capabilities for main-
taining an unknown and complex software?

For that we assumed the following maintenance of (legacy)
control software setting: maintenance work is required in an
existing plant. The motor of one conveyor belt is broken and
needs to be replaced. As the installed model is no longer
available, a newer version of the motor has to be installed.
Therefore, adaptations to the control software are required.
We designed the maintenance tasks based on the identified
scenarios (cf. Section II-A) to reflect realistic practical settings.



Regarding RQ1, we assessed the tool capabilities imple-
mented in 4diac IDE from the perspective of industrial end
users, guided by the CD framework and Nielsen’s usability di-
mensions [12]. Regarding RQ2, we investigated whether users
can successfully perform maintenance tasks using 4diac IDE
and how they perceive the usability of the tool. We also
collected the perceived opportunities and risks [31] of using
4diac IDE in practice.

1) Preparation and Initial Assessment: We first analyzed
existing tools and the literature to distill common tasks and
tool capabilities for end users in typical control software
maintenance scenarios. We also discussed how the capabilities
are realized in 4diac IDE. We then assessed 4diac IDE using
the CD framework [20] to reveal usability flaws that could bias
the study with industrial end users. The CD framework is well
known in the human-computer interaction (HCI) community
and has been used successfully to assess software engineering
tools in the past [14], [18], [32]. It supports evaluating and
characterizing capabilities of interactive artifacts, such as
software tools, and offers a vocabulary for discussing trade-
offs based on a set of basic user activities and cognitive
dimensions. Specifically, we performed a walkthrough of
4diac IDE based on typical control software maintenance
tasks and tool capabilities, to reveal usability issues requiring
tool improvements before the actual study with engineers. We
addressed potential showstoppers by adapting 4diac IDE.

2) Usefulness Study: We first defined the study method
based on our findings from the CD assessment, following
the guidelines for conducting empirical studies described by
Runeson and Höst [33] and Ko et al. [34]. We selected the
study system and subjects (ten industrial automation engineers
of our industry partner). We also defined the experimental
setting, the maintenance tasks to be conducted by subjects, the
data sources and collection methods, as well as the data anal-
ysis and reporting process (cf. Section VI). Before the actual
study, we conducted pilot experiments with three participants
(two students and an industrial expert), to reveal potential
flaws in the designed tasks or bugs that could influence the
results of the study. All subjects were asked to watch an
introductory video to the tool before the study. The user
study was conducted remotely via Zoom, separately with each
subject. During the study, each subject used 4diac IDE (version
1.14.0 RC1) to maintain an IEC 61499 application (adapted
from [35]). We asked each subject to “think aloud” [11], i.e.,
to describe what they were doing and to express any concerns.
After the working session with the tool, we performed a semi-
structured utility interview [31] and asked the subjects to fill
in a usability questionnaire [12]. We discuss results in relation
to the cognitive dimensions (cf. Section VII).

IV. 4DIAC IDE AND IEC 61499

Eclipse 4diac [19] implements a tool environment for the
visual modeling language that is defined in the industrial
standard IEC 61499 [6] and is targeted at domain experts, i.e.,
automation engineers. In this section, we will first summarize
the basics of the language, and then the tool environment.

A. The domain-specific modeling language IEC 61499

IEC 61499 allows engineers to model a distributed automa-
tion system. The modeling language includes an application
model with the control software, and a system configuration
model that captures the hardware and its network. Fig. 1 shows
the relation between these two models. The application model
is independent of the hardware, which is a key advantage
of IEC 61499 over programming languages that are already
established in the domain. The standard IEC 61499 defines
a set of FB types, which constitute a library with the most
important functionalities. The internal functionality of custom
FB types can be implemented either in a visual or in a textual
language. FB types can be instantiated in the application.

The language is strongly typed, i.e., an event type or data
type is assigned to each pin of an FB. Control software is fur-
thermore developed for repeated execution. All FB instances
in the application were traditionally executed periodically,
independent of external triggers. In contrast, IEC 61499-
models are event-triggered and are executed on demand:
whenever an event arrives at the input pin of an FB instance,
this FB is executed following a run-to-completion semantics.
If necessary, subsequent application parts are triggered by
sending one or more output events. The internal state of an
FB instance persists between executions.

The DSML supports concepts that are known from object-
orientation, including abstract interface definitions, types and
instances, and encapsulation. IEC 61499 has dedicated ele-
ments to structure models hierarchically: subapplications (sub-
apps) for grouping FB instances, and adapters for grouping
interface pins. The interface definition of subapp types is iden-
tical to the one of FB types, but their behavior is exclusively
defined by the encapsulated application part. Any number of
hierarchical levels is possible because subapps may themselves
be composed of instances of both FBs and other subapps.
Unlike FBs, subapps may be distributed across devices.

Application Model

FB 4FB 1 FB 3

FB 2

FB 5

System Model

Device 1 Device 2 Device 3 Device 4 Device 5

Application 1

App. 2 Application 3

Fig. 1. Core models defined in IEC 61499. The software is described in the
block-based application model (top), where each block type (Function Block,
FB) offers and encapsulates a certain functionality. In the application, FB
types are instantiated and wired together to form a network: the FB instances
exchange information via event (red) and data connections (blue). Each FB
has a well-defined interface with input and output pins. For the execution, the
application is distributed across devices from the System model (bottom).



B. Development Environment under Test: 4diac IDE

Eclipse 4diac is an open-source environment for modeling
systems based on IEC 61499 that includes both an IDE and
a runtime environment for executing IEC 61499-applications.
The 4diac IDE is structured into five views (cf. Fig. 2). It
is developed in Java and Xtend as a set of plug-ins for
the Eclipse platform, using technologies that are commonly
applied for editors of DSLs: an EMF metamodel, XText
parsers, and the graphical editing framework (GEF3) [36]. The
runtime is programmed in C++ and can be executed on various
devices, from low-cost platforms, such as Raspberry Pi, to
industrially relevant Programmable Logic Controllers (PLCs)
and industrial PCs. The runtime thus introduces an abstraction
layer between the application model and the hardware.

Industrial automation engineers can particularly benefit
from advanced IDE capabilities when working with large-scale
applications. The tool needs to provide high performance for
navigating through applications with thousands of instances.
Furthermore, information has to be well accessible, so that
information about the environment of a component can be dis-
covered and inconsistencies detected easily. The variability of
production plants furthermore results in high requirements and
challenges for reusing application parts. Vendor-neutral solu-
tions are thus preferable to fully benefit from the hardware-
neutral design of applications in IEC 61499.

C. Assessed tool capabilities

The goal of this study is to evaluate the usability and
utility of tool functionality for large-scale applications. Typical
tasks of industrial developers are outlined in Section II-A.
Developing new FB types is outside the scope of our study,
which focuses on editing (maintaining) existing application
models using a pre-defined library of FB types. Based on
our analysis, we choose the following tasks for our user
study. We created a video for demonstrating these tasks in
4diac IDE [37].

1) Orienting in an unknown application: Industrial automa-
tion engineers frequently have to perform maintenance tasks
directly on-site at the machine. In this situation, the engineer
has to quickly navigate through a partly unknown control
application. In our study, we therefore ask subjects to (i) find
the motor that will be replaced, (ii) find out whether there
are other motors in the application, and (iii) follow an event
connection to identify which application part is triggered next.

2) Creating/Removing hierarchies: Following a workflow
for reusing legacy software [24], subjects group existing
control code in a subapp and name it with a valid IEC 61499
identifier. They remove a needless grouping and adjust the
scope of their subapp.

3) Working with the library: Subjects save their subapp
(from task 2) to the library for later reuse. They add template
code for the new motor to the library from outside the tool.
Subjects then replace their subapp with an instance of this new
type, while keeping the connections intact.

4) Editing: Subjects now detype their motor subapp and
perform edits. In this task, we analyze general editing features,
i.e., extending the interface, adding new FB instances of
existing types from the library, as well as editing and adding
connections.

V. COGNITIVE ASSESSMENT OF 4DIAC IDE

As preparation for the user study, we assessed the ca-
pabilities of 4diac IDE (regarding the four tasks described
above) using the CD framework [20]. The CD framework
differentiates four basic types of user activities: incrementa-
tion, transcription, modification and exploratory design [18].
Maintaining software in an IDE for a visual programming
language is related with exploratory design as it combines
incrementation with modification without knowing the desired
end state in advance: adding new elements (e.g., FB instances,
connections) to the application can be considered an incre-
mentation, as it adds further information without altering the
existing application structure. Adding/removing hierarchies or
layouting an application can be considered a modification.

Each user activity involves usability trade-offs regarding one
or several cognitive dimensions. For example, a high viscosity,
i.e., the resistance to change, is harmful for modification and
exploration activities, but has less impact on the one-off tasks
performed in transcription and incrementation. Fourteen cogni-
tive dimensions were initially defined for the CD framework.
Thirteen of these are relevant for exploratory activities and
thus also in our context, as defined in the CD framework. For
each of the four maintenance tasks described in Section IV-C,
we analyzed how well 4diac IDE addresses the relevant
cognitive dimensions. Some dimensions are relevant for all
activities and thus crosscut our structure. Specifically, our aim
was to reveal potential showstoppers for each task, which
could inhibit the successful completion of the user study.
We tested and analyzed 4diac IDE based on our defined
tasks and the CDs to reveal such errors, but also considered
prior experiences with users. In our discussion below, we
highlight such cases with the keyword FX, indicating that
we fixed and improved 4diac IDE before involving industrial
users. The label OK highlights dimensions that we considered
sufficiently supported according to the CD framework. We
did not focus our user study on these dimensions. All other
paragraphs, highlighted with ST, describe dimensions which
we need to investigate more closely in our user study by
refining our research method accordingly. Table I provides an
overview of the assessed activities, 4diac IDE’s tool support,
relevant cognitive dimensions, and the assessment results. It
also previews whether the user study eventually revealed a
dimension to be well supported (+), well supported but with
potential for improvement (+/−), or not well supported and
the tool needs to be improved (−). Detailed results are reported
in Section VII.

A. Orienting in an unknown application

The System Explorer (cf. Fig. 2) view shows all instance
names of an application as a tree. Each element can be selected



System
Explorer

Outline

Dialogues

Properties
View

Application 
Editor

3)

1)

2)

4)

Fig. 2. Compilation of the main views and editors provided by 4diac IDE for developing IEC 61499-based automation solutions: (1) expanded subapplication
with hover feedback, (2) selection feedback, (3) context menu, and (4) palette for adding FB instances.
The System Explorer on the left lists all projects and their contents. Each project comprises (i) the IEC 61499-system model and (ii) a project library containing
FB types that are either defined in the standard or created by a developer for the project. An overview of the system model is provided as a tree that shows
all applications with their full hierarchy and all instances of FBs, as well as the system configuration with all devices and resources. This tree view allows the
developer to get an overview of the system model but only provides information on the hierarchy between FBs, but not connections between FB instances.
From the System Explorer, users can navigate to the corresponding location in the graphical Application editor. In this editor, the network of FBs is shown,
new instances can be added, and connections can be added or reconnected. Individual items can be modified in the Properties View. When an FB instance
is selected, its settings are shown in several tabs and include the instance name, the descriptions of an instance, and its interface. Information that is defined
by the type is provided as read-only. This includes the type description, version information, and the interface of the FB. The Outline allows navigating and
orienting in large applications as it provides an overview of the full drawing area. Some editing operations, such as creating new types, involve Dialogues.

and opened (via double-click) in the graphical editor. Selected
elements are highlighted and their attributes are shown in the
Properties view. The Outline (cf. Fig. 2) provides an overview
(“minimap”) of the diagram that is opened in the graphical
editor and also allows navigating in the diagram.

1) CD assessment: For orienting in unknown applications,
developers can rely on Secondary Notations that 4diac IDE
provides: instance names, instance comments, as well as type
names and type descriptions indicate the functionality of an FB
type or the role of its instance (OK). FB instances, however,
do not visually represent their behavior and therefore have
a low Role Expressiveness. For example, an FB adding two
numbers could be represented graphically with a mathematical
symbol (ST). Subapps group FB instances logically and in-
crease Abstraction (OK), but reduce the Visibility of application
parts (FX): when application parts are structured into a subapp,
they cannot be viewed in their context anymore. Only the
contents of a single (sub-)application is shown in the graphical
editor. Several graphical editors can, however, be opened in
parallel and arranged freely to compare application parts (Jux-
taposability, OK). In large (sub-)applications, we identified that
a selected FB instance and its connections are difficult to
find, although they are highlighted by a border (Diffuseness,
FX). Finally, the IDE does not provide any navigation along
connections, although developers may need to follow a signal
path across hierarchical levels (Hard Mental Operations, FX).

2) Tool improvements: We enhanced the graphical editor
with additional mechanisms to navigate along dependencies
and between hierarchies. A new feature for expanding a sub-
app (cf. element 1 in Fig. 2) allows viewing its contents as part
of the surrounding FB network and thus increases visibility.
We improved the highlighting of selected FB instances with
a blue overlay, which resembles the highlighting for text. A
transparent overlay is shown already upon hovering over FBs
and pins, thus better visualizing the objects that are available
for user interaction (cf. elements 1 and 2 in Fig. 2).

B. Creating/removing hierarchies

Subapps and adapters group elements to a hierarchical struc-
ture. FB instances that are contained in a subapp communicate
with the external network via a dedicated interface. Developers
can design new subapps either bottom-up with a self-defined
interface, or create them top-down from an existing network
of FBs. For the latter, the tool infers the required interface
from the existing connections. FB instances can be added to
alter the scope of a subapp. If required, 4diac IDE updates the
subapp interface automatically. A subapp can also be flattened,
i.e., deleted and replaced by its contents.

1) CD assessment: Untyped subapps (cf. Section V-C) have
a low Viscosity as they can be easily created from a network
of FBs (OK). As the subapp interface is updated automatically,
also the Error-Proneness is reduced (OK). However, the reverse



operation of moving an FB instance to the parent network is
not supported (Premature Commitment, FX). Adapters group
connections to a single communication link between two
FB instances, which reduces Diffuseness of the application
diagram (OK). However, the limited accessibility of the ab-
stracted pins also reduces Visibility (FX). Compound data
types (“Structs”) could group data connections and increase
Abstraction, but are not supported in 4diac IDE (FX).

2) Tool improvements: We added a feature to move FB
instances from a subapp to the surrounding FB network while
automatically adjusting the SubApp interface. A tabular editor
was developed for creating Structs and we improved the data
type selection. For all Structs and Adapters, we added a link
to the type editor to quickly access the abstracted pins.

C. Working with types

Typed subapps are defined in IEC 61499 and are stored in
the library like FB types. Additionally, 4diac IDE supports
untyped subapps that are used only in a single location. Their
functionality resembles anonymous classes in object-oriented
languages. Users can save an untyped subapps as a type for
later reuse, or detype a typed subapp to perform changes in
a single instance (i.e., convert a typed subapp to an untyped
subapp). They can also replace any instance with another type.

1) CD assessment: Detyping a subapp removes the connec-
tion to its type definition, thus turning it into a clone of the
original type. Editing the type will not affect this instance
anymore, leading to Error Proneness, as users may forget
to also modify the untyped copy (ST). Graphically, untyped
subapps can only be differentiated from typed subapps by
their missing instance name (Role Expressiveness, FX). The
interface of untyped subapps is shown in the Properties view,
but not the one of typed subapps (Consistency, FX). If a pin
names is renamed in a type, connections to this pin in its
instances are lost, resulting in the need for numerous manual
changes (Viscosity, ST). Furthermore, each FB instance has to
be updated individually (Viscosity, FX).

2) Tool improvements: We implemented new features to
automatically update or unmap all types in an editor to reduce
the number of manual operations. FB instances now have an
icon indicating their type. We also redesigned our icons and
added a new icon for typed subapps to better differentiate them
from untyped ones.

D. Editing

The 4diac IDE supports adding FB instances to the Appli-
cation from the System Explorer and from the Palette. Both
views are by default next to the graphical editor (cf. Fig. 2).
Connections can be added via Drag&Drop between pins, if
the data types are compatible.

1) CD assessment: The Viscosity for changing the layout
of an application is very high, as all affected FB instances
and connections have to be adjusted individually (FX). This
high viscosity may increase the Enforced Lookahead, when
developers have to know the target program structure early.
For adding new FB instances, the respective type has to be

selected outside the graphical editor, which may constitute a
Hard Mental Operation (FX). Adding or changing connections
is difficult due to the lack of visual feedback that illustrates
which parts a user can interact with (Visibility, FX).

2) Tool improvements: We created a dedicated in-place
field for searching types and inserting instances directly in the
editor. It can be quickly accessed by double-clicking onto the
diagram background. We added a selection and hover feedback
to connections to improve their handling. Furthermore, we
added support for the Eclipse Layouting Kernel [38] to allow
for automated placement of FB instances and connections.

E. Cross-cutting Aspects

4diac IDE always enforces correct models, which impacts
Provisionality and Premature commitment. We decided to
study these dimensions in more detail in our user study (ST).
To prepare for the study, we identified and fixed several general
issues, especially regarding Consistency (FX). Specifically,
we revised our menu entries to be consistent with those of
the Eclipse platform. Where IEC 61499-specific terms are
introduced (e.g., a System), they are now used consistently
also within dialogues. Considering our graphical editors, we
learned that the framework GEF3 [36] does not handle zoom-
ing nor scrolling correctly. This was a showstopper we had to
fix (FX) for handling large applications.

TABLE I
MAIN RESULTS OF COGNITIVE ASSESSMENT OF 4DIAC IDE

Cognitive Dimension Tool support C.A. User Study
Secondary Notation names, comments OK +/-
Role Expressiveness FB representation ST -
Abstraction subapps, adapters OK -

structs FX +
Visibility abstracted contents FX -
Juxtaposability arrange views OK +
Diffuseness selection, hover FX +

bidirectional link OK +
Hard Mental Operation follow signal FX +/-
Viscosity untyped subapp OK +

type updates ST +/-
Enforced Lookahead automated layout FX +/-
Error Proneness refactoring support OK +
Premature Commitment move blocks, layout FX +/-
Consistency names, icons FX +/-
Provisionality correct models ST +

VI. DESIGN OF THE USER STUDY

Based on four typical maintenance tasks (cf. Section II-A),
the goal of our user study was to cover the key capabilities of
IDEs for visual languages with respect to handling large and
complex applications. We tested the task difficulty ourselves
and in test runs with PhD students from our lab. Furthermore,
we conducted a pilot study with two students from the com-
puter science field, who have never used 4diac IDE before,
and with an industrial expert. Based on their feedback, we
made minor adaptations to the study method, e.g., we reduced
ambiguities by rephrasing text in the instructions given to users
before the study. To increase the participation of industrial
users, our goal was to ensure that subjects could complete
all tasks in less than one hour, while still covering the key



maintenance activities. We also considered the results of our
initial cognitive dimensions marked as ST or FX in Section V.

A. Study System and Subjects

The study was conducted using an example application
that followed a hierarchical design as described in guidelines
from [39]. The application models the functionality of a cap-
ping station, where a robot places a lid (from a feeding station)
on parts (arriving on a conveyor belt). An application for this
mechatronic station has been previously published in [30]. We
extended it to cover three identical parallel stations (referred to
as Left-, Middle-, and RightCappingStation). Furthermore, we
introduced additional hierarchies to better serve the purpose
of the study.

Ten experienced automation engineers were nominated by
our industry partner as subjects in the study. The subjects
had an average of 14 years of experience in control software
development, ranging from 1 year to 30 years. They have
been working for their current employer between 4 and 30
years, on average 13.6 years. All subjects have an educational
background in engineering, eight of them from a college or
a university. One subject served as a pilot subject to ensure
flawless operation of the study and to reveal problems in the
setup. Seven subjects had participated in at least one workshop
on developing control software with IEC 61499 and already
had at least basic knowledge of software development based
on this standard, as well as basic experience using the tool
4diac IDE. Three subjects used 4diac IDE for the first time
during the study. To ensure basic knowledge of the language
IEC 61499 and 4diac IDE, we created a video [40] (7 minutes
long) where we outlined both. The video shows the version of
4diac IDE that was used in the study. We did not explain
the features required in the study in detail to also assess
the discoverability of features in a complex IDE such as
4diac IDE. Using a prerecorded video ensured that all subjects
received the same information prior to the study.

B. Study Process and Data Collection

The study was conducted in a remote setting via a video
conferencing tool (Zoom or Skype). If the subject agreed,
the session was recorded including the screen with all mouse
movements and the audio (recorded 9 sessions). We conducted
the following process separately with each subject.

1) Briefing: The moderator first explained the goals and
purpose of the study to the subject and requested their consent
for participancy in the study. Also, the moderator asked
whether the subject had watched the introduction video and
whether there were any open questions. We asked the subject
to activate the webcam, so that we could observe the subject,
e.g., facial expressions, when performing the tasks. The subject
had to share their screen in the call so that all their actions
could be observed. As a last step, the moderator assisted the
subject in starting 4diac IDE and importing the 4diac IDE
project that contained the study system. The next phase of the
study started as soon as the control application was opened in
the Application editor of 4diac IDE.

2) Tasks: Each subject performed the tasks described in
Section IV-C. We asked each subject to “think aloud” [11],
i.e., to describe what s/he was doing and to comment on
any concerns. One scribe documented the think-aloud state-
ments. Another scribe watched the subject, who performed
the maintenance tasks, and took additional notes on interesting
observations beyond the think-aloud protocol.

3) Data Collection: After the subject had completed all
tasks, the moderator performed semi-structured interviews on
utility and usability with each subject, covering questions
on the results of the cognitive dimensions assessment (cf.
Section V). Regarding usability, we asked questions such as
“How did you like the tool capabilities for restructuring the
application” or “How did you like the possibility to view
the contents of a subapp within its context?”. Finally, the
subject got a link to access a usability questionnaire that was
created with the tool LimeSurvey and hosted on a server of our
university. The questionnaire is based on Nielsen’s usability
attributes [12] and covers the five tool editors and views of
4diac IDE presented in Fig. 2. We phrased the attributes
as questions, e.g., “How easy was it to learn working with
4diac IDE?”. Regarding utility, we asked questions [31] such
as “What opportunities do you see for your company when
using this tool in daily business?”. We also collected demo-
graphic information. The templates that we used for writing
think-aloud and observer protocols, the usability questionnaire,
the list of tasks, as well as the questions of the interview are
available online [41].

C. Data Analysis and Reporting

All think-aloud protocols and observer notes were stored
on a cloud server. Using an open coding technique [13],
one researcher related all statements to the activities and tool
capabilities. This work was checked by two other researchers.
A total of over 900 think-aloud statements and 370 observa-
tions were recorded by the scribes. Per subject, we collected
about 10 pages of material. In a joint session, all authors
assigned the identified statements to the cognitive dimensions.
We could directly relate many think-aloud statements with the
cognitive dimensions discussed in Section V. We discussed
the interpretation of all think-aloud statements and observer
notes as well as the answers given by study subjects in
the interviews to derive implications on usability and utility
(Section VII) and also general implications for tool developers
(Section VIII). As we related interview questions regarding
usability with activities and cognitive dimensions, we can
discuss the subjects’ answers in the light of the CD framework.

VII. STUDY RESULTS AND DISCUSSION

In our discussion, we report results from the ten industrial
experts who participated in the study (including the subject
who served as a pilot). We focus on results related to dimen-
sions that required further analysis according to our cognitive
assessment, i.e., that were marked as ST (we wanted to
investigate these in more detail in the study) or FX (to evaluate
the usefulness of our tool improvements). Quantitative results



of the questionnaire are reported in Table II, qualitative results
are summarized in Table III. For each task, we present detailed
results and relate each aspect to the cognitive dimensions (cf.
Table I).

1) Orienting in an unknown application: All subjects relied
on Secondary Notations to find the application parts that
represent a motor. 2 subjects asked for adapting the concrete
syntax of an FB to graphically represent its functionality
(Role Expressiveness). 6 subjects wanted to use a search
feature for finding an instance by its name (Visibility). After
identifying the subapp type Motor, 5 subjects furthermore
requested a direct link to all instances of a certain type
(Hidden Dependencies). As 4diac IDE does not support an
automated search, subjects had to navigate through the appli-
cation manually, either via the tree view (System Explorer)
or in the Application editor. The implemented shortcuts for
navigation helped subjects to quickly move across hierarchy
levels, yet we observed that a move from one level to another
still poses a Hard Mental Operation. 4 subjects mentioned
that the path to an FB instance is not visible in the editor,
which may have facilitated orienting in the application. 6
subjects specifically reported difficulties in identifying the
current editing location (Hidden Dependency). We could not
observe any major difficulties in selecting FB instances or
pins, unlike the situation in our cognitive assessment. Hence,
the new selection feedback may have decreased Diffuseness.
In 4diac IDE, each hierarchy level is opened in a separate
editor tab, thus affecting Diffuseness. In the interview, we
asked subjects whether they had preferred navigating within
a single tab. 7 subjects considered it important to view
application parts side-by-side, but 5 subjects prefer a single tab
as default mechanism. We therefore recommend visualizing
the full path to the contents of the editor tab. Concerning
Abstraction, one subject positively remarked that the hierarchy
structures the application and reduces the diagram size. 2
other subjects however mentioned that the deep hierarchy of
the demo application hindered understanding the application.
The possibility to expand a subapp aimed at increasing the
Visibility, but only 2 subjects used it actively. During the
interview, the feature was however considered useful by 5
subjects. Further enhancements may be required to improve
the utility of this feature.

2) Creating/removing hierarchies: All subjects positively
remarked the low Viscosity of editing untyped subapps. We
furthermore did not observe any major issues while moving
FB instances across the hierarchy (Premature Commitment).
The subjects had to create a new subapp from three FB
instances. We observed that 2 subjects first created a subapp
and then added the FBs, while 8 subjects used the dedicated
feature that creates a subapp directly from a selection of
a set of FBs. 4diac IDE does not suggest a specific order
of operations for this task (Premature Commitment). One
subject criticized the automatically generated pin names. They
are created as a combination of the FB instance name and
the pin name, which may violate coding guidelines for a
software project. As a result, each pin name would have to

be adjusted manually (Viscosity). For deleting a hierarchy
level, subjects used various approaches: 5 found the dedicated
feature, 3 moved the contained FB instance and manually
deleted the empty subapp, and 2 used cut&paste. The last
approach does not automatically update the connections, which
was requested as an improvement by 5 subjects throughout
the study. As cut&paste stores connections within the same
hierarchy level, this request can be related to the cognitive
dimension Consistency. No subject expanded the subapp to
increase Visibility, which would have allowed drag&drop of
the contained FB. In the interview, we asked subjects whether
they liked the possibilities for restructuring an application.
7 subjects confirmed that they liked the current refactoring
features, but 5 of them requested further improvements.

3) Working with types: In this task, subjects had to save
their subapp, which was created in the previous task, to
the type library. Within the respective dialogue, 5 subjects
struggled to select the right target type library from the list
of all projects in the workspace. Hence, 2 of them requested
that the type library of the currently edited project should be
pre-selected by default (Diffuseness). 5 subjects had difficulties
in creating the required folder in the type library. Specifically,
they expected a dedicated button or context menu entry in the
dialogue, while folders can only be added by specifying the
new folder name as part of the save path, or before opening
the dialogue (in the system explorer). We can relate this ob-
servation to the cognitive dimension Premature Commitment.
We also observed difficulties in distinguishing the provided
views: one subject tried to create the new folder in the Palette,
which is only used for adding instances to the Application
(Consistency).

Subjects also had to add a type file from the file system to
their project library. This task can be completed via drag&drop
or copy&paste from the file explorer to the type library. 9
subjects had difficulties in adding the file. One of them, who
had no prior experience in 4diac IDE, could not complete
this task without detailed instructions from the moderator
(Hard Mental Operation). 9 subjects tried to use the Import
dialogue, which, however, does not support importing single
files (Consistency). Next, we asked subjects to replace their
own motor controller with an instance of the newly imported
type. The automatically generated pin names do not match
those of the imported type and, therefore, 4diac IDE does
not automatically handle the connections. As connections are
dismissed without a prior warning (requested by one subject),
this targets the cognitive dimension Error Proneness.

4) Editing: The typed subapp had to be detyped, which
could be completed by all subjects. When instructed to add
a data pin to the subapp interface, 5 subjects attempted to
double-click on the background of the table to create a new
row. As a double-click allows adding new FB instances in the
graphical editor, this can be classified as Inconsistency. Then,
subjects had to add three FB instances to their subapp. Most
subjects used the in-place search field that was implemented
to avoid a Hard Mental Operation. It is accessible via double-
click, or via the context menu (preferred way of one subject).



TABLE II
RESULTS FROM THE QUESTIONNAIRE: USABILITY ASPECTS

Learnability Number of Errors Subjective Satisfaction Efficiency
View v.e. e. d. v.d. n/a n. s. m. t.m. n/a v.p. p. u. v.u. n/a v.e. e. i. v.i. n/a
System Explorer 1 6 2 0 1 5 3 0 0 2 1 5 1 0 3 - - - - -
Application Editor 4 4 2 0 0 2 6 1 0 1 2 6 1 0 1 - - - - -
Properties View 2 5 3 0 0 2 6 0 0 2 1 5 2 0 2 - - - - -
Dialogues 0 6 1 0 3 5 0 1 0 4 0 5 1 0 4 - - - - -
Outline 5 1 0 0 4 4 1 0 0 5 2 2 0 0 6 - - - - -
Overall/4diac IDE 2.4 4.4 1.6 0 1.6 3.6 3.2 0.4 0 2.8 1.2 4.6 1 0 3.2 0 5 2 3 0

Learnability is rated from very easy (v.e.) to very difficult (v.d.), Number of errors from none (n.) to too many (t.m.), Subjective Satisfaction from
very pleasant (v.p.) to very unpleasant (v.u.), and Efficiency of working with 4diac IDE is ranked from very efficient (v.e.) to very inefficient (v.i.).

TABLE III
QUESTIONNAIRE: UTILITY OF 4DIAC IDE

Strengths
Structuring Mechanisms (3) and dedicated Refactoring Features (3)
Automated Layouting (3)
Performance (2)
Working with Types (2) and Expanded Subapps (2)
Weaknesses
Appearance: Line Routing (5) and Layout of Expanded SubApp (2)
Search Features (3), Navigation in the System Explorer (2)
Graphical Representation of FBs (2) and Icons (2)
Opportunities
Platform-independent software (4)
Better meet requirements for development (4)
Threats
Currently not all required features are supported (4)
Small development community (3)
Long-term support (3) and Liability (2)
Customers request specific hardware (3)

One subject however preferred the Palette for creating new
instances, but perceived its behavior as inconsistent with
the System Explorer. Another subject used drag&drop from
the System Explorer. 4 subjects mentioned that they liked
the automated layout for applications. Whereas one subject
requested that the tool automatically applies a new layout after
adding a block (Viscosity), another subject preferred manually
triggering this process. For 2 subjects, we observed difficulties
in orienting in the application after applying a layout.

Although we improved handling and creating connections,
we observed difficulties in performing this task. For instance,
reconnecting requires first selecting a connection, but subjects
attempted to immediately drag the handle. As moving FB
instances is possible without prior selection, this was regarded
as an Inconsistency by 3 subjects. Also, for one subject,
the weight of the connections was too small (Visibility). 6
subjects furthermore requested that the routing for newly
created connections must be improved (Viscosity).

We asked subjects to identify which variables are contained
in the Struct named ctrl. A quick link for accessing its
contents is available in many locations of the Properties view.
As a result, all subjects found the type definition quickly,
indicating a benefit of the implemented redundancy (Visibility).
We also requested that subjects enter constant values for
parameters. One subject expected better consistency between
the Properties view and the graphical editor. Edits should be
projected immediately, not only after the new entry has been
confirmed (Visibility). 4 subjects furthermore considered the

input validation as insufficient (Error Proneness).
5) Cross-cutting Aspects: We further identified issues

that are relevant for all of our tasks. Subjects had dif-
ficulties with the naming of some context menu entries,
especially where they considered several menu entries as
potentially fitting for their current task (Role Expressive-
ness): for instance, Flatten subapp removes a hierar-
chy level and replaces a subapp with its contents, while
Toggle SubApp Representation expands a subapp (2
subjects) The icon size was reported to be too small (2
subjects, Visibility). 4 subjects had difficulties understanding
the icons and 2 could not differentiate them (Consistency).

VIII. LESSONS LEARNED

We summarize five lessons that we learned from our study
and that we consider relevant for developers of any graphical
editor for visual modeling or programming languages.

Beauty is in the eye of the beholder: manually arranging
graphical diagrams is tedious. Like whitespace in textual
languages, developers use the two-dimensional arrangement of
blocks in visual languages to convey information (secondary
notation) [42]. The memorability of software parts is also
important for quickly navigating through the model. As a
result, several users requested an additional layout algorithm
that does not alter the block position. The requirements for the
layout vary depending on the user and the software and should
therefore be customizable in the tool. For instance, some users
may need to specify long parameter values and require more
space between blocks, whereas others may prefer a compact
representation to get a better overview of their diagram.

Lost&Found: efficient search features are essential. Users
benefit from advanced search capabilities when orienting in
unknown diagrams. Search boxes should always be provided
as an alternative to trees, drop-down menus, and lists to
develop truly scalable IDEs. For instance, most subjects
requested features for searching instances by their name.
Furthermore, searches can reveal relations that are otherwise
not directly accessible: in our context, users requested an
overview of the used instances of a type, like the call hierarchy
for functions that is common in textual editors.

One at a time: offer one view per task. Separation of
concerns is essential to manage complex software [43]. Sub-
jects considered the System Explorer difficult to use, mainly
because it is used as both a file explorer and for type



management, while additionally showing the application struc-
ture. Furthermore, configurable perspectives as offered by
the Eclipse platform could be used to customize the System
Explorer and other views to better align them with the complex
development tasks specific to the respective engineering roles.

Living with inconsistencies: handle incorrect models grace-
fully. Input validation should ensure correct and consistent
models. However, a too strong focus on correctness may
enforce a very strict order of user interactions, especially
early in the development process [44]. Where errors cannot
be avoided, users should be informed unobtrusively, but near
the editing position. Consider that users may be required to
interrupt their work and continue later. For this use case,
also incorrect models have to be visualized with best effort.
Dedicated features should support users to return step-by-step
to a correct and consistent model.

Get a new perspective: multi-stage usability studies are
worth the effort. The cognitive dimensions approach and the
user study allowed us to improve the usability of our tool. The
applied multi-stage process allowed us to receive feedback
from several perspectives. Issues were reported in diverse
stages. Some aspects were observed during the practical tasks,
discussed in the interview, and reported later again by the
subject in the questionnaire. Other aspects only appeared in
the questionnaire, which the subjects could complete in their
own pace, and which therefore complemented our observations
well. Not all issues would have been revealed if the study had
only comprised a single stage.

IX. THREATS TO VALIDITY

A threat to construct validity is the potential bias caused
by the system created for the study. Although the control
application is based on prior publications [30], [39], the final
system was created specifically for the study by one of the
authors. However, our study does not focus on model details,
but utilizes the model to evaluate the usefulness of the tool. We
selected the model of the capping station as it was sufficiently
large and it was expected to be intuitively understood by
the domain experts, yet sufficiently different from their daily
business to evaluate the tool rather than the model.

There are also threats to internal validity meaning that
the results might have been influenced by our treatment. We
had no direct influence on the selection of subjects, instead,
they were nominated by our industry partner based on our
requirements. We could therefore not ensure that the subjects
represent a variety of departments. The number of subjects
(ten) may seem relatively small. However, they cover a range
of different roles and a very wide range of work experience
in the domain. Their average experience in developing control
software is extensive (14 years). Furthermore, relatively few
subjects can reveal a high percentage of the total usability
issues [45].

Regarding conclusion validity, there is a threat that the
results are not based on statistical relationships or measure-
ments but on qualitative data [13]. Given that the main aim
of the study was to investigate the behavior and opinions of

users of a tool, qualitative research methods are though well
suited. The analysis of the collected data still depends on our
interpretation. The work was performed by a single researcher
but the result was carefully checked by two senior researchers.

With respect to external validity, we selected an example
system that is representative regarding the size and complexity
for the control software domain. Although the derived impli-
cations depend on our experiences of using and implementing
4diac IDE and especially its GUI, the capabilities are common
in other IDEs for visual modeling languages, as discussed in
Section II-B. The mapping to the CD framework relates our
results to HCI knowledge.

Our results are specific for our setting and our example
system but can be generalized to some degree, as our tool is
similar to those in the same domain. It is furthermore based on
open source infrastructure, which is frequently used by other
modeling tools. Identified issues are thus potentially applicable
to other Eclipse-based tools too.

X. CONCLUSIONS

Industrial experts in control software handle large-scale
applications for production lines and have to consider the long
life cycle of the mechanical components, which also motivates
frequent control software maintenance. In this paper, we as-
sessed the usefulness, i.e., usability and utility, of 4diac IDE, a
visual programming IDE for large-scale automation software,
for common control software maintenance tasks. We first
performed an initial assessment of the tasks in a walkthrough
of the IDE following an approach based on the Cognitive
Dimensions of notations framework and fixed usability flaws.
In a user study, ten industrial experts then evaluated these
tasks. Our results and lessons learnt from the study are relevant
for developers of visual modeling and programming tools.
Identified capabilities are often not sufficiently supported in
such tools. Furthermore, our results with an Eclipse-based tool
are potentially applicable to other modeling tools using the
same technology. As our improvements are available as part of
the latest open-source release of the 4diac IDE, they can serve
as a good practice example for other project teams, together
with this paper. Our results and lessons learnt complement
existing results and findings by adding experiences made in
the domain of industrial automation to the body of knowledge
of developing visual modeling tools. In general, we conclude
that advanced tools with advanced editing support can simplify
working with large models and thus increase the benefits of
the applied modeling language. In future work, we will further
investigate dimensions that we identified as insufficiently
addressed by the tool. Hence, we will study both, adaptions to
the language IEC 61499 as well as improvements for IDEs.

XI. ACKNOWLEDGMENTS

The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for
Research, Technology and Development, and the Christian
Doppler Research Association is gratefully acknowledged. We
particularly thank all participants of the study.



REFERENCES

[1] R. Jolak, M. Savary-Leblanc, M. Dalibor, A. Wortmann, R. Hebig,
J. Vincur, I. Polasek, X. Le Pallec, S. Gérard, and M. R. V. Chaudron,
“Software engineering whispers: The effect of textual vs. graphical soft-
ware design descriptions on software design communication,” Empirical
Software Engineering, vol. 25, no. 6, pp. 4427–4471, 2020.

[2] S. Meliá, C. Cachero, J. M. Hermida, and E. Aparicio, “Comparison
of a textual versus a graphical notation for the maintainability of MDE
domain models: an empirical pilot study,” Software Quality Journal,
vol. 24, no. 3, pp. 709–735, 2016.

[3] National Instruments, “Labview 2020,” 2020, Accessed: May 12, 2021.
[Online]. Available: www.ni.com/en-us/shop/labview.html

[4] The MathWorks, “Simulink R2021a,” 2021, Accessed: May 12, 2021.
[Online]. Available: www.mathworks.com/products/simulink.html

[5] International Electrotechnical Commission (IEC), “IEC 61131 - Pro-
grammable controllers, Part 3: Programming languages,” Geneva, 2014.

[6] International Electrotechnical Commission (IEC), TC65/WG6, “IEC
61499-1, Function Blocks - part 1: Architecture: Edition 2.0,” Geneva,
2012.

[7] R. Harrison, D. Vera, and B. Ahmad, “Engineering Methods and Tools
for Cyber–Physical Automation Systems,” Proceedings of the IEEE, vol.
104, no. 5, pp. 973–985, 2016.

[8] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of
software in automated production systems: Challenges and research
directions,” Journal of Systems and Software, vol. 110, pp. 54–84, 2015.

[9] B. Vogel-Heuser, C. Diedrich, A. Fay, S. Jeschke, S. Kowalewski,
M. Wollschlaeger, and P. Göhner, “Challenges for Software Engineering
in Automation,” Journal of Software Engineering and Applications,
vol. 7, no. 5, pp. 440–451, 2014.

[10] M. Törngren and P. Grogan, “How to Deal with the Complexity of
Future Cyber-Physical Systems?” Designs, vol. 2, no. 4, p. 40, 2018.

[11] A. Holzinger, “Usability engineering methods for software developers,”
Communications of the ACM, vol. 48, no. 1, pp. 71–74, 2005.

[12] J. Nielsen, Usability engineering. Morgan Kaufmann, 1994.
[13] C. B. Seaman, “Qualitative methods in empirical studies of software

engineering,” IEEE Transactions on Software Engineering, vol. 25, no. 4,
pp. 557–572, 1999.

[14] R. Holwerda and F. Hermans, “A usability analysis of blocks-based pro-
gramming editors using cognitive dimensions,” in 2018 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
2018, pp. 217–225.

[15] T. Weber, A. Zoitl, and H. Hußmann, “Usability of development tools:
A case-study,” in 2019 ACM/IEEE 22nd Int. Conf. on Model Driven
Engineering Languages and Systems Companion (MODELS-C). IEEE,
2019, pp. 228–235.

[16] M. Obermeier, S. Braun, and B. Vogel-Heuser, “A Model-Driven
Approach on Object-Oriented PLC Programming for Manufacturing
Systems with Regard to Usability,” IEEE Transactions on Industrial
Informatics, vol. 11, no. 3, pp. 790–800, 2015.

[17] G. Bayrak, F. Ocker, and B. Vogel-Heuser, “Evaluation of Selected
Control Programming Languages for Process Engineers by Means of
Cognitive Effectiveness and Dimensions,” Journal of Software Engineer-
ing and Applications, vol. 10, no. 5, pp. 457–481, 2017.

[18] R. Rabiser, M. Vierhauser, and P. Grünbacher, “Assessing the usefulness
of a requirements monitoring tool: A study involving industrial software
engineers,” in 2016 IEEE/ACM 38th Int. Conf. on Software Engineering
Companion (ICSE-C), 2016, pp. 122–131.

[19] Eclipse 4diac. (2020) Eclipse 4diac - The Open Source Environment
for Distributed Industrial Automation and Control Systems. Accessed:
May 12, 2021. [Online]. Available: www.eclipse.org/4diac

[20] A. Blackwell and T. Green, “Notational Systems—The Cognitive Di-
mensions of Notations Framework,” in HCI Models, Theories, and
Frameworks. Elsevier, 2003, pp. 103–133.

[21] B. Vogel-Heuser, S. Feldmann, J. Folmer, J. Ladiges, A. Fay, S. Lity,
M. Tichy, M. Kowal, I. Schaefer, C. Haubeck, W. Lamersdorf, T. Kehrer,
S. Getir, M. Ulbrich, V. Klebanov, and B. Beckert, “Selected challenges
of software evolution for automated production systems,” in 2015 IEEE
13th Int. Conf. on Industrial Informatics (INDIN), 2015, pp. 314–321.

[22] M. Obermeier, S. Braun, K. Sommer, and B. Vogel-Heuser, “Fundamen-
tal Aspects Concerning the Usability Evaluation of Model-Driven Object
Oriented Programming Approaches in Machine and Plant Automation,”
in Design, User Experience, and Usability. Theory, Methods, Tools

and Practice, ser. Lecture Notes in Computer Science, A. Marcus, Ed.
Springer Berlin Heidelberg, 2011, vol. 6770, pp. 497–506.

[23] C. Legat, J. Folmer, and B. Vogel-Heuser, “Evolution in industrial plant
automation: A case study,” in IECON 2013 - 39th Ann. Conf. of the
IEEE Industrial Electronics Society. IEEE, 2013, pp. 4386–4391.

[24] J. Fischer, B. Vogel-Heuser, F. Haben, and I. Schaefer, “Reengineering
workflow for planned reuse of IEC 61131-3 legacy software,” in 2020
IEEE Int. Conf. on Industrial Engineering and Engineering Management
(IEEM). IEEE, 2020, pp. 1126–1130.

[25] A. Hopsu, U. D. Atmojo, and V. Vyatkin, “On Portability of IEC 61499
Compliant Structures and Systems,” in 2019 IEEE 28th Int. Symp. on
Industrial Electronics (ISIE). IEEE, 2019, pp. 1306–1311.

[26] G. Lyu and R. W. Brennan, “Towards IEC 61499-Based Distributed
Intelligent Automation: A Literature Review,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 4, pp. 2295–2306, 2021.

[27] nxtControl GmbH, “Nxt Technology IDE,” Accessed: May 12, 2021.
[Online]. Available: www.nxtcontrol.com/engineering/

[28] Rockwell Automation, “ISaGRAF Development Toolkit,” Accessed:
May 12, 2021. [Online]. Available: www.isagraf.com

[29] Holobloc, Inc., “Function Block Development Kit (FBDK),” 2020,
Accessed: May 12, 2021. [Online]. Available: www.holobloc.com

[30] A. Zoitl, T. Strasser, and G. Ebenhofer, “Developing modular reusable
IEC 61499 control applications with 4DIAC,” in 2013 11th IEEE
International Conference on Industrial Informatics (INDIN). IEEE,
2013, pp. 358–363.

[31] F. D. Davis, “Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology,” MIS Quarterly, vol. 13, no. 3,
p. 319, 1989.

[32] R. Rabiser, P. Grünbacher, and M. Lehofer, “A qualitative study on user
guidance capabilities in product configuration tools,” in 2012 Proc. 27th
IEEE/ACM Int. Conf. on Automated Software Engineering, M. Goedicke,
T. Menzies, and M. Saeki, Eds. ACM Press, 2012, p. 110.

[33] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[34] A. J. Ko, T. D. LaToza, and M. M. Burnett, “A practical guide
to controlled experiments of software engineering tools with human
participants,” Empirical Software Engineering, vol. 20, no. 1, pp. 110–
141, 2015.

[35] A. Zoitl and H. Prähofer, “Guidelines and Patterns for Building Hier-
archical Automation Solutions in the IEC 61499 Modeling Language,”
IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 2387–
2396, 2013.

[36] D. Rubel, J. Wren, and E. Clayberg, The eclipse graphical editing
framework (GEF), ser. The eclipse series. Addison-Wesley, 2012.

[37] Eclipse 4diac. (2021) Maintaining Control Software in 4diac IDE:
Youtube. [Online]. Available: https://youtu.be/xishphcgYmc

[38] Eclipse Layouting Kernel. (2020) Eclipse Layout Kernel 0.6.1.
Accessed: May 12, 2021. [Online]. Available: www.eclipse.org/elk/

[39] A. Zoitl and R. W. Lewis, Modelling control systems using IEC 61499,
2nd ed., ser. IET Control engineering series. London: IET, 2014, vol. 95.

[40] Eclipse 4diac. (2021) Overview of IEC 61499 and Eclipse 4diac:
Youtube. [Online]. Available: https://youtu.be/K9iItQBC-ac

[41] B. Wiesmayr, A. Zoitl, and R. Rabiser. (2021) Assessing the Usefulness
of a Visual Programming IDE for Large-Scale Automation Software:
Documents for performing a user study on maintaining hierarchical
control applications with 4diac IDE. Zenodo. [Online]. Available:
doi.org/10.5281/ZENODO.4758816

[42] H. Fuhrmann and R. von Hanxleden, “Taming Graphical Modeling,” in
Model driven engineering languages and systems, ser. Lecture Notes in
Computer Science, D. C. Petriu, N. Rouquette, and Ø. Haugen, Eds.
Springer, 2010, vol. 6394, pp. 196–210.

[43] A. Cicchetti, F. Ciccozzi, and A. Pierantonio, “Multi-view approaches
for software and system modelling: a systematic literature review,”
Software & Systems Modeling, vol. 18, no. 6, pp. 3207–3233, 2019.

[44] R. Balzer, “Tolerating inconsistency (software development),” in 1991
Proc. 13th Int. Conf. on Software Engineering. IEEE, 1991, pp. 158–
165.

[45] J. Nielsen and T. K. Landauer, “A mathematical model of the finding of
usability problems,” in Proc. INTERACT ’93 and CHI ’93 Conference
on Human Factors in Computing Systems, ser. CHI ’93. New York,
NY, USA: Association for Computing Machinery, 1993, p. 206–213.


