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Abstract—Multi-robot systems are increasingly deployed to
provide services and accomplish missions whose complexity or
cost is too high for a single robot to achieve on its own. Although
multi-robot systems offer increased reliability via redundancy
and enable the execution of more challenging missions, engi-
neering these systems is very complex. This complexity affects
not only the architecture modelling of the robotic team but
also the modelling and analysis of the collaborative intelligence
enabling the team to complete its mission. Existing approaches
for the development of multi-robot applications do not provide a
systematic mechanism for capturing these aspects and assessing
the robustness of multi-robot systems. We address this gap by
introducing ATLAS, a novel model-driven approach supporting
the systematic robustness analysis of multi-robot systems in sim-
ulation. The ATLAS domain-specific language enables modelling
the architecture of the robotic team and its mission, and facilitates
the specification of the team’s intelligence. We evaluate ATLAS
and demonstrate its effectiveness on two oceanic exploration
missions performed by a team of unmanned underwater vehicles
developed using the MOOS-IvP robotic simulator.

Index Terms—model-driven engineering, robotics, simulation

I. INTRODUCTION

Multi-robot systems (MRS) are distributed and intercon-

nected robotic teams deployed to carry out missions that are

beyond the competency of a single robot [1]. MRS are par-

ticularly useful in missions that require: robust behaviour and

fault tolerance since the system can utilise redundancy to cover

for a failed robot by distributing its responsibilities between

the healthy team members; long-term autonomy since robots

can execute tasks in a round-robin manner and replenish their

batteries when idle; and improved scalability and performance

since tasks can be performed more efficiently through paral-

lelism if they are decomposable. Example missions that would

benefit from MRS capabilities include environmental data

collection of a large marine area using a team of unmanned

underwater vehicles (UUVs) [2], power plant inspection using

aerial vehicles [3], and order fulfilment and restock within a

warehouse using robotic arms and ground vehicles [4].

MRS can execute these missions through collective intel-

ligence (CI) algorithms that encapsulate communication poli-

cies within the closed-loop control of individual robots (e.g.,

MAPE-K [5]) and adaptation strategies for delegating respon-

sibilities within the team. The use of CI enables capitalising

on the unique benefits offered by MRS in these business- and

safety-critical application domains [6]. Consider, for instance,

a team of UUVs, each equipped with sonar sensors, deployed

to discover hazardous objects by scanning a large marine area.

A CI instance may partition this area based on the UUV sensor

capabilities (e.g., reliability, energy consumption) while also

specifying how the team will respond and redistribute pending

tasks when a team member fails or experiences difficulties

(e.g., when a UUV enters an area where the water salinity or

temperature is outside the operating envelope of its sensors).

Selecting a suitable CI is a very important problem that

directly affects the MRS performance and resilience [1]. An

effective CI would empower MRS to cope with uncertain envi-

ronments (e.g., sudden changes in environmental conditions),

evolving mission objectives and unpredictable degradation of

robotic components (e.g., sensor failure of multiple robots) [7].

Unavoidably, this problem is non-trivial. Engineers have a

plethora of different options both in terms of adaptation

strategies and communication policies that complicate the

process of designing, implementing and assessing candidate

CI algorithms. The large design space that comprises robotics

teams of different sizes and individual robots with a wide range

of performance and functionality characteristics (e.g., sensor

width, energy capacity) only exacerbates the task of choosing

the most suitable robotic team and desired CI instantiation.

Despite recent advances in the specification and analysis

of MRS [8], [9], existing approaches either focus on pro-

viding specialised robotic functionality (e.g., perception, con-

trol) [10]–[12] or software for specific robotic platforms (e.g.,

ROS [13] or MOOS-IvP [14]). This limits their applicability

to MRS missions characterised by simplistic CI behaviour

resulting in reduced MRS resilience or bespoke algorithms that

intertwine the CI logic with low-level platform-specific code

resulting in added maintenance cost [15]. These important lim-

itations of existing approaches increase significantly the effort

to explore the tradeoffs between candidate MRS designs [16]

and adaptation strategies of different CI algorithms [17].

We introduce ATLAS, a model-driven, tool-supported

framework for the systematic engineering of MRS that facil-

itates the exploration and tradeoff analysis of candidate MRS

designs and CI algorithms. Driven by insights derived from

recent robotics surveys [16], [18], ATLAS is underpinned by

the following principles. First, the ATLAS domain-specific

language (DSL) enables the specification of (i) the MRS

mission, including both functional and non-functional require-

ments; and (ii) the characteristics of individual robots compris-

ing the MRS, including architecture, internal behaviours, and

capabilities (e.g., use of energy efficient or reliable sensors).

Second, the ATLAS code generation engine consumes the



MRS mission and system specifications, and produces the

necessary infrastructure (i.e., ATLAS middleware, CI tem-

plates, target simulator logical interface) that enables the

communication of the ATLAS components with the target

robotic simulator (e.g., MOOS-IvP [14], ROS [13]). Finally,

the low coupling between the ATLAS components supported

by the CI templates improves system extensibility while also

supporting tradeoff analysis between different CI algorithms.

The main contributions of our paper are:

• The ATLAS tool-supported framework for the systematic

engineering of MRS enabling tradeoff analysis of differ-

ent MRS architectures and CI algorithms from the early

stages of the MRS development process;

• An extensive ATLAS evaluation of two MRS case studies

built with MOOS-IvP [14], a widely-used platform for the

implementation of autonomous applications on UUVs;

• A prototype open-source ATLAS tool and case study

repository, both available on our project webpage at

https://www.github.com/jrharbin-york/atlas-middleware.

We structure the paper as follows. Section II presents a

motivating example that we use to illustrate ATLAS, which

is detailed in Section III. Sections IV and V describe our

ATLAS implementation and evaluation, respectively. Finally,

Section VI discusses related work, and Section VII summarises

our results and suggests directions for future research.

II. MOTIVATING EXAMPLE

We will illustrate ATLAS using a UUV team deployed on

an object detection mission within a large marine area that

contains both benign and hazardous objects. Each UUV is

equipped with a sonar sensor that can detect objects when

they are in close proximity, localisation hardware and a radio

transceiver to interface with a centralised control computer

(shoreside) which runs the CI that coordinates the activities

of the UUV team. Figure 1 shows the three UUVs executing

lawnmower-style sweeps (horizontally back and forwards fol-

lowed by vertical steps) over subdivided regions of the area,

and three objects to be located (where green and red triangles

indicate benign and malicious objects, respectively).

The shoreside uses a CI algorithm to coordinate the UUVs

behaviour and fulfil the requirements shown in Table I. Given

the safety-critical nature of this mission, all objects should

be detected (R1). Depending on the object’s type, one or two

verifications by peer UUVs should be performed (R2), thus

reducing the risk that an incorrect type has been assigned to

the detected object. Since UUVs have limited battery capacity,

it is important to partition the area effectively and complete

the mission at the least possible time (R3) and before the

maximum mission execution time given by Tmax=2400s.

TABLE I: UUV requirements for the object detection mission.

ID Description

R1 All environmental objects within the area should be detected.

R2 When a UUV detects a malicious (benign) object, the
detection must be verified by two (one) peer UUVs.

R3 Subject to satisfying R1 and R2, the CI should coordinate
the UUVs so that the mission execution time is minimised.

Fig. 1: UUV team deployed on a hazardous object detection

mission, developed using the MOOS-IvP simulator [14].

When designing the UUV team, engineers want to inves-

tigate how effectively teams comprising three or four UUVs

would accomplish the mission. Furthermore, each UUV can be

equipped with a wide or a narrow sensor whose scanning area

is 10m or 20m wide, respectively. Consequently, this results

in 48 possible configurations (i.e., designs) for the UUV team.

Beyond the UUV team configurations, several CI algorithms

could be used to support the execution of the object detection

mission. We assume that robotic engineers are interested in

evaluating the following standard and advanced CI algorithms.

- Standard CI: This CI partitions the area between the UUVs

equally, based on a lawnmower pattern with a constant vertical

separation, independent of each UUV’s sonar sensor range.

When performing verifications of detected objects (R2), the CI

selects the UUV that is the closest to the object. Verifications

are performed for a constant fixed time of 600 seconds,

scanning the area around the detection. When completing the

verification, the UUV is commanded to resume its original

sweep region from the beginning.

- Advanced CI: This CI partitions the area between the UUVs

proportionally to the strength of their sonar sensors, i.e., a

UUV equipped with a more capable sensor is assigned a

larger area than a UUV equipped with a narrow sensor. The

CI also monitors the status of the verification, returning the

dispatched UUV back to its originally assigned area as soon

as the final waypoint of the verification task is reached. When

this happens, the CI instructs the UUV to resume its task from

the point at which it was interrupted.

Evidently, the advanced CI is more efficient and aims

at reducing the overall mission execution time but incurs

significant communication cost due to the frequent commu-

nication between the dispatched UUV and the shoreside. On

the contrary, the standard CI, albeit slower, is more meticulous

and may help the UUV to discover previously missed objects.
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Fig. 2: High-level ATLAS architecture

III. ATLAS

A. Overview

Figure 2 shows the high-level ATLAS architecture. The core

of ATLAS comprises the ATLAS DSL (Section III-B) for the

specification of the team structure and mission objectives, and

a model-driven code generation engine for the generation of a

lightweight middleware (Section III-D), a simulator-specific

logical interface, and CI templates that facilitate tradeoff

analysis of CI algorithms (Section III-E). The middleware is

responsible for moderating the communication between team

members (team level) and between the components within

an individual robot (robot level). To achieve this, ATLAS

exploits the modular structure of robots and the publish-

subscribe protocol underpinning widely-used robotic platforms

such as MOOS-IvP [14] and ROS [13]. A robot is a hier-

archical composition of software and hardware components

that interacts with the environment and communicates with

its peers via exchanging messages using input and output

interfaces [7]. The middleware also reinforces the separation of

concerns between the MRS and the underlying CI algorithms

which are responsible for steering the team to achieve its

mission. This is a unique characteristic of ATLAS that facil-

itates the investigation of different CI algorithms [17] (e.g.,

decentralised collective learning, leader-election algorithms)

for carrying out the specified mission and comparing non-

functional attributes such as scalability and performance. The

simulator-specific logical interface enables the direct commu-

nication between the middleware and the running simulator,

thus supporting data exchange and monitoring of the MRS

state during simulation. This interface is also a key enabler of

ATLAS that not only reduces the coupling between framework

components and improves extensibility, but it also enables to

connect and interchange different robotic simulators easily for

experimentation and analysis. These have been among the key

challenges identified in recent robotics surveys [16], [18] and

ATLAS contributes in addressing them.

In the following sections, we detail the fully-fledged AT-

LAS instance for the MOOS-IvP robotic simulator, and also

describe our preliminary implementation for the model-driven
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Fig. 3: Stepwise model-driven ATLAS methodology

generation of the corresponding interfaces for Gazebo/ROS

(Section III-D), thus demonstrating the generality of ATLAS.

The high-level workflow of the ATLAS methodology is

shown in Figure 3. Through the use of the purpose-designed

ATLAS DSL, domain experts can define models of the MRS

mission (i.e., requirements, goals and safety invariants) and

team composition (Step 1). The ATLAS code generation

engine consumes these models and automatically generates

in Step 2 (i) a middleware that enables the communication of

the various system components; (ii) CI templates which will

be used by the middleware to coordinate the robotic team;

(iii) interface code that enables the middleware to commu-

nicate directly with the target robotic simulator; and (iv) the

necessary configuration files for the target robotic simulator.

During Step 3, engineers implement the logic and coordination

of the system. To this end, they populate the CI templates

generated in Step 2 with suitable code that realises their

chosen CI algorithms. This separation of concerns between

the implementation of the high-level behaviour (exhibited by

the algorithm) and the low-level functionality of a robot has

two major benefits. First, it reduces the effort to analyse

multiple CI algorithms without changing the underlying low-

level system behaviour. Second, it enables to reuse already

available low-level code developed for individual robotic team

members that has been developed independently. When the

necessary artifacts are implemented, the MRS simulation

analysis is automatically executed in Step 4. ATLAS records

simulation results related to the MRS mission requirements

in the form of logs comprising both messages exchanged

between system components and events occurred during the

simulation. The analysis of these results enables the selection

of the most effective MRS designs and the identification of

the most suitable CI algorithm for the target mission.

3



Fig. 4: Mission Metamodel

B. DSL Core Concepts

At the core of the ATLAS DSL is the concept of a Mission

(Figure 4) which includes the Goals that should be fulfilled.

Each goal is attached to the Region where the goal takes

place. Goals also include a reference to the specific GoalAction

that should be executed as part of the goal. Example actions

include Patrolling an area, Avoiding an obstacle, etc. Although

the DSL covers the vast majority of actions available in the

current MOOS robotic environment, this is an extensibility

point of the DSL; interested users can extend the GoalAction

type to introduce new actions and the appropriate model-

to-text (M2T) transformations to generate the corresponding

MOOS implementations. Since goals may need to start after

or end before a specific time, each goal is linked to a

GoalTemporalConstraint that defines the earliest starting and

latest finish time of the goal. Also, since each goal is mission-

specific, implementing the actions for each goal is left to

the user. For example, the GoalAction named TrackDistances

will track the relative distances of robots to each other and

check for possible intersection with environmental objects.

This information is recorded allowing the production of related

metrics for further analysis.

Robotic simulators provide bespoke implementations of

various behaviours such as navigating to specific coordinates

(e.g., using the WayPoint and MoveBaseGoal behaviours in

MOOS-IvP and ROS, respectively), and avoiding other robots

and obstacles. These behaviours can be employed by low-level

simulator code to facilitate the specification and execution

of a robotic mission. This information is also important for

the CI. The DSL enables linking simulator-specific behaviour,

represented in the model as elements having the name of the

behaviour, to high-level mission goals through the bevaviours

reference. The Behaviour class enables specifying multiple

behaviour variables (topics in ROS) from the MRS simulator

that capture the status of a robot. The intent of including these

behaviour variables in the DSL is to make the middleware

aware and instrument the communication of any value updates

to the CI. When an update occurs, the CI can use the updated

information and respond appropriately to a particular low-level

MRS event, e.g., terminate the mission when notified about the

successful traversal of a set of waypoints.

Another important element of the ATLAS DSL is the set

Fig. 5: Components Metamodel

Fig. 6: Model of the UUV mission from Section II.

of Robots employed to satisfy a specific goal. Conforming to

the hierarchical representation of many robotic systems [12],

ATLAS enables the specification of the MRS architecture in a

compositional manner (Figure 5). A Component represents the

top level element of this hierarchical representation and can

either be a Robot (e.g., the UUVs in the motivating example)

or a Computer (e.g., a shoreside computer that is responsible

for the execution of the CI algorithm and the coordination

of the robots). Robots and Computers consist of a number

of subcomponents (e.g., Sensors, Actuators, MotionSources,

etc.). Also, each component contains ComponentProperties of

different datatypes that enable the specification of different

characteristics of the associated component (e.g., nominal

operating rate of a sensor or expected energy consumption).

Example 1: Figure 6 shows the model instance for the

UUV mission from Section II. The model comprises the

specifications of the three UUVs (gilda, frank, and henry), the

shoreside computer which executes the CI strategy, the various

mission goals and the coordinates of the three environmental

objects that must be detected by the UUV team.

C. Searching for Optimal Robot Configurations

In addition to the specification of concrete MRS instances,

the ATLAS DSL supports also the analysis of candidate

4



MRS designs through design space exploration. To this end,

we leverage concepts from the domain of software product

line engineering [19]–[21] and represent alternative candidate

designs as a VariationGroup with a defined cardinality (cf.

Figure 5). The members of a variation group are components,

at the same level of the MRS hierarchy, that can participate in

the mission; this includes robots and subscomponents. The set

of all variation groups forms a VariationProgram. Given such a

program, ATLAS uses model-to-model (M2M) transformation

to automatically generate all possible mission models that

conform to the mission metamodel in Figure 4 and meet

the min/maxRequired properties of each group. For example,

consider the UUV team from Section II and assume we want

to assess if the mission can be fulfilled using a subset of

the available UUVs. The UUVs are added in the Mission

and the VariationGroup referring to these robots is created.

The minRequired and maxRequired properties are set to three

and four, respectively. Subcomponents can also form variation

groups. For example, if there are different types of Sensors (or

sensors of the same type but with different properties) that a

robot can use for a mission, those subcomponents can form an-

other variation group. ATLAS consumes the variation groups

and through M2M transformation automatically generates the

possible mission model configurations (designs).

Example 2: Figure 7 shows the variation model (irrelevant

details are omitted for reasons of brevity) for the variation

scenario of the motivating example. The execution of the

M2M using as input this variation model will generate the

48 possible configurations that conform to the constraints set

in the variation groups, i.e., each robot should use either the

wide or narrow sonar sensor and the mission should use at

least three out of four available UUVs. The configurations

comprise 16 models with four robots and 32 models with three

robots all with different narrow (10m) or wide (20m) sensor

instantiations.

D. ATLAS Middleware

The middleware is a key component of ATLAS that en-

hances separation of concerns between the CI instances and

the target robotic simulator. The CI receives information about

the MRS status via the middleware, executes its logic, and

relays back its decisions to the MRS via the middleware.

Also, the middleware uses runtime monitoring to assess the

status of the goals defined in the DSL. This internal state,

including goal events, is stored in log files that allow the

computation of relevant mission metrics and post hoc analysis.

The low coupling between the CI and the MRS simulator,

mediated by the middleware, enables not only to experiment

easily with several candidate CI algorithms but also reinforces

maintainability and extensibility (e.g., the components can be

computing platform and programming language independent).

Irrespective of the target robotic simulator, the ATLAS

middlerware comprises (i) a simulator-specific interface that

enables ATLAS to connect to the simulator, and subscribe

and publish messages/topics; (ii) a highly-efficient message

broker (e.g., ActiveMQ [22]) to facilitate fast inter-robot

Fig. 7: Variation model for the UUV mission from Section II

communication and interaction with the CI algorithm; and

(iii) a CI mapping software module that converts the high-

level CI commands into message/topic changes for the target

simulator. ATLAS uses the mission model (e.g., Figure 6)

and automatically generates these components through a se-

ries of M2T transformations. Currently, we fully support the

MOOS-IvP simulator and have a prototype implementation

for Gazebo/ROS. Clearly, for each target simulator the M2T

transformation and required components are developed only

once and can be reused thereafter. Due to space constraints,

we briefly discuss below the concrete instantiations of these

two simulators. The full details of the M2T transformations

are available on our project webpage.

ATLAS middleware for MOOS-IvP. The M2T transforma-

tion uses the mission model and configures appropriately the

ATLAS middleware to enable monitoring the MRS status for

the specified goals. Also, MOOS-specific configuration files

are produced to represent the robot configurations, proper-

ties and behaviours necessary to run the simulation. Within

MOOS-IvP, each robot is represented as a community com-

prising a set of C++ software modules that provides the func-

tionality of robot components. Each community is served by

an individual publish-subscribe database (MOOSDB) which

contains key-value pairs. When robots communicate, these

key-value pairs form a communication channel through which

one robot will publish a message and subscribed robots will

receive the update and act accordingly. Example messages that

can be sent/received include sensor detection events, speed

values and location information.

The communication between the ATLAS middleware and

the simulator occurs through MOOSDBInterface, a generic

MOOS software component that enables interfacing directly

with robot communities. The simulator did not support this

functionality. Thus, we developed this reusable software com-

ponent which can now be instrumented through the mid-

dleware to publish/subscribe to messages within MOOSDB

databases, e.g., receiving updated robot coordinates, activating

the return home behaviour upon mission completion.

Messages received by the MOOS-IvP simulator are kept

in the message broker until they are automatically processed

and translated into update nodes mapped to the initial mission

goals. These updates are transmitted to the CI algorithm

5



enabling revision of its internal state and informing subsequent

decision-making. The middleware also supports translation of

generic requests to low-level MRS messages (e.g., return to

home or go to this location commands).

ATLAS middleware for Gazebo/ROS. This simulator re-

alises also the publish-subscribe architecture with a topic sub-

scription graph being the primary communication mechanism

between robots and their components. Accordingly, the M2T

transformation produces the necessary ROS launch scripts,

which set out the simulation component task graphs, and the

necessary ROS configuration to launch the ROS processes and

implement the simulation functionality.

The middleware communicates with the ROS simulator

using rosbridge (http://wiki.ros.org/rosbridge suite), a widely-

used and stable ROS component that serves as the logical inter-

face module between ATLAS and Gazebo. Through rosbridge,

ATLAS can subscribe to ROS topic updates, triggering notifi-

cations when these subscribed topics are updated, and publish

new or edit existing topics. Dynamic topic subscriptions can be

added/removed during simulation, thus enabling to reconfigure

the interface during mission execution. Similarly to MOOS-

IvP, the message broker sets up topic subscriptions to the

simulator (e.g., to obtain the pose and velocity information)

and stores updates on ongoing sensor events published to

topics for further processing by the CI. Finally, CI actuation

commands (e.g., UAV take off/land) are translated into specific

low-level ROS topic changes, in order to implement the

behaviour changes specified by these commands.

As already reported, the ATLAS middleware for Gaze-

bo/ROS is still an early prototype. Hence, evaluating ATLAS

using this simulator is outside the scope of this paper. We

report this early work here to highlight the generality of our

ATLAS framework, its support for multiple robotic simulators

as well as the ability to add new simulators with modest effort.

E. Collective Intelligence

Through collective intelligence (CI), engineers can encode

the high-level logic to coordinate robot decisions and manage

the behaviour of the overall MRS. In addition to supporting the

analysis of different robotic team configurations using varia-

tion groups (cf. Section III-C), ATLAS enables the automated

evaluation of alternative CI algorithms. Users can inspect the

mission metrics produced by each CI instance and select the

best for hardening the MRS. This is another key feature of

ATLAS that reduces further the coupling between the target

robotic simulator and the high-level decision-making process.

To facilitate the development of CI algorithms, ATLAS

performs an M2T transformation using the mission model

to generate CI templates. These templates have empty place-

holder methods that reflect the mission goals, behaviours and

events mapped to robot components defined within the mission

model (Figure 6). Engineers should specialise those templates

with the appropriate logic to develop the target CI algorithm

(cf. Step 3 in Figure 3).

The communication of fully-fledged CI instances with the

ATLAS middleware is underpinned by the inversion of control

Listing 1: Advanced CI excerpt of the UUV team (Section II)

1 public static void init () {
2 List<Robot> robotTeam = setupRobotTeam();

3 Map<Robot, Region> regionAssignments = splitRegion(fullRegion, robotTeam);

4 ...

5 }
6

7 public static void SONARDetection (SensorDetection det, Robot rbt) {
8 int objID = ( int )det . getField (”objectID”) ;

9 String detType = det . getField (”type”) ;

10 \*check when object was checked before, benign or malicious*\
11 if (isObjectNew(objID)) {
12 if ( isObjectBenign(detType))

13 for ( int i=0; i<BENIGN VERIFICATIONS; i++)

14 verifyDetection (objID, robotTeam, rbt ) ;

15 else

16 for ( int i=0; i<MALICIOUS VERIFICATIONS; i++)

17 verifyDetection (objID, robotTeam, rbt ) ;

18 }
19

20 public static void verifyDetection ( SensorDetection det , List<Robot>

robotTeam, Robot rbt) {
21 Point loc = (Point ) detection . getField (” location ”) ;

22 String rbtVer = chooseRobot(loc, robotTeam, rbt ) ;

23 if ( isRobotValid ( rbtVer ) ) {
24 API.setSweepAroundPoint(rbtVer, loc , SWEEP RADIUS,

VERTICAL STEP SIZE CONFIRM SWEEP,

25 (”UUV COORDINATE UPDATE VERIFY ” + rbtVer));

26 CILog.logCI(”Setting robot ” + rbtVer + ” to verify detection ”) ;

27 }
28 else

29 CILog.logCI(”ERROR: No robots available to confirm the detection ”) ;

30 }

programming paradigm [23]. To achieve this, the middleware

becomes aware of the methods within the CI template and

the messages associated with each method during the M2T

transformation. When the middleware receives an update to a

subscribed message/topic from the robotic simulator, it maps

the message to the appropriate CI method and proceeds with

its invocation. The CI executes its logic and informs the

middleware for its decision (e.g., instruct a robot to take over a

failed peer) so that the latter can send the appropriate message

updates to the simulator via the logical interface. Since the

CI instance runs as an independent Java process, both the CI

and the middleware run independently and operate in a non-

blocking mode using JSON messages.

The current ATLAS version supports the delegation of CI

control to a single MRS component. This component can

be a centralised control station or a single robot that acts

as the leader with full knowledge and total control over

its peers. Supporting other CI variants like hierarchical or

decentralised [6] is out of scope and is left for future work.

Example 3: Listing 1 shows an except of the advanced CI for

the UUV team from Section II. The method init is invoked

when the simulation begins to set up the required CI data

structures (e.g., the robotic team), to split the monitored region

between the team based on the sensor capabilities of each

robot and send the initial commands to activate the patrolling

behaviour for the robots (lines 1–5). When a new sensor detec-

tion occurs, the middleware invokes the SONARDetection

method providing also the robot that performed the detection

and the information of the object. This method first checks

whether the object has not been detected before by the UUV

team (line 11). If this holds, and depending on the object

type, the required number of UUVs to verify the detection are
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selected using the verifyDetection method (lines 12–

17). Every call to verifyDetection selects a UUV that

is not currently involved in another verification task (line 22)

and uses an API method to communicate with the middleware

and instruct the UUV to execute the verification of an area

around the detection zone (line 24). This information is logged

for post hoc analysis by the user (lines 26 and 29). A UUV

executing a verification returns to its original sweep patterns

using a behaviour variable (i.e., WAYPOINT_COMPLETE)

which is set to true when the navigation around the detec-

tion zone is completed (the code is not shown here due to

space constraints). The full CI implementation is available at

https://tinyurl.com/ATLAS-ExampleAdvancedCI.

IV. ATLAS PROTOTYPE

The prototype ATLAS model-driven tool uses the Epsilon

family of languages [24] to perform the MDE tasks. In partic-

ular, DSL is implemented with EMF [25]. We use Epsilon’s

EMF Model Java API to check the variation groups and

produce the candidate MRS designs (Section III-C) and the

Epsilon Generation Language to generate the ATLAS mid-

dleware (Section III-D), the configuration files needed by the

target simulator and the CI template (Section III-E). We also

use ActiveMQ [22] to link the MRS simulator, CI algorithm

and the middleware. The open-source ATLAS source code, the

full experimental results summarised next and the case studies

used for its evaluation are available at https://www.github.com/

jrharbin-york/atlas-middleware. Finally, a video showing the

execution of ATLAS for the case study described in Section

II is available at https://tinyurl.com/ATLAS-ExampleVideo.

V. EXPERIMENTAL EVALUATION

A. Research Questions

RQ1 (Configuration Analysis). Can ATLAS help with

finding the optimal configuration for a robotic team? We

use this research question to analyse if ATLAS can support

the specification and analysis of different variation points in

an MRS and enable the selection of the optimal configuration.

RQ2 (Collective Intelligence Analysis). Can ATLAS sup-

port tradeoff analysis between different collective intelli-

gence algorithms? We use this research question to analyse

if ATLAS can assess the situations in which different CI

algorithms perform well on specific metrics, thus enabling

robotic developers to select optimal CIs for a given mission.

RQ3 (Reproducibility). How does the non-determinism of

robot simulations affect the reproducibility of the ATLAS

results? We analysed if ATLAS can enable the identification

of non-reproducible behaviours of MRS configurations and the

discovery of outliers, thus providing evidence that the MRS,

CI or the overall system may produce sub-optimal behaviour.

B. Evaluation Methodology

Case Studies. Following the standard practice in empirical

software engineering [26], [27], we evaluate ATLAS using

two distinct case studies from the domain of UUVs using the

MOOS-IvP robotic simulator [14]: (1) the object detection

TABLE II: UUV requirements for the object detection mission.

ID Description

R1 Each vehicle must complete more than one sweep of the left
and right areas, alternating periodically once both completed

R2 Vehicles must avoid entry into the obstacle regions

R3 Vehicles must return to their starting points before their
battery is depleted

Fig. 8: Bo-Alpha mission for UUV monitor and avoidance

UUV mission described in Section II and developed by the

ATLAS team; and (2) a variant of the Bo-Alpha mission [28]

developed by the MOOS-IvP community and included within

the standard package of the simulator, which we describe next.

Bo-Alpha mission. UUVs make measurements (e.g., salin-

ity, temperature) on the left and right sides of a topology,

occasionally alternating sides. To avoid collisions, the UUVs

must not come too close to each other and also avoid obstacle

zones. The UUVs monitor their residual energy levels and

communicate this information and positions to a control station

running the CI. Figure 8 shows two robots crossing the central

region containing five obstacles depicted as white octagons.

The mission is executed for Tmax = 1200s and the CI

coordinates the team’s behaviour to fulfil the requirements

in Table II. The metrics used to assess the satisfaction of

the requirements are the residual energy of the UUVs after

mission completion and the total UUVs distance from their

return locations. A competent CI would steer the robots back

to their base with sufficient residual energy.

Engineers are interested in analysing the CI instances below.

- Standard CI: The UUVs alternate sides every 150s. This CI

recalls the robots to return home 150s before Tmax.

- Energy-based CI: This CI algorithm tracks the positions of

the UUVs and alternates them when both have finished their

assigned area. Also, this CI monitors the energy remaining on

the UUV battery and sends the recall command to return to

base when the critical energy threshold of 750mAh is met.

For this UUV mission, there are 16 possible configurations:

two robots with a “fast” or “slow” version each, travelling at

1.5m/s and 3.0m/s, respectively. Each UUV also supports a

standard (2800mAh) and a high capacity (5000mAh) battery.

Experimental Setup. We performed a wide range of experi-

ments using the object detection and Bo-Alpha UUV missions.

The setup involved running ATLAS and MOOS-IvP in both

missions for the two CI variants and all possible configurations

(48 and 16, respectively). All experiments were run on a Ryzen

5 3600 machine with 16Gb of RAM using VirtualBox 6.1.
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C. Results and Discussion

RQ1 (Configuration Analysis). Figure 9a shows the number

of missed detections for the 48 possible MRS configurations

of the object detection mission using the standard (top) and

advanced CI (bottom). Under the standard CI, ATLAS identi-

fied eight optimal configurations in which the MRS completed

its mission successfully with zero missed detections. Other

configurations produce a wide range of possible detection

failures, up to the worst case of seven missed detections.

We analysed the produced MRS configurations to discover

factors that can affect the system performance and reliability.

Our analysis showed that the optimal MRS designs for a

team of four UUVs always equipped the UUV gilda with a

wide sensor, while for a three UUV team all UUVs should

be equipped with a wide sensor. Engineers can factor in the

cost of robots and sensors and decide whether a three- or

four-robot team is preferred for this mission. Further analysis

revealed a particularly sensitive MRS design when UUV gilda

uses a narrow sensor. These designs tend to produce three

missed detections, due to the UUV gilda missing the initial

detection of the rightmost object in its assigned area and

two subsequent verifications. Accordingly, such designs fail

to meet the mission requirements and should not be preferred.

Figure 9b shows the relation between the number of missed

detections and mission completion time for the object detec-

tion mission. Some MRS configurations using the standard CI

exhausted the available time signifying that at least one UUV

did not complete its task on time. We identified a general pat-

tern indicating a tradeoff with a decline in sweep completion

time at the cost of partial mission completion, i.e., the mission

can complete earlier when fewer detections are performed.

MRS configurations that detected no object completed around

750-1600 seconds, where 750 seconds correspond to the short-

est time needed to complete a sweep. Since no verifications

were performed, this is expected. Subsequent analysis showed

that most of these configurations comprise three UUVs all

equipped with a narrow sensor. This configuration produces

missed detections due to the width of the sweep patterns used

in the standard CI, especially when objects are in the middle

of the assigned UUV regions.

Considering the Bo-Alpha mission, we found one MRS

configuration comprising two fast robots that completed two

full sweeps using the standard CI (Figure 10a). However, this

configuration did not meet the other mission requirement as it

failed to steer the UUV team back to its base with sufficient

residual energy. Further analysis of the configurations that

completed a single sweep yielded a configuration that reported

some residual energy and a mean vehicle distance of less

than 50 meters. This configuration consists of a slow vehicle

(henry) with a large battery, that enables the UUV to return

to base with some residual energy, and a fast vehicle (gilda)

with a smaller battery that can complete its sweep sooner.

These findings clearly demonstrate that ATLAS can support

the analysis of different MRS configurations via its variation

groups. The outcome of this analysis enables the selection of

an optimal configuration for a given mission and requirements.

RQ2 (Collective Intelligence Analysis): To answer this

research question, we compared the standard and advanced

CI algorithms in both case studies. For the object detection

mission, Figure 9a shows that the advanced CI produces a

better worst-case scenario than the standard CI, with two

missed detections at most. In fact, over 40 MRS designs

succeed without missing an object failure. This behaviour is

mainly caused by the CI adapting to the sensor range and using

a smaller vertical sweep step size for narrow sensors. Also,

many MRS configurations using the advanced CI completed

the mission faster and had fewer missed detections than the

corresponding configurations using the standard CI (Figure

9b). This behaviour occurs because the advanced CI instructs

the UUV, after completing its verification task, to resume its

original task from the point at which it was interrupted.

The analysis of the Bo-Alpha mission showed no optimal

MRS configurations with the standard CI, since every con-

figuration fails to complete more than one sweep of the left

and right areas (R1 violation) or fails to return to base (R3

violation). The low number of completed sweeps using the

standard CI is due to the improperly short timing that alternates

the UUVs between different areas before they have completed

their sweeps (Figure 10a). In contrast, the energy-based CI

(with the low energy return threshold of 750mAh) produces

a larger number of completed sweeps with a modal value of

six. Most of the energy-based MRS configurations return the

vehicles back to base (being at most 50 metres from the base).

The standard CI experiences many cases with very low

residual energy (Figure 10c). The overall better performance

of the energy-based CI occurs because this CI uses a waypoint

completion feedback to alternate the sweep sides between the

vehicles, rather than a time limit as in the standard CI. The

better performance is also due to using the energy feedback

for sending the return command sufficiently early, rather than

waiting until getting close to the simulation end time.

These results provide sufficient empirical evidence that

ATLAS can support the comparison of different CI algorithms

given a set of mission-specific metrics. Engineers can use

these results to select optimal CIs for specific combinations

of missions and robots. We note that the manual crafting and

analysis of designs and CI algorithms for robotic teams was

the status quo before ATLAS. Our experience with developing

robotic missions using a non-ATLAS-based solution was the

primary motivation for devising ATLAS.

RQ3 (Reproducibility). We assessed the impact of non-

determinism in the reproducibility of simulation-based evalua-

tion of MRS components by analysing the best MRS configu-

ration and CI algorithm pair for each case study over 30 inde-

pendent runs. Non-determinism can be due to robot behaviour

(e.g., path planning), components of the simulation engine, or

the operating system [29]. Non-deterministic simulations can

produce behaviour that is not representative of real systems.

Regardless of the source of non-determinism, we can assess

the behaviour of a system via repeated executions of a fixed
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Fig. 9: Results for the object detection UUV mission over the 48 MRS configurations for each CI instance
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Fig. 10: Bo-Alpha mission results over the 16 MRS configurations for the standard CI (top) and energy-based CI (bottom)

system configuration. This provides a distribution of metrics

over multiple runs, enabling the identification of outliers in

which non-determinism may produce sub-optimal behaviour.

In the object detection mission, we used a configuration

that produced the lowest timing and zero missed detections

in research question RQ2. Figure 11 shows the relationship

between missed detections and completion time for both CIs

over 30 independent runs for this configuration. In all runs,

there is a longer completion time under the standard CI than

the advanced CI. This is not surprising since with the standard

CI the UUV restarts its sweep pattern from the start after each

verification. Moreover, the completion time for the advanced

CI with no missed detections is generally clustered around the

1100-1300 second range, with some advanced CI executions

producing a single missed detection and correspondingly a

slightly shorter sweep time. This behaviour occurs because

when there is a missed detection, at least one robot will not

be interrupted for verifications, thus allowing the robot to

complete its task slightly faster.

In the Bo-Alpha mission, we used a configuration that

obtained the maximum number of sweeps in research question

RQ2 with large batteries on both vehicles. The results over 30

independent runs show that there is little variability (Figure

12). Generally, the energy tracking CI performs well and better

than the standard CI. The final distance from the base in

Figure 12b shows that generally the metric is always constant,

with a large mean distance with the standard CI and a small

value with the energy tracking CI. Given that the robots are

equipped with large batteries, the results show a considerable

amount of final energy left upon the vehicle which is moving

slower. Interestingly, there are a couple of outlier cases, which
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Fig. 11: Results over 30 independent runs for the object

detection mission using the best configuration and both CIs

report a higher total final distance for the energy tracking CI.

One possible explanation may be that given the variations in

position, the faster vehicle was too far away from base when

the return command was sent and therefore was unable to

return home in time. Another explanation is that in rare cases,

when returning home, robot collision avoidance strategies may

incorrectly navigate the robots a considerable distance away

from their intended home points. These results show the ability

of ATLAS to identify potential instability of configurations in

rare cases. However, it is up to the user to analyse the logs

and determine precisely what happened in each case.

D. Threats to Validity

We limit construct validity threats that could be due to as-

sumptions and simplifications when deciding the experimental

methodology using case studies that represent common UUV

missions. We developed the object detection mission. The Bo-
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Fig. 12: Bo-Alpha mission results over 30 independent runs for the standard CI (top) and energy-based CI (bottom)

Alpha mission [28] has been developed by the MOOS-IvP

community and is part of the standard version of the simulator.

We reduce internal validity threats that could produce

incorrect analysis data and lead to deriving incorrect insights

by assessing ATLAS using independent research questions

and analysing the simulator-produced logs automatically. We

support reproducibility of our findings by making our analysis

scripts available in the project’s repository.

We mitigate external validity threats that could reduce the

generalisation of ATLAS using established MDE practices

and tools like EMF [25], Epsilon [24] and ActiveMQ [22].

The experimental evaluation involved two case studies (one

provided by the MOOS-IvP community), reduces further this

threat. The early prototype ATLAS middleware for Gaze-

bo/ROS demonstrates the generality of our framework and its

capability to support multiple robotic simulators.

VI. RELATED WORK

The work presented lies at the intersection of model-

driven engineering and robotics. Developing model-driven

solutions for the robotics domain is an established area,

which has produced several results over the years [30]–

[32]. The majority of the proposed domain-specific modelling

languages deals only with specific robot functions such as

perception or control, while there are some model-driven

toolchains like RobotML [10], BRICS [12], SmartSoft [9], and

Robochart [11] which provide multiple modelling notations to

be used together when developing a robotic system. For a

detailed description of different approaches to model-driven

engineering of robots, the reader is referred to [18] and [33].

Despite the available literature on the application of MDE

to robotics, the engineering of MRS is still inadequately in-

vestigated. Cattivera and Casalaro [34] conducted a systematic

mapping study on the application of MDE to the engineering

of mobile robots and they found that out of all the studies

reviewed, only 19% (i.e. 13 studies out of 69) deal with

MRS. The most commonly formalism used for modelling

multi-robot behaviour is finite state machines and statecharts

(e.g. [35]–[37]). Other approaches include Ciccozzi et al. [31],

who propose the FLYAQ family of graphical domain-specific

languages to model the structure and behaviour of multi-robot

aerial systems, and Pinciroli and Beltrame [38] who propose

a textual DSL for specifying the behaviour of robot swarms.

Instead of developing a language for specifying the behaviour

of multi-robot systems, Dragule et al. [39] extend FLYAQ with

a specification language, which enables engineers to specify

domain-specific constraints for robotic missions in a declar-

ative manner. Finally, very few approaches propose solutions

for modelling explicitly communication, task allocation, and

coordination between robots with the exception of [40].

The aforementioned languages and tools focus on the

specification of the behaviour and structure of multi-robot

systems. To the best of our knowledge, very few approaches

focus on the design-space exploration of robotic systems.

Saeedi et al. [41] use simulation to tune the parameters of

SLAM algorithms, while Christiansen et al. [42] use design

space exploration to optimise the configuration of an animal

feeding robot. Instead, ATLAS focuses on the exploration and

evaluation of different algorithms for the collective intelligence

of the robotic robot team. Also, our approach is middleware-

and simulator-agnostic, since its flexible, message-based ar-

chitecture allows it to be easily extended to accommodate

experimentation with different robotic platforms.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents the ATLAS framework for design-space

exploration and tradeoff analysis of MRS architectures and

CI algorithms. It described the framework’s architecture, the

core concepts of the ATLAS domain-specific language, and the

ATLAS middleware. The evaluation of the framework is based

on two MRS case studies built with MOOS-IvP [14]. The

evaluation indicated that ATLAS is capable of modelling MRS

and their missions, and it enables the exploration and tradeoff

analysis of different MRS configurations and CI algorithms.

In the future, we plan to evaluate the expressive power

of the ATLAS DSL by applying it to more case studies,

complete the support for Gazebo/ROS and extend its applica-

bility to different robotic platforms [43]. Also, we would like

to improve the variability modelling capabilities of ATLAS,

enabling the analysis of more elaborate design alternatives [20]

and investigate the incorporation of intelligent techniques to

search for optimal MRS configurations [44]–[47].
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[33] E. de Araújo Silva, E. Valentin, J. R. H. Carvalho, and R. da Silva Bar-

reto, “A survey of model driven engineering in robotics,” Journal of

Computer Languages, p. 101021, 2021.
[34] G. Cattivera and G. Casalaro, “Model-driven engineering for mobile

robot systems: A systematic mapping study,” Malardalen University,
2015.

[35] H. Skubch, M. Wagner, R. Reichle, and K. Geihs, “A modelling lan-
guage for cooperative plans in highly dynamic domains,” Mechatronics,
vol. 21, no. 2, pp. 423–433, 2011.

[36] A. Paraschos, N. I. Spanoudakis, and M. G. Lagoudakis, “Model-driven
behavior specification for robotic teams,” in AAMAS, 2012, pp. 171–178.

[37] J. M. Gascuena, E. Navarro, and A. Fernández-Caballero, “Model-driven
engineering techniques for the development of multi-agent systems,”
Engineering Applications of Artificial Intelligence, vol. 25, no. 1, pp.
159–173, 2012.

[38] C. Pinciroli and G. Beltrame, “Buzz: An extensible programming
language for heterogeneous swarm robotics,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2016, pp. 3794–3800.
[39] S. Dragule, B. Meyers, and P. Pelliccione, “A generated property

specification language for resilient multirobot missions,” in International

Workshop on Software Engineering for Resilient Systems. Springer,
2017, pp. 45–61.

[40] P. A. Baer, R. Reichle, and K. Geihs, “The spica development
framework–model-driven software development for autonomous mobile
robots,” in Proceedings of the 10th international conference on intelli-

gent autonomous systems (IAS-10’08), 2008, pp. 211–220.
[41] S. Saeedi, L. Nardi, E. Johns, B. Bodin, P. H. Kelly, and A. J. Davison,

“Application-oriented design space exploration for slam algorithms,”
in 2017 IEEE International Conference on Robotics and Automation.
IEEE, 2017, pp. 5716–5723.

[42] M. P. Christiansen, P. G. Larsen, and R. N. Jørgensen, “Robotic design
choice overview using co-simulation and design space exploration,”
Robotics, vol. 4, no. 4, pp. 398–420, 2015.

[43] A. Elkady and T. Sobh, “Robotics middleware: A comprehensive litera-
ture survey and attribute-based bibliography,” Journal of Robotics, vol.
2012, 2012.

[44] S. Gerasimou, R. Calinescu, and G. Tamburrelli, “Synthesis of proba-
bilistic models for quality-of-service software engineering,” Automated

Software Engineering, vol. 25, no. 4, pp. 785–831, 2018.
[45] S. Gerasimou, G. Tamburrelli, and R. Calinescu, “Search-based synthesis

of probabilistic models for quality-of-service software engineering,”
in 30th IEEE/ACM International Conference on Automated Software

Engineering. IEEE, 2015, pp. 319–330.
[46] C. Henard, M. Papadakis, M. Harman, and Y. Le Traon, “Combining

multi-objective search and constraint solving for configuring large
software product lines,” in 37th IEEE/ACM International Conference

on Software Engineering, vol. 1. IEEE, 2015, pp. 517–528.
[47] S. Gerasimou, J. Camara Moreno, R. Calinescu, N. Alasmari, F. Alh-

wikem, and X. Fang, “Evolutionary-guided synthesis of verified pareto-
optimal MDP policies,” in 36th IEEE/ACM International Conference on

Automated Software Engineering, 2021, in press.

11


	Introduction
	Motivating Example
	ATLAS
	Overview
	DSL Core Concepts
	Searching for Optimal Robot Configurations
	ATLAS Middleware
	Collective Intelligence

	ATLAS Prototype
	Experimental Evaluation
	Research Questions
	Evaluation Methodology
	Results and Discussion
	Threats to Validity

	Related Work
	Conclusions and Future Work
	References

