
HAL Id: hal-04216627
https://inria.hal.science/hal-04216627

Submitted on 25 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Experience in Specializing a Generic Realization
Language for SPL Engineering at Airbus

Damien Foures, Mathieu Acher, Olivier Barais, Benoit Combemale,
Jean-Marc Jézéquel, Jörg Kienzle

To cite this version:
Damien Foures, Mathieu Acher, Olivier Barais, Benoit Combemale, Jean-Marc Jézéquel, et al.. Expe-
rience in Specializing a Generic Realization Language for SPL Engineering at Airbus. MODELS 2023
- 26th International Conference on Model-Driven Engineering Languages and Systems, ACM; IEEE,
Oct 2023, Västerås, Sweden. pp.1-12. �hal-04216627�

https://inria.hal.science/hal-04216627
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Experience in Specializing a Generic Realization
Language for SPL Engineering at Airbus
Damien Foures

Airbus (Toulouse, France)
Mathieu Acher

Univ Rennes, Inria, CNRS, IRISA
Olivier Barais

Univ Rennes, Inria, CNRS, IRISA

Benoit Combemale
Univ Rennes, Inria, CNRS, IRISA

Jean-Marc Jézéquel
Univ Rennes, Inria, CNRS, IRISA

Jörg Kienzle
McGill University / University of Málaga

Abstract—In software product line (SPL) engineering, feature
models are the de facto standard for modeling variability. A user
can derive products out of a base model by selecting features of
interest. Doing it automatically, however, requires a realization
model, which is a description of how a base model should be
modified when a given feature is selected/unselected. A realization
model then necessarily depends on the base metamodel, asking
for ad hoc solutions that have flourished in recent years. In this
paper, we propose Greal, a generic solution to this problem in the
form of (1) a generic declarative realization language that can
be automatically composed with one or more base metamodels
to yield a domain-specific realization language and (2) a product
derivation algorithm applying a realization model to a base model
and a resolved model to yield a derived product. We describe
how, on top of Greal, we specialized a realization language to
support both positive and negative variability, fit the syntax and
semantics of the targeted language (BPMN) and take into account
modeling practices at Airbus. We report on lessons learned of
applying this approach on Program Development Plans based on
business process models and discuss open problems.

I. INTRODUCTION

Software Product Line (SPL) engineering [1], [2] aims at
capturing the commonalities (assumptions true for each family
member) and variability (assumptions about how individual
family members differ) among several software products [3].
Variability management is thus a key feature that distin-
guishes SPL engineering from other software development
approaches [4]. It concerns the entire development life cycle,
from requirements elicitation [5] and tracing [6] to product
derivation [7] to product testing [8]. Modeling variability
allows a project to capture and select which version of which
variant of any particular component is wanted in the system. A
user can then derive products out of a base model by selecting
the features of interest for a specific configuration.

Doing it automatically, however, requires a realization
model, which is a description of how a base model should
be modified when a given feature is selected or unselected
in a given configuration. For instance, we could want that
whenever the feature f1 is selected, then the class X would
be added to a base (class) model, or the state S removed from a
base (StateChart) model. A realization model then necessarily
depends on the base metamodel, asking for ad hoc solutions
that have flourished in recent years.

In this paper, we propose Greal a generic solution to this
problem in the form of (1) a generic declarative realization
language that can be automatically composed with one or
more base metamodels to yield a domain-specific realization
language and (2) a product derivation algorithm applying a
realization model to a base model and a resolved model to
yield a derived product. We explain our approach using the
well-known use case of the Expression Problem Product Line
(EPL), highlighting the need for both positive and negative
variability even for this simple case. We then describe how,
on top of Greal, we specialized a realization language to
support both positive and negative variability, fit the syntax
and semantics of the targeted language (BPMN) and take into
account modeling practices at Airbus. We report on lessons
learned when applying this approach to Program Development
Plans (PDP) based on business process models. Based on
our experience, we also discuss open problems of interest for
model-based and SPL engineering.

Remainder. Section II discusses the motivation of this
paper; Section III introduces Greal using the EPL example;
Section IV sketches the Greal semantics, i.e. our derivation
algorithm; Section V reports on our experience of applying
this approach at Airbus on Program Development Plans based
on BPMN; Section VI discusses lessons learned, limitations
and future work; Section VII describes research works related
to the topic of this paper, and finally Section VIII concludes.

II. BACKGROUND AND MOTIVATION

Two different kinds of techniques can be used to introduce
variability into programming/modeling languages [9]: amal-
gamated and separated (aka orthogonal). The amalgamated
approach proposes to augment the base language with vari-
ability concepts. In [7], [10], [11], the authors extend the
UML metamodel for modeling variability in multiple UML
diagrams, e.g., Class or Sequence diagrams. In [12], [13], the
authors propose a generic solution that can be applied to any
kind of language and is fully supported by a tool.

In a separated approach (aka. orthogonal approach), the base
language and the variability language are kept distinct and are
related via a mapping. An illustration of this second approach

https://orcid.org/0000-0003-1483-3858
https://orcid.org/0000-0002-4551-8562
https://orcid.org/0000-0002-7104-7848
https://orcid.org/0000-0002-0582-9745
https://orcid.org/0000-0001-6611-5431

can be found in [14] (supported by the FeatureMapper tool) or
in [15]. These approaches directly relate features and model
elements and derive product models by removing all the model
elements associated with non-selected features. Another exam-
ple of the separated approach is VML* [16], which proposes
a family of textual languages dedicated to the modeling of
relationships between elements. VML* and FeatureMapper
have been compared in [17] in terms of automation, scalability,
expressiveness and evolution of the mapping.

Fig. 1: Principle of Orthogonal Variability (from CVL)

In this paper we set ourselves in a context of an orthogonal
approach where feature models are then linked to a base
model through a realization model. The Common Variability
Language (CVL) [18] has been unsuccessfully proposed as a
standard for this kind of approaches, but it is nevertheless an
excellent illustration of the important concepts that we need,
as illustrated in Fig. 1.

CVL has been designed as a domain-independent language
for specifying and resolving variability over any instance of
MOF-compliant metamodels. The main concepts of CVL are:

• A Variability Model (VM), that provides a tree-based,
high-level description of the SPL (domain space) in terms
of features/decisions and their constraints, inspired by
feature models [19].

• Base Models (BMs), i.e., a set of models, each conform-
ing to a domain-specific modeling language (e.g., UML).
In CVL, a base model plays the role of an asset in the
classical sense of SPL engineering. These models are then
customized to derive a complete product.

• A Variability Realization Model (VRM), that specifies
a mapping between features from the VM and model
elements from the BMs. An SPL designer defines in the
VRM what elements of the base models are removed,
added, substituted, or modified (or a combination of these
operations) given a selection or a deselection of a feature
in the VM.

• Resolution Models (RMs), that store the choices made
for a given configuration of the SPL. Realizations of the
chosen features are then applied to the models to derive
the final product model.

The VRM specifies whether a model element, or a set
of model elements, change during the derivation process:

removal (aka. negative variability), addition (aka positive
variability [20]) or value assignment (in place modification
of some model attribute or link).

As already noticed in several studies (see [21] for instance),
CVL suffers from 3 main issues:

1) VRM operators work at a very low level, in terms of
instances of a metametamodel (e.g., MOF), i.e., objects
and links representing, e.g., classes/attributes/methods for
a class model, or states/transitions for a Statechart.

2) VRM operators are imperative: their order matters, which
makes it difficult to reason about them or even just com-
pose them (no associativity or commutative properties).

3) Since base models are expressed in their own specific
language (e.g., UML, SySML, BPMN, etc.), there is a
need to specialize the VRM operators. Stated differently,
removing a class in a class diagram or removing a
transition in a transition system has a specific meaning,
and needs a specific syntax and semantics.

In this paper we address these issues by proposing a
new modeling language called Greal (standing for Generic
Realization Language) to describe realization models in the
spirit of CVL’s VRM, but with the following key features:

• Greal is a generic high level language, where the concepts
of the metamodels of interest can still be manipulated
directly, e.g., in terms of classes/attributes/methods for a
class model, or states/transitions for a Statechart. For that,
all the metaclasses of a given meta-model are imported in
a Greal model. They can then be used as functions return-
ing all the model elements of their type that match a given
pattern. For instance, with UML, class(name=’Exp.*’)
would return all classes from a base model whose names
match the regular expression ’Exp.*’.

• Greal is a declarative language, to allow composition
and reasoning over a realization model. In particular the
Greal interpreter is in charge of computing the order of
realization operations among the implicit partial order
given in a Greal model. Even though Greal is declarative,
it still supports both positive and negative variability, by
either extending existing base models or slicing them.
Composition of realization operations is possible, since
negative variability is considered after all positive vari-
ability operations have been executed, and is idempotent.

III. APPROACH

In this section, we explain the approach using the Expres-
sion Problem Product Line (EPL) as described in [22] as a
running example. We start with the UML models (M1) for
the EPL and the corresponding Feature Model. We then show
a realization model (M1) in Greal, and apply it to derive a
product from the EPL. We finally present how this realization
language was obtained from our generic metamodel.
A. The Expression Problem Product Line

As in [22] we use the following grammar for expressions:
Exp ::= Lit | Add | Neg Lit ::= non-negative integers
Add ::= Exp ”+” Exp
Neg ::= ”-” Exp

Fig. 2: The Feature Model for the EPL

Two different operations can be performed on the expres-
sions described by this grammar: printing, which returns the
expression as a string, and evaluation, which computes the
value of the expression. The set of products in the EPL can
be described with a feature model, as illustrated in Fig. 2.
It has two orthogonal feature sets, the one concerned with
the desired expressiveness of expressions, namely Lit, Add,
and Neg, and the one concerned with operations that can be
performed on expressions, namely Print and Eval.

Although simple, the feature model is representative of the
kind of modular decomposition problems we find in the real
world. In this example, initially Lit and Print are mandatory
features. The features Add, Neg and Eval are optional. Feature
models also support OR and XOR feature groups, as well as
includes and excludes cross-tree constraints between features.
Feature models have even been extended to support more
complex constraints between features [23]–[25]. Fortunately,
the complexity of inter-feature constraints makes no difference
for our approach. Greal just cares about which features are
selected, and which ones are not, and based on that, determines
which models to compose or slice.

B. Base UML Models (M1) for the EPL

The EPL is implemented as 6 distinct models (each being
valid w.r.t. the UML metamodel), carefully designed to work
together (see Fig. 3) in the context of positive variability.

EPL ModelNeg Model

Eval Model NegEval Model AddEval Model

Add Model

Fig. 3: Base UML Models for the EPL

C. Realization Model (M1)

To also illustrate negative variability, we assume that the
modeler now changed their mind and wants the feature Print to
be optional, so that when it is not selected, the corresponding
model elements should be removed from the resulting product.

To describe how products can be obtained from the base
models of Fig. 3 and a specific resolved feature model, we
need a realization model, as presented in Fig. 4.

1 import FM "EPL-FM.xml" // Import Feature Model of Fig. 2
2 import UML "EPLModel.uml" as eplModel // Import EPL Model of
3 // Fig . 3 as a UML Model
4 Selected Add then { // Add is from the FM
5 import UML "AddModel.uml" as addModel
6 with addModel.Class(name="Exp") => eplModel.Class(name=’Exp’)
7 // since Greal supports automatic matching of model
8 // elements with identical names, this can be omitted
9 }

10 Selected Eval then {
11 import UML "EvalModel.uml" as evalModel
12 with evalModel.Class (’Exp’) => eplModel.Class(’Exp’)
13 // Class(”Exp”) is a shortcut for Class(name=’Exp’)
14 }
15 Selected Add, Eval then {
16 import UML "AddEvalModel.xmi"
17 }
18 NotSelected Print then {
19 remove eplModel.Method("print") // regular expressions
20 }

Fig. 4: A Greal Realization Model for the EPL

Our declarative realization language Greal makes it possible
to (1) import a feature model (as in line 1), which renders
the names of all its features visible; (2) import a base model
conforming to a given metamodel, e.g., UML (as in line 2);
and (3) specify that if a feature is Selected (e.g., Add in line
4) or NotSelected (e.g., Print in line 18), then one or several
of the following operations must be performed:

• import another model and merge it with the base one (the
imported model conforming to the base metamodel).

• unify existing model elements with newly imported ones
as specified with the ”=>” operator. To save typing and
speedup most common cases, model elements of the same
metatypes and the same names are automatically unified.
In fact, all model elements from the newly imported
model are treated as formal arguments that can be given
an actual value from the current model (hence yielding a
unification or join point), or from another source, e.g., to
transfer feature attributes to model elements or to rename
an imported model element to avoid a name clash.

• remove specific model elements (last line of Fig. 4).

D. Resolved Model (M1)

For instance, if we would select the features Add and Eval
(and not Neg), Greal would compose EPL Model with Add
Model, Eval Model and AddEval Model and slice the result to
remove the print methods. How this is done concretely is
described in more detail in subsection IV. The resulting model
is presented in Fig. 5.

Fig. 5: EPL Model for Selection +Add,+Eval,-Neg, -Print

E. Instantiating Greal infrastructure for a Given Domain
Specific Modeling Language

Since a realization model can refer to specific model el-
ements through their type, the realization language infras-
tructure (static checker, lexer, completion engine) needs to
be customized for each base metamodel to offer all of its
metaclasses as type-checkable keywords.

In Greal this is achieved with the notion of Perspective,
which makes it possible to import all the metaclasses of the
corresponding metamodel (e.g., UML) as function identifiers,
e.g., Class() as in the example of Fig. 4. These functions return
model elements of their corresponding type using pattern
matching on the metaclass attribute values. All attributes of
a metaclass (’name’ or ’isAbstract’) turn into accepted named
parameters of the function. For instance, class(name=’Exp.*’)
would return all classes from a base model whose names match
the regular expression ’Exp.*’. Since a perspective always
conforms to exactly one well-defined metamodel, static type
checking of a Greal model is straightforward, with all the
expected benefits in terms of early error detection, but also
advanced editing support.

Fig. 6 summarizes the main concepts of Greal in the form
of a simplified metamodel. This excerpt shows the three main
parts of the metamodel.

• The algebraic language for expressing conditions on the
selected features that trigger actions (grey part),

• the action language allowing to define a set of actions
among which the slice (RemoveAction), the value as-
signment (SetAction) and the import of another model
to merge it (PositiveImportAction) (red part).

• the RealizationModel that references a FeatureModel and
a Model conforming to a perspective. The Realization-
Model has a set of steps that can specify a set of rules to
bind features algebraic expression and a set of Actions.

AbstractId

mid : EString

AbstractIdAttribute

mid : EString

Step

name : EString

 require : Require

Action

BinRule

op : EString

Model

uri : EString

alias : EString

CompositeAction

FeatureModel

uri : EString

FinalRule

name : EString

Mapping

source : EString

target : EString

PositiveImportAction

uri : EString

alias : EString

 noMatchByNameRule : NoMatchByName

RealisationModel

RemoveAction

Rule

RuleSet

SetAction

featureAttribute : EString

UnRule

not : EBoolean = false

perspective:EString

perspective:EString

[0..1] left

[0..1] right

[0..*] actions

[0..*] mapping

[0..1] feature

[0..*] models

[0..*] steps

[0..*] modelElements

[0..1] rule

[0..1] action

[0..1] elementAttribute

[0..1] rule

[0..*] requires

[0..*] rule

Fig. 6: Greal Simplified Metamodel

IV. GREAL SEMANTICS: THE DERIVATION ALGORITHM

The specification of a realization model is declarative to al-
low composition and reasoning. Still some sequencing is often
useful. This leads to a multi-steps specification, where each
step is a set of declarative realization operations (existence,
substitution and value assignment).

A. One-step Derivation Algorithm

Given a valid feature selection and a realization model, the
derivation algorithm of a given step of the realization model
derives a (possibly intermediary) model by first resolving
the positive variability (phase 1), then addressing negative
variability (phase 2), and finally value assignments (phase 3).
An additional phase (phase 4) is also conducted to normalize
the resulting model, both in terms of the base language and
specific modeling practices from the domain.

Guarded by whether any given set of features are Selected
or NotSelected, each clause from a realization model can
import any number of model elements, optionally rename them
and unify them with base model elements (positive variability),
remove any model element (negative variability), and can
assign values to model elements, those values coming either
from the realization model itself or from feature attributes.
Since features can appear any number of times in a realization
model, their associated clauses form a directed acyclic graph
(DAG). For instance in the realization model of Fig. 4, the
clause of line 15 where Eval and Add are both selected is
below the clause of line 10 (Eval) and line 5 (Add). This allows
feature interactions to be dealt with, as explained below.

The derivation algorithm, which is inspired from the CORE
derivation algorithm for positive variability presented in [26],
first determines the set of clauses Rcons that are to be consid-
ered as follows. Given a valid feature model configuration C
containing selected and unselected features, the algorithm first
removes all features from C that do not have any associated
clauses. The algorithm then looks for a clause that realizes (or
realizesNot) all the remaining features in C (i.e. for which the
features are respectively Selected or NotSelected). If there is
no such clause, the algorithm looks for clauses that realize (or
realizeNot) a subset of features in C of size —C—-1, then
of size —C—-2 and so on. Once one or several clauses are
found, they are added to the list of clauses to be considered
in Rcons, and the features they realize are removed from C.
The algorithm continues until C is empty.

This way of determining which clauses to use makes it
possible to elegantly handle feature interactions. Feature inter-
actions describe situations where the realization of a product
has to be adapted because of the simultaneous presence
(or absence) of several features. For example, in the EPL,
the AddEval model is a model that deals with the feature
interaction of Add and Eval. Only if both Add and Eval are
selected, the class Add needs an int eval() operation.

Finally, starting with the models in Rcons, the algorithm
then follows all dependencies to determine the set of realiza-
tion operators Rprocess that are going to be processed.

1) Resolving Positive Variability: To resolve positive vari-
ability, the derivation algorithm first traverses the DAG in
top-down order. Whenever an import is encountered, the
algorithm invokes the model composition algorithm of the
realization (modeling) language, passing unification mappings
as a parameter, if any. By default, model elements are unified
through explicit mappings. Possibly, model elements with
the same name or signature are automatically unified. The
algorithm then takes the resulting model and continues the
DAG traversal. To this aim, the remaining imports in the DAG
are updated to point to the model resulting from the previous
composition, and then the next import is handled. Removals
are ignored during the DAG traversal of phase 1.

Whenever a model A is composed with a model B, any
unification mappings that map model elements from B to A
that were applied during the composition of the models must
also be applied to follow-up compositions of phase 1. For
example, if there are unification mappings from a model C to
model B, then the unification mappings from C to B must be
transformed into C to A mappings using the B to A mappings.

2) Resolving Negative Variability: The negative derivation
is based on the primitive remove operator within the realization
language to remove a set of model elements. Again, the
derivation algorithm traverses the DAG that by now only
contains removals and value assignments in a top-down order.
For each clause, the corresponding directives are processed as
follows:

1) We compute the set of model elements Me remove
explicitly mentioned in the remove declarations. Remove
statements can reference a set of model elements based
on the metaclass name, pattern matching on the name
attribute, if it exists, or based on model element id.

2) We recursively compute the model elements that are
related to this first set of model elements that were desig-
nated by the remove statements, because they also need to
be removed, and update Me remove. The related model
elements could be: i) contained model elements (based
on the metamodel structural constraints). For example, in
UML, designating a method to be removed would also
remove the method’s parameters ; ii) model elements ref-
erencing the elements that are to be removed (by default,
if the deletion of the element leads to the violation of
the minimal cardinality of the relation linking these two
elements, then the linked element is also deleted).

3) We update relations in the model referencing model
elements contained in Me remove to remove references.

4) We delete all elements contained in Me remove from
the model. We use the delete mechanism that provides a
specific semantic for the selected metamodel if it exists
(i.e., the base language). If it does not exist, we use the
generic way to remove a bulk of model elements from a
model. In case the deletion of an already deleted model
element is requested, no error is signaled to the user.

3) Resolving Value Assignments: Finally, the derivation
algorithm applies the value assignments, in the depth-first
order of the DAG. However, such a sequence of value as-

signments is generally not commutative nor associative if
several assignments target the same attribute. There are 3
possible ways to handle this issue. The most restrictive one
is to allow the assignment of a given attribute only once. A
second possibility would be to interpret any assignment as a
relative assignment, i.e. x+ = 3 or x∗ = 3 with a static check
ensuring that only one kind of operator is used all along for
each attribute to preserve associativity and commutativity. The
third possibility would be to partially give up the declarative
aspect of Greal and rely on the order given by the designer. At
the request of Airbus, this choice is implemented as a semantic
variation point that can be configured by the Greal user.

4) Model Normalization: Once the model has been derived
from the two aforementioned phases, a last phase of nor-
malization is applied to both make sure the resulting model
conforms to the base language (if not initially ensured by
the composition and removal operators), and to apply specific
modeling practices. This phase consists only in refactoring the
model, without any semantic change of the model. Hence, the
input and output models have the same semantics, i.e., both
models simulate each other.

B. Realization Model Composition and Multi-step Derivation

As explained above, we introduce a declarative formalism
to specify the realization model. To ensure a sound and valid
derivation of any model, we first apply positive variability
management (i.e., composition) and then negative variability
management (i.e., removal).

Composition is done in two steps: first the import of the
new model, with possible renaming and attribute setting, and
then the merge of this imported model with the current one,
using unification of model elements of the same type and the
same names.

The semantics of removal is idempotent: if a remove oper-
ator is called twice on the same element, the result is that the
element is removed. Therefore, to ensure the declarative nature
of our formalism and the validity of the derivation process, we
first apply positive variability management and then negative
variability management. Value assignments applied in phase
3 of the one-step derivation algorithm must be restricted as
discussed before.

Depending on the domain and the base language, some
situations are more convenient to address with an interleaving
of positive and negative realization operators. Such complex
workflows would require applying negative variability after
the application of positive variability and value assignments.
To keep the derivation of any model according to a given
configuration valid, the execution flow has to be made explicit,
with an intermediate and propagated derived model in between
a negative realization operator and a following positive realiza-
tion operator. The formalism would be no longer declarative,
but a succession of declarative steps that can be seen as
a multi-step derivation algorithm. The specification of the
workflow (i.e., sequence of steps) can be either expressed
internally in the realization model or externally through a
dedicated workflow language.

In practice, the proposed realization language supports the
definition of a set of steps, all possibly using the resulting
models of previous steps. This creates a partial order to process
the steps, possibly even enabling parallelization.

V. EXPERIMENTATION AT AIRBUS

A. Program Development Plans at Airbus

A Program Development Plan (PDP) is a description of a
highly integrated development thread from program prepara-
tion to handover to series. It highlights the key deliverables,
decisions and the maturity levels to be achieved at each step
of a program. It helps to identify the contribution of each
stakeholder in a long and complex ecosystem. It inherits a
long history of aircraft project management experience and
incorporates a large amount of lessons learned (e.g. A380,
A350, NEO. . .).

PDPs are part of an Airbus-wide digital transformation pro-
gram, publicly known as DDMS. Digital Design, Manufactur-
ing & Services (DDMS) is a digital-first approach to the way
aerospace products are designed, manufactured, and operated.
At Airbus, the DDMS program focuses on digital methods
and tools for end-to-end business processes that ensure we
can reduce costs and time to market for our products, while
meeting our customers’ expectations for quality, safety and
environmental performance.

During the early phases of a program, the uncertainty on
the future program assumptions is still high (e.g. mission,
range, make or buy policy, number of aero load stress loops),
and consequently the associated PDP is not stable yet. In the
context of DDMS and to improve cost evaluation and time-to-
market calculation efficiency in these early phases, the Airbus
PDP Architects decided to explore variability management
on end-to-end business process simulation using a standard
business process modeling language named BPMN (Business
Process Model and Notation). PDP Architects select BPMN
as it is formal enough to be simulated (in addition with the
BPSim extension for lead time and resources calculation) and
simple enough to be directly used by businesses.

B. Implementation

To perform the evaluation of our approach, we developed
both a generic implementation of Greal and set of speciali-
sations for BPMN. The implementation is based on Eclipse
(https://www.eclipse.org/) and Xtext (https://www.eclipse.org/
Xtext/) for the definition of the realization language. For
the context of the case study built on top of BPMN,
we use the Eclipse BPMN editor (https://www.eclipse.org/
bpmn2-modeler/) and the ELK project (https://www.eclipse.
org/elk/). The motivation for these choices was mainly driven
by the possibility to have access to the source code of these
tools. Feature models are defined using the open-source tool
FeatureIDE [27] (https://featureide.github.io/). Feature IDE
provides an attributed feature model editor with support for
constraints based on boolean expressions. It also provides a
simple configuration editor with support for constraint propa-
gation. It is therefore possible to select the features we want

for a particular model instance. Currently, it is possible to
select or not an option, to make a partial selection, and to
assign values to some attributes defined in the feature model.

Our implementation provides a pluggable architecture to ex-
tend the generic behavior of Greal for a given domain-specific
modeling language (e.g. BPMN). Two kinds of extensions can
be provided for a specific modeling language:

• specific remove semantics for model elements that bypass
the containment property that exists at the metameta
model level (e.g. removing a gateway means, e.g., remov-
ing the associated diagram element and BPSIM element).

• normalization rules to automatically refactor the BPMN
model at the end of each step. For implementing a nor-
malization rule, current implementation consists in pro-
viding a Java class that implements a specific interface.
Each developer of a plugin for a specific normalisation
must guarantee that the transformation is a refactoring1.

C. Generic Building Blocks for the Domain Modeler

At Airbus, Domain Engineering starts with very basic
BPMN building blocks, here named Generic Patterns (GP),
as presented in Fig. 7: GP – Aero load stress loop (X) ; GP
– Produce SAM (X) ; GP – Data drop (X).

D. Business Level Patterns

From the kind of building blocks described above, the
Domain Modeler can assemble a library of Domain BPMN
Components. For instance, with following Greal Realization
Model, she can compose the 3 basic models of Fig. 7 to
obtain a generic Manage Aero load stress loop as represented
in Fig. 8:

1 Step 1:{
2 import BPMN "GP - Aero load stress loop (X).bpmn" as StressLoop
3 remove StressLoop.EndEvent("*")
4 import BPMN "GP - Produce SAM (X).bpmn" as Sam
5 with Sam.Task("Produce SAM (Y)").input =>
6 StressLoop.IntermediateThrowEvent(
7 "FeasibilityStudy (X)").output
8 remove Sam.IntermediateCatchEvent("FeasibilityStudy (X)")
9

10 import BPMN "GP - Data drop (X).bpmn" as DataDrop
11 with DataDrop.Task("Produce and provide data drop (X)").input =>
12 Sam.IntermediateThrowEvent("SAM (Y)").output
13 remove DataDrop.IntermediateCatchEvent("SAM (Y)")
14

15 forall Sam.task("Produce SAM (Y)")
16 set leadTime = FixDuration("P264M")
17 }

E. Business Components Ready for Use

Generic Business patterns as the Manage Aero Load stress
loop (X) of Fig. 8 need to be instantiated as ready to use
Business Components to simplify the task of the Application
Modeler. For instance, in a typical Airbus PDP, the Aero Load
stress loop has to be executed 3 times with increasing levels of
maturity, yielding models called Loop1, Loop2 and Loop3. In
some cases, there might even need an additional loop, called
Loop2bis. All these variants of the Manage Aero Load stress
loops are obtained by instantiating the meta-parameters X, Y

1Restructuring of a model to improve its internal qualities without changing
its external behavior.

https://www.eclipse.org/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/bpmn2-modeler/
https://www.eclipse.org/bpmn2-modeler/
https://www.eclipse.org/elk/
https://www.eclipse.org/elk/
https://featureide.github.io/

Fig. 7: Generic BPMN Building Blocks

Fig. 8: Manage Aero load stress loop

and Z to actual values, such as X−1 = Decision for Loop1,
as illustrated in Fig. 9. Since the various Aero Load stress
loops feature different lead times, the realization model also
has to update these with relevant values, either in an absolute
way or relative to the value already existing in the base model.

As an example, here is an extract of the code for obtaining
the Loop1 model.

1 Loop1 require Step1 as base: {
2 forall base .BaseElement(".*X-1.*")
3 set name = "\(1)Decision\(2)"
4 forall base .BaseElement(".*X.*")
5 set name = "\(1)1\(2)"
6 ...
7 forall base .Gateway("*") set name = "\(1)-1"‘;
8 remove base.IntermediateCatchEvent("SAM (Y-1)");
9 forall base .Task("Perform Aero load stress loop (X)")

10 set LeadTime = ‘FixDuration("P132M")‘ ;
11 }

Fig. 9: Manage Aero load stress loop 1

F. Variability Model

The variability model capturing the various features of the
Airbus PDP contains several hundreds of features with many
cross-tree constraints. For confidentiality reasons, we can only

discuss an extremely simplified variability model for the PDP,
related to the manner in which its Aero Load stress loops are
articulated. Depending on the level of novelty of an aircraft
building process, the PDP can be configured by selecting one
of the following three features.

• Nominal: 3 Aero Load stress loops are performed: Loop
1, Loop 2 and Loop 3.

• Conservative: 3 Aero Load stress loops are performed:
Loop 1 Simplified, Loop 2 and Loop 3. Also, some lead
times should be adjusted to model the fact that some
processes are well known and feature less variability.

• Innovative: 4 Aero Load stress loops are performed: Loop
1, Loop 2, Loop 2bis and Loop 3. Here some lead times
will also be modified, but in the opposite direction since
the processes are supposed to be less understood in this
case.

The following realization model makes the connection be-
tween the variability model and the BPMN models presented
in the previous section, including the modification of lead
times.

1 import FM "model.xml";
2 import BPMN "Loop1.bpmn" as Loop1;
3 ManageAeroloadStressLoop: {
4 Selected Nominal then {
5 import "Loop2.bpmn" as Loop2 noImplicitMatchByName
6 with Loop2.Task("Produce and provide Data drop X") =>
7 Loop1.Task("Produce and provide Data drop X")
8 with Loop2.IntermediateCatchEvent("Step3 passed") =>
9 Loop1.IntermediateCatchEvent("Step3 passed")

10 with Loop2.IntermediateCatchEvent("Step4 passed") =>
11 Loop1.IntermediateCatchEvent("Step4 passed")
12 with Loop2.StartEvent ("*") => Loop1.StartEvent("*")
13 with Loop2.EndEvent("*") => Loop1.EndEvent("*")
14 with Loop2.Gateway("655-2") => Loop1.Gateway("654-1");
15

16 import "Loop3.bpmn" as Loop3 noImplicitMatchByName
17 with Loop3.Task("Produce and provide Data drop X") =>
18 Loop1.Task("Produce and provide Data drop X")
19 with Loop3.IntermediateCatchEvent("Step4 passed") =>
20 Loop1.IntermediateCatchEvent("Step4 passed")
21 with Loop3.IntermediateCatchEvent("Step5 passed") =>
22 Loop2.IntermediateCatchEvent("Step5 passed")
23 with Loop3.StartEvent ("*") => Loop1.StartEvent("*")
24 with Loop3.EndEvent("*") => Loop1.EndEvent("*")
25 }
26

27 Selected Conservative then {...}
28 Selected Innovative then {...}
29 }

For instance if the feature ”Nominal” is selected, the result-
ing BPMN is as shown in Fig. 10.

G. Normalization Rule

In the context of BPMN & BPSIM standards applied to the
engineering of PDPs, we apply the following normalization
rules: i) Removal of duplicate sequence flows (i.e. same source
and target model element) resulting from the composition of

Fig. 10: Manage Aero load stress loops

input models; ii) When a sequence flow needs to be bound to
a target model element, this one is removed if both the source
and target are gateways; iii) Removal of useless gateways,
i.e., with only 1 input, resp. 1 output; iv) Removal of events
(send/receive) when an explicit sequence flow exists.

VI. LESSONS LEARNED AND OPEN CHALLENGES

We now discuss different lessons learned of applying Greal
at Airbus, some leading to further open challenges of interest
for the MDE and SPLE community.

A. Generic Vs. Specific Realization Language

In this paper, we introduce the first generic high-level
realization language that supports the seamless and sound
combination of positive and negative variability management.
Using Greal, we have been able to deliver a realization lan-
guage that fits the specifics of BPMN and modelling practices
at Airbus. To do so, we benefited from the Greal generic
metamodel (Fig. 6) but we also had to specialize different
parts. In fact, there is a natural tension between genericity
and specificity. Specifically, the genericity comes from the fact
that the realization language is built in such a way that it can
be applied to any base model defined with an Ecore-based
language, taking into account the native structural constraints
supported in the specification of an Ecore metamodel. Hence,
the realization language is agnostic to the base language, but
also to the specific semantics coming from the base language
(and not captured as structural constraints in the language
metamodel). For instance, the removal of a model element
can lead to an arbitrarily complex behavior according to the
base language semantics (removing a class in a class diagram
could lead to the removal of the associated references, while
removing a state in a statechart could lead to reconnecting
the transitions to the following state). While CVL is generic,
it achieves this genericity by working at a low level of
abstraction, where models are treated simply as objects with
references. As a result, a direct usage of CVL would not take
into account any structural or other constraints specified in
the language’s metamodel. In response, we offer the ability to

specialize semantic constraints through the capitalization in a
library associated to the base language, and then plugged into
the Greal semantics. To specialize the realization language,
we also introduce a phase dedicated to model normalization.
While this phase is limited to the refactoring of the resolved
model, hence not changing the overall model semantics, it
makes it possible to take into account modeling rules specific
to the language, or even to a particular domain or use. In our
prototype implementation, these rules are easily plugged on
demand, and automatically applied after each derivation of a
complete step. This ensures that intermediate models conform
to the domain-specific modeling rules.

Development effort. Overall, the development effort for
specializing the realization language was mainly focused on
1) a specific removal operator with the challenge of correctly
propagating the removal of the associated elements in a way
that respects the syntax and semantics of BPMN as well as
internal modelling rules at Airbus; 2) a set of refactoring rules
to normalize and improve the output of the derivation. This
effort required a lot of back and forth and exchanges with
various Airbus stakeholders to refine the tooling according to
the practices at Airbus. The current implementation contains
45652 lines of Java code for the generic part (incl. 42088
generated Xtext code, using cloc to compute the number of
lines of code) and 903 for the specialization for BPMN. This
illustrates the reuse provided by Greal.

B. Combining Positive and Negative Variability

Positive and negative variability management are two dif-
ferent approaches with pros and cons concerning expressivity.
Negative variability management is limited because the base
150% model must conform to the base language; (e.g., a class
attribute cannot have two types), and the inability to specify
unlimited reuse of specific model patterns (e.g., application of
a generic pattern in a particular context). Conversely, positive
variability management can lead to the multiplication of small
model patterns to support fine-grained configuration of the
base model. Positive variability management can also lead to
complex composition operators to ensure a correct assembling
of the model patterns, not only specific to the base model
language but also to the modeling practices. Both mechanisms
have demonstrated to be necessary and therefore should be
useable in combination.

When to use positive or negative variability? Hence, a key
open question is when modelers should rely on positive and/or
negative. From the authors’ experience, there is contextual
information to consider from the application domain when
choosing one or the other approach. A general answer is
unlikely, and one rather needs a specific method for a particular
engineering context (e.g., the one defined by Airbus for PDP
engineering). At Airbus, we observed that positive variability
management allows the designer to choose only the features
that interest her without requiring a global view of all the pos-
sible configurations. A global view might be beyond the scope
of the current configuration under definition, and thus beyond
the designer’s expertise at this time. Positive variability also

allows modellers to avoid repetition of processes. Conversely,
negative variability management requires a designer to face
all possible variants, and to explicitly indicate how to slice
the base model based on a given configuration. While this
requires the designer to understand all choices well, it also
more easily supports trade-off analysis between the different
possible alternatives. In practice, at Airbus we observed the
need to combine the two approaches according to the context
for a given part of the configuration.

Tradeoff in the realization model. Relying on positive vari-
ability, the domain engineering phase has the advantage of
making it possible to work with the real mental building blocks
that a PDP architect has in mind, closed to a declarative way.
Leveraging Greal, reusable model fragments can be capitalized
and composed for exploring different PDP alternatives. The
obvious drawback is that while the base models are much
simpler, the realization models are becoming much more
complex. The knowledge of how to compose basic building
blocks is now concentrated in realization models, moving
the complexity into the realization as opposed to expressing
it in the base model. It is interesting to notice that the
opposite effect is observed with negative variability, where
the complexity resides in the base. We consider that part
of this complexity is accidental, and could be removed with
even more abstract process descriptions. In the PDP, there are
indeed many cases of generic processes that produce related
documents or events. For instance, a process might consume
a “Feasibility Study (X-1)” and produce a “Feasibility Study
(X)”. Instead of treating these as uninterpreted strings, which
makes the substitution quite heavyweight during instantiation,
we might actually consider them as array variables. A syntax
usually found in programming languages could be adopted, i.e.
using brackets [], with an index variable called i. For instance:
“FeasibilityStudy[i]” or “FeasibilityStudy[i-1]”. Then the array
“FeasibilityStudy[]” could store the wanted values of the even-
t/document for each possible value of i. Hence, more idiomatic
constructs can emerge to ease the tasks of modellers. In
general, the concrete syntax and integrated tooling that comes
with the realization language deserves further investigation
(see also Section VI-D).

C. Positive and Negative Variability Management

Valid combination of positive and negative variability. In
our approach, we introduce a declarative formalism to specify
the realization model. However, to ensure a valid derivation
of any model, we first apply positive variability management,
then negative variability management, and finally value assign-
ments. Composition is done in two steps: first the import of the
new model into the work space, with possible renaming and
attribute setting, and then the merge of this imported model
with the current one, using unification of model elements of
the same type and the same names. The semantics of removal
is idempotent: if a remove operator is called twice on the same
element, the result is that the element is removed. So the order
of removal does not matter, and can thus safely be applied after
all other operations.

According to the domain and the base language, it could be
more convenient to have an arbitrary combination of positive
and negative variability management. To keep the derivation
valid for any model according to a given configuration, this
will require to explicit the execution flow, with an intermedi-
ate and propagated variability model in between a negative
variability management operation and a following positive
variability management operation. The formalism would be
no longer declarative, but a succession of declarative steps
that could be seen as a multi-staged configuration [28].
Hence, we found a pragmatic tradeoff between declarative and
imperative-style instructions in the realization language.

Towards a method for managing variability at Airbus. The
Greal language and the prototype implementation introduced
in this paper must be complemented with a dedicated method
to identify the various activities related to domain and ap-
plication engineering. To provide a comprehensive view, it is
envisioned to explicitly model the workflow of the various
steps involved. This approach allows the steps to be applied
sequentially or in parallel, in different orders, resulting in a
more intricate flow. Additionally, each step could be assigned
to different stakeholders, supporting different governance,
roles and associated expertise, which can also be specified.
Moreover, the variability management method must ensure the
coupling with the use of a versioning system for variability in
time, and the support of collaborative modeling techniques.

D. Flexible Syntax of the Realization Language

The need of flexibility for the syntax. We can distinguish
three phases in the lifecycle of a realization model: the initial
writing of the specification; the reading and understanding
(possibly by a stakeholder different from the one who has writ-
ten the specification: domain experts or other modelers); the
maintenance and evolution that requires both an understanding
and a writing of the specification. In all cases, the visualization
of the variability, being written with negative, positive, or a
combination therefore, is important. Ideally, BPMN models
should keep the intention of the domain and experts; with
variability information, there is a risk to alter the information
and overload modelers or experts. Hence, the question on how
to present variability within the BPMN models arises. For
instance, some colors can be used to trace features to model
elements in the 150% model and in the case of negative vari-
ability. In the case of positive variability, available and reusable
model fragments that can be assembled can be depicted, but
there is then the challenge of visualizing where the fragments
are composed. Grouping together ”closed” model fragments
that are subject to composition can ease their comprehension
and reuse. Hence, the syntax of the realization model should
be flexible and tailored to the modeling activities.

Towards metamorphic realization language. Right now, the
realization models can be written using a textual, external
DSL – as traditionally done for specifications. However, it
should not be the only implementation choice. First, there
can well be internal DSLs, for example Java fluent APIs. The
advantage of an internal DSL is a smooth integration to the

host language (e.g., Java) and a possible reuse of mainstream
tooling. However, an internal DSL might be more verbose
and disconnected from a specific ecosystem (e.g., the BPMN
tooling). A possibility is thus to offer internal DSLs, hosted
on top of Java, Python, etc., in addition to the external DSL. A
”must” would be to transition from external to internal DSL in
an automated way: a realization model written in the external
DSL could well be edited through a fluent API (and back
again). There are software language engineering works for
supporting the construction of several “shapes” of a language
[29], and there have been some attempts to provide different
shapes of a feature modeling language [30]. Second, the use of
another ”shape” of the realization language can be envisioned
into spreadsheet tools like Excel. The idea would be to offer
Airbus modelers the ability to specify the mapping between
individual features (or combinations of features) and model
elements or fragments with a spreadsheet. This proposal has
to be carefully assessed. The intended benefits are to improve
the usability of the language with a tabular-like specification
and an integration into well-known tools.

VII. RELATED WORK

The Common Variability Language (CVL) has emerged to
provide a solution for managing variability in any domain-
specific modeling languages [18]. The effort involves academic
and industry partners and pursues the goal of providing a
generic yet extensible solution. Our technical contribution can
be seen as a methodology to implement CVL and instantiated
to fit the modelling needs at Airbus. We also report on ex-
periences and lessons learned when specializing CVL in such
a context. CVL exhibits similarities with several variability
approaches that we now discuss.

Voelter and Groher et al. called to support the combi-
nation of negative and positive variability in various kinds
of artefacts [20]. Variability implemented with compositional
approaches is called positive variability, since variable ele-
ments are added together. Negative variability mainly refers
to annotative approaches. Different approaches to represent
negative and positive variability have been proposed. For
instance, the directives of the C preprocessor (#if, #else,
#elif, etc.) conditionally include parts of files (e.g., C or
C++ code [31], [32]), and as such, can be used to model
negative variability. Many techniques to realize compositional
approaches can be found in the literature: frameworks, mixin
layers, aspects [33], stepwise refinement [34], etc. In model-
based SPL engineering, the idea is that multiple models or
fragments, each corresponding to a feature, are composed to
obtain an integrated model from a feature model configuration.
Aspect-oriented modeling techniques have been applied in the
context of SPL engineering [35], [36]. Apel et al. propose
to revisit superimposition technique and analyze its feasibility
as a model composition technique [37]. Superimposition is
a generic composition mechanism to produce new variants
– being programs (written in C, C++, C#, Haskell, Java,
etc.), HTML pages, Makefiles, or UML models – through the
merging of their corresponding substructures [38]. Perrouin

et al. propose a flexible, tool-supported derivation process in
which a product model is generated by merging UML class
diagram fragments [39].

Delta modeling [40] promotes a modular approach to de-
velop SPLs. The deltas are defined in separate models, and
a core model is transformed into a new variant by applying
a set of deltas. Delta modeling shares many similarities with
CVL and similar specialization would be required to fit the
requirements of the targeted modeling language and a large
company like Airbus. Damiani et al. [41] present a core
calculus that extends delta-oriented programming with the
capability to switch the implemented product configuration at
runtime. At the foundation level, the Choice Calculus [42]
provides a theoretical framework for representing variations
(being annotative or compositional). In [43], Filho et al. em-
pirically investigated in the context of the Java language which
CVL operators, applied to program elements, can synthesize
variants of programs that are correct. A key result is that a
large portion of variability transformations are unsafe and lead
to incorrect derivation, hence requiring a significant effort to
specialize CVL to Java. Our experiences at Airbus exhibit
similar challenges when specializing CVL to the language
(BPMN), but also to the modelling practices in a large organi-
zation. Some extensions have been proposed to deal with the
diversity of modeling languages or to tailor CVL for specific
engineering contexts [43]–[48]. To the best of our knowledge,
however, very few works report on real-world experience of
applying or specializing CVL.

There has been some empirical user studies about variability
mechanisms [49]–[54]. It is unclear how these findings transfer
to the Airbus context, owing to the usage of a different
language (BPMN), modelling practices and targeted audience.
As learned (see Section VI), methodologies and guidelines
to combine both positive and negative variability are still
missing, and most likely require to observe the specific needs
of engineers and domain experts. We plan to conduct user
studies with Greal at Airbus and also over different modeling
formalism in other engineering contexts.

VIII. CONCLUSION

In this paper, we proposed Greal as a generic and high-level
realization language that can be automatically composed with
one or more base metamodels. We furthermore proposed a
product derivation algorithm that applies a realization model to
a base model and a resolved model to yield a derived product.
Our algorithm makes it possible for the developer to deal with
feature interactions, while supporting positive and negative
variability. We illustrated our approach using the well-known
use case of the Expression Product Line, highlighting the need
for both positive and negative variability. Greal comes with
a prototype open source implementation that has been tested
with several base languages, including UML class diagrams,
UML Sequence Diagrams, BPMN, Java (at the AST level), and
also text files (seen as lists of lines) and Word documents (seen
as lists of paragraphs, tables and figures). However we ran a
large scale validation of Greal only on BPMN for the Airbus

PDP product line. Still it yielded some interesting feedback
that are going to be useful for the future of Greal and model-
based SPL engineering.

ACKNOWLEDGMENTS

The research in this paper was partially funded by the
Natural Sciences and Engineering Research Council of Canada
(NSERC) Discovery Grant RGPIN-2018-06610 as well as
by the Junta de Andalucia, Spain, under contract QUAL21
010UMA.

REFERENCES

[1] L. Northrop, “A framework for software product line practice,” in
Proceedings of the Workshop on Object-Oriented Technology. Springer-
Verlag London, UK, 1999, pp. 365–376.

[2] F. van der Linden, “Software Product Families in Europe: The Esaps &
Cafe Projects,” IEEE Software, vol. 19, pp. 41–49, 2002.

[3] G. Halmans and K. Pohl, “Communicating the variability of a software-
product family to customers,” Software and System Modeling, vol. 2,
no. 1, pp. 15–36, 2003.

[4] J. Bosch, Design and use of software architectures: adopting and
evolving a product-line approach. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 2000.

[5] F. Bachmann and L. Bass, “Managing variability in software
architectures,” SIGSOFT Softw. Eng. Notes, vol. 26, pp. 126–132, May
2001. [Online]. Available: http://doi.acm.org/10.1145/379377.375274

[6] N. Anquetil, B. Grammel, I. Galvão, J. Noppen, S. S. Khan, H. Arboleda,
A. Rashid, and A. Garcia, “Traceability for model driven, software prod-
uct line engineering,” in ECMDA Traceability Workshop Proceedings,
vol. 12. SINTEF Norway, 2008, pp. 77–86.

[7] T. Ziadi and J.-M. Jézéquel, “Software product line engineering with the
uml: Deriving products,” in Software Product Lines. Springer, 2006,
pp. 557–588.

[8] C. Nebut, Y. Le Traon, and J.-M. Jézéquel, System Testing of Product
Families: from Requirements to Test Cases. Springer Verlag, 2006, pp.
447–478. [Online]. Available: http://www.irisa.fr/triskell/publis/2006/
Nebut06b.pdf

[9] O. Haugen, B. Moller-Pedersen, J. Oldevik, G. K. Olsen, and A. Svend-
sen, “Adding standardized variability to domain specific languages,”
Software Product Line Conference, International, vol. 0, pp. 139–148,
2008.

[10] C. Atkinson, J. Bayer, and D. Muthig, “Component-based product line
development: the kobra approach,” in Proceedings of the first confer-
ence on Software Product Lines: Experience and Research Directions.
Norwell, MA, USA: Kluwer Academic Publishers, 2000, pp. 289–309.

[11] H. Gomaa, Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Redwood City, CA,
USA: Addison Wesley Longman Publishing Co., Inc., 2004.

[12] B. Morin, G. Perrouin, P. Lahire, O. Barais, G. Vanwormhoudt, and J.-M.
Jézéquel, “Weaving variability into domain metamodels,” in MoDELS,
2009, pp. 690–705.

[13] G. Perrouin, G. Vanwormhoudt, P. Lahire, B. Morin, O. Barais, and J.-
M. Jézéquel, “Weaving Variability into Domain Metamodels,” Software
and Systems Modeling Special issue, p. 22, 2010.

[14] F. Heidenreich, J. Kopcsek, and C. Wende, “FeatureMapper: Mapping
Features to Models,” in Companion Proceedings of the 30th Interna-
tional Conference on Software Engineering (ICSE’08). New York, NY,
USA: ACM, May 2008, pp. 943–944.

[15] K. Czarnecki and M. Antkiewicz, “Mapping features to models: A
template approach based on superimposed variants,” in GPCE’05, ser.
LNCS, vol. 3676, 2005, pp. 422–437.

[16] S. Zschaler, P. Sanchez, J. Santos, M. Alférez, A. Rashid, L. Fuentes,
A. Moreira, J. Araujo, and U. Kulesza, “Vml* – a family of languages
for variability management in software product lines,” in Software
Language Engineering (SLE’09), ser. LNCS, vol. 5969. Springer, 2009,
pp. 82–102.

[17] F. Heidenreich, P. Sanchez, J. Santos, S. Zschaler, M. Alferez, J. Araujo,
L. Fuentes, U. K. amd Ana Moreira, and A. Rashid, “Relating feature
models to other models of a software product line: A comparative study
of featuremapper and vml*,” Transactions on Aspect-Oriented Software
Development VII, Special Issue on A Common Case Study for Aspect-
Oriented Modeling, vol. 6210, pp. 69–114, 2010.

[18] Ø. Haugen, A. Wasowski, and K. Czarnecki, “Cvl: common variability
language,” in Proceedings of the 16th International Software Product
Line Conference-Volume 2, 2012, pp. 266–267.

[19] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wasowski,
“Cool features and tough decisions: a comparison of variability modeling
approaches,” in Proceedings of VaMoS’12. ACM, 2012, pp. 173–182.
[Online]. Available: http://doi.acm.org/10.1145/2110147.2110167

[20] M. Voelter and I. Groher, “Product line implementation using aspect-
oriented and model-driven software development,” in SPLC’07. IEEE,
2007, pp. 233–242.

[21] J. B. F. Filho, O. Barais, M. Acher, B. Baudry, and J. L. Noir,
“Generating counterexamples of model-based software product lines:
an exploratory study,” in 17th International Software Product Line
Conference, SPLC 2013, Tokyo, Japan - August 26 - 30, 2013, T. Kishi,
S. Jarzabek, and S. Gnesi, Eds. ACM, 2013, pp. 72–81. [Online].
Available: https://doi.org/10.1145/2491627.2491639

[22] R. E. Lopez-Herrejon, D. Batory, and W. Cook, “Evaluating support
for features in advanced modularization technologies,” in European
Conference on Object-Oriented Programming. Springer, 2005, pp. 169–
194.

[23] A. S. Karatas, H. Oguztüzün, and A. H. Dogru, “From extended
feature models to constraint logic programming,” Sci. Comput.
Program., vol. 78, no. 12, pp. 2295–2312, 2013. [Online]. Available:
https://doi.org/10.1016/j.scico.2012.06.004

[24] W. K. G. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio,
and A. Egyed, “Multi-objective reverse engineering of variability-safe
feature models based on code dependencies of system variants,” Empir.
Softw. Eng., vol. 22, no. 4, pp. 1763–1794, 2017. [Online]. Available:
https://doi.org/10.1007/s10664-016-9462-4

[25] M. Acher, B. Combemale, P. Collet, O. Barais, P. Lahire, and R. B.
France, “Composing your compositions of variability models,” in
Model-Driven Engineering Languages and Systems - 16th International
Conference, MODELS 2013, Miami, FL, USA, September 29 - October
4, 2013. Proceedings, ser. Lecture Notes in Computer Science,
A. Moreira, B. Schätz, J. Gray, A. Vallecillo, and P. J. Clarke,
Eds., vol. 8107. Springer, 2013, pp. 352–369. [Online]. Available:
https://doi.org/10.1007/978-3-642-41533-3 22

[26] J. Kienzle, G. Mussbacher, P. Collet, and O. Alam, “Delaying decisions
in variable concern hierarchies,” in International Conference on Gener-
ative Programming: Concepts and Experiences – GPCE 2016. ACM,
2016, pp. 93–103.

[27] J. Meinicke, T. Thm, R. Schrter, F. Benduhn, T. Leich, and G. Saake,
Mastering Software Variability with FeatureIDE, 1st ed. Springer
Publishing Company, Incorporated, 2017.

[28] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged Configuration
Using Feature Models,” in Software Product Lines: Third International
Conference, SPLC 2004, ser. Lecture Notes in Computer Science, vol.
3154. Heidelberg, Germany: Springer Berlin / Heidelberg, 2004, pp.
266–283.

[29] F. Coulon, T. Degueule, T. Van Der Storm, and B. Combemale, “Shape-
diverse dsls: languages without borders (vision paper),” in Proceedings
of the 11th ACM SIGPLAN International Conference on Software
Language Engineering, 2018, pp. 215–219.

[30] M. Acher, B. Combemale, and P. Collet, “Metamorphic domain-specific
languages: A journey into the shapes of a language,” in Onward!
2014, Proceedings of the 2014 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming &
Software, part of SPLASH ’14, Portland, OR, USA, October 20-
24, 2014, A. P. Black, S. Krishnamurthi, B. Bruegge, and J. N.
Ruskiewicz, Eds. ACM, 2014, pp. 243–253. [Online]. Available:
https://doi.org/10.1145/2661136.2661159

[31] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software
product lines,” in Proceedings of the 30th International Conference
on Software Engineering, ser. ICSE ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 311–320. [Online].
Available: https://doi.org/10.1145/1368088.1368131

[32] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An analysis
of the variability in forty preprocessor-based software product lines,”

http://doi.acm.org/10.1145/379377.375274
http://www.irisa.fr/triskell/publis/2006/Nebut06b.pdf
http://www.irisa.fr/triskell/publis/2006/Nebut06b.pdf
http://doi.acm.org/10.1145/2110147.2110167
https://doi.org/10.1145/2491627.2491639
https://doi.org/10.1016/j.scico.2012.06.004
https://doi.org/10.1007/s10664-016-9462-4
https://doi.org/10.1007/978-3-642-41533-3_22
https://doi.org/10.1145/2661136.2661159
https://doi.org/10.1145/1368088.1368131

in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, 2010, pp. 105–114.

[33] M. Mezini and K. Ostermann, “Variability management with feature-
oriented programming and aspects,” SIGSOFT Softw. Eng. Notes,
vol. 29, no. 6, pp. 127–136, 2004.

[34] D. Batory, J. Sarvela, and A. Rauschmayer, “Scaling step-wise refine-
ment,” Software Engineering, IEEE Transactions on, vol. 30, no. 6, pp.
355–371, 2004.

[35] B. Morin, O. Barais, J.-M. Jézéquel, and R. Ramos, “Towards
a generic aspect-oriented modeling framework,” in Models and
Aspects workshop, at ECOOP 2007, July 2007. [Online]. Available:
http://www.irisa.fr/triskell/publis/2007/morin07a.pdf

[36] B. Morin, G. Vanwormhoudt, P. Lahire, A. Gaignard, O. Barais, and
J.-M. Jézéquel, “Managing variability complexity in aspect-oriented
modeling,” Model Driven Engineering Languages and Systems,
pp. 797–812, 2008. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-87875-9 55

[37] S. Apel, C. Kästner, and C. Lengauer, “Language-independent and
automated software composition: The featurehouse experience,” IEEE
Transactions on Software Engineering (TSE), vol. 39, pp. 63–79, 2013.

[38] S. Apel, C. Kästner, and C. Lengauer, “Language-independent and
automated software composition: The featurehouse experience,” IEEE
Transactions on Software Engineering, vol. 39, no. 1, pp. 63–79, 2011.

[39] G. Perrouin, J. Klein, N. Guelfi, and J.-M. Jézéquel, “Reconciling
automation and flexibility in product derivation,” in SPLC’08. IEEE,
2008, pp. 339–348.

[40] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella, “Delta-
oriented programming of software product lines,” in Software Product
Lines: Going Beyond, J. Bosch and J. Lee, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 77–91.

[41] F. Damiani, L. Padovani, I. Schaefer, and C. Seidl, “A core
calculus for dynamic delta-oriented programming,” Acta Informatica,
vol. 55, no. 4, pp. 269–307, Jan. 2017. [Online]. Available:
https://doi.org/10.1007/s00236-017-0293-6

[42] M. Erwig and E. Walkingshaw, “The choice calculus: A representation
for software variation,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 21, no. 1, pp. 1–27, 2011.

[43] J. B. Ferreira Filho, S. Allier, O. Barais, M. Acher, and B. Baudry,
“Assessing Product Line Derivation Operators Applied to Java Source
Code: An Empirical Study,” in 19th International Software Product
Line Conference (SPLC’15), Nashville, TN, United States, Jul. 2015.
[Online]. Available: https://hal.inria.fr/hal-01163423

[44] B. Combemale, O. Barais, O. Alam, and J. Kienzle, “Using cvl to
operationalize product line development with reusable aspect models,” in
Proceedings of the VARiability for You Workshop: Variability Modeling
Made Useful for Everyone, 2012, pp. 9–14.

[45] T. Degueule, J. B. F. Filho, O. Barais, M. Acher, J. Le Noir,
S. Madelénat, G. Gailliard, G. Burlot, and O. Constant, “Tooling
support for variability and architectural patterns in systems engineering,”
in Proceedings of the 19th International Conference on Software
Product Line, ser. SPLC ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 361–364. [Online]. Available:
https://doi.org/10.1145/2791060.2791097

[46] J.-M. Horcas, M. Pinto, and L. Fuentes, “Extending the common
variability language (cvl) engine: A practical tool,” in Proceedings of
the 21st International Systems and Software Product Line Conference
- Volume B, ser. SPLC ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 32–37. [Online]. Available:
https://doi.org/10.1145/3109729.3109749

[47] G. G. Pascual, M. Pinto, and L. Fuentes, “Run-time support to manage
architectural variability specified with CVL,” in Software Architecture
- 7th European Conference, ECSA 2013, Montpellier, France, July 1-5,
2013. Proceedings, ser. Lecture Notes in Computer Science, K. Drira,
Ed., vol. 7957. Springer, 2013, pp. 282–298. [Online]. Available:
https://doi.org/10.1007/978-3-642-39031-9 24

[48] J. Font, L. Arcega, Ø. Haugen, and C. Cetina, “Achieving feature
location in families of models through the use of search-based software
engineering,” IEEE Trans. Evol. Comput., vol. 22, no. 3, pp. 363–377,
2018. [Online]. Available: https://doi.org/10.1109/TEVC.2017.2751100

[49] J. Krüger, G. Çalıklı, T. Berger, T. Leich, and G. Saake, “Effects of
explicit feature traceability on program comprehension,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 338–349.

[50] W. Fenske, S. Schulze, and G. Saake, “How preprocessor annotations
(do not) affect maintainability: A case study on change-proneness,” in
Proceedings of the 16th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences, ser. GPCE 2017.
New York, NY, USA: Association for Computing Machinery, 2017, p.
77–90. [Online]. Available: https://doi.org/10.1145/3136040.3136059

[51] A. Rodrigues Santos, I. do Carmo Machado, E. Santana de Almeida,
J. Siegmund, and S. Apel, “Comparing the influence of using feature-
oriented programming and conditional compilation on comprehending
feature-oriented software,” Empirical Software Engineering, vol. 24,
no. 3, pp. 1226–1258, 2019.

[52] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze, R. Dachselt,
M. Papendieck, T. Leich, and G. Saake, “Do background colors im-
prove program comprehension in the# ifdef hell?” Empirical Software
Engineering, vol. 18, no. 4, pp. 699–745, 2013.

[53] W. Mahmood, D. Strüber, A. Anjorin, and T. Berger, “Effects
of variability in models: A family of experiments,” Empirical
Softw. Engg., vol. 27, no. 3, may 2022. [Online]. Available:
https://doi.org/10.1007/s10664-021-10112-3

[54] J. Echeverrı́a, J. Font, O. Pastor, and C. Cetina, “Usability evaluation
of variability modeling by means of common variability language,”
Complex Syst. Informatics Model. Q., vol. 5, pp. 61–81, 2015. [Online].
Available: https://doi.org/10.7250/csimq.2015-5.05

http://www.irisa.fr/triskell/publis/2007/morin07a.pdf
http://dx.doi.org/10.1007/978-3-540-87875-9_55
http://dx.doi.org/10.1007/978-3-540-87875-9_55
https://doi.org/10.1007/s00236-017-0293-6
https://hal.inria.fr/hal-01163423
https://doi.org/10.1145/2791060.2791097
https://doi.org/10.1145/3109729.3109749
https://doi.org/10.1007/978-3-642-39031-9_24
https://doi.org/10.1109/TEVC.2017.2751100
https://doi.org/10.1145/3136040.3136059
https://doi.org/10.1007/s10664-021-10112-3
https://doi.org/10.7250/csimq.2015-5.05

	Introduction
	Background and Motivation
	Approach
	The Expression Problem Product Line
	Base UML Models (M1) for the EPL
	Realization Model (M1)
	Resolved Model (M1)
	Instantiating Greal infrastructure for a Given Domain Specific Modeling Language

	Greal Semantics: the Derivation Algorithm
	One-step Derivation Algorithm
	Resolving Positive Variability
	Resolving Negative Variability
	Resolving Value Assignments
	Model Normalization

	Realization Model Composition and Multi-step Derivation

	Experimentation at Airbus
	Program Development Plans at Airbus
	Implementation
	Generic Building Blocks for the Domain Modeler
	Business Level Patterns
	Business Components Ready for Use
	Variability Model
	Normalization Rule

	Lessons learned and Open Challenges
	Generic Vs. Specific Realization Language
	Combining Positive and Negative Variability
	Positive and Negative Variability Management
	Flexible Syntax of the Realization Language

	Related Work
	Conclusion
	References

