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Abstract—Having efficient testing strategies is a core challenge
that needs to be overcome for the release of automated driving.
This necessitates clear requirements as well as suitable methods
for testing. In this work, the requirements for perception modules
are considered with respect to relevance. The concept of relevance
currently remains insufficiently defined and specified.

In this paper, we propose a novel methodology to overcome
this challenge by exemplary application to collision safety in
the highway domain. Using this general system and use case
specification, a corresponding concept for relevance is derived.
Irrelevant objects are thus defined as objects which do not
limit the set of safe actions available to the ego vehicle under
consideration of all uncertainties. As an initial step, the use case
is decomposed into functional scenarios with respect to collision
relevance. For each functional scenario, possible actions of both
the ego vehicle and any other dynamic object are formalized as
equations. This set of possible actions is constrained by traffic
rules, yielding relevance criteria.

As a result, we present a conservative estimation which
dynamic objects are relevant for perception and need to be
considered for a complete evaluation. The estimation provides
requirements which are applicable for offline testing and val-
idation of perception components. A visualization is presented
for examples from the highD dataset, showing the plausibility of
the results. Finally, a possibility for a future validation of the
presented relevance concept is outlined.

Index Terms—Autonomous vehicles, Perception, Vision and
scene understanding, Worst-case analysis

I. INTRODUCTION

In recent years, automated driving (AD) has been viewed
as a key technology for improving societies’ quality of life,
including availability, efficiency as well as safety of travel [1].
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Due to the removal of human error from the traffic environ-
ment, a release of AD has the potential to eliminate the cause
of most traffic accidents [2]. However, the release of AD also
introduces the risk of new hazards stemming from errors in
the automation itself [3].

For AD to be released, it is necessary to prove that added
benefits outweigh the new risks. As such, it is critical to
provide a safety argumentation, substantiated by evidence from
testing, that a positive risk balance [4] is given. Since current
testing strategies are prohibitively expensive, new efficient
approaches are required [5]. One state of the art approach is
to reduce effort of testing by modular decomposition [6]. A
generally accepted first layer of modular decomposition of a
driving function is dividing it into Sense, Plan and Act [7].

The sense module includes sensing as well as perception [8]
and is tested detached from Plan and Act. The requirements
for safety can be defined by deriving them from known legal
restrictions or normative target behavior [9], [10]. However,
such behavioral requirements are generally not applicable
to the sense module. Therefore, perception components are
generally underspecified [11], [12]. Two aspects among the
perception requirements are distinguished within this work:

1) What is relevant and needs to be perceived?
2) How well does it need to be perceived?

This work focuses on the first question and attempts to
answer which objects are relevant for perception. Due to the
complexity of specifying perception, only samples can be used
as requirements [11]. In driving context, such samples are
provided by perception datasets such as [13], [14]. While
these datasets define relevance, this is only done implicitly
by including or excluding objects from the ground truth. Fur-
thermore, the distinction is made based on arbitrary heuristics
during labeling. However, this approach lacks consideration of
safety [15] or behavioral requirements.

To address these shortcomings, this work presents a system-
atic method to define relevance for perception. The resulting
requirements are intended for use in offline testing of percep-
tion.accepted for publication at IEEE Most’23 ©2023 IEEE
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To maintain modularity, the concrete specification of
the downstream Plan/Act module is considered unavailable.
Therefore, the perception relevance is constructed to gen-
eralize across different planners and actors. To this end,
the minimum behavioral requirements for the planner or the
actor are considered. An object is considered relevant for the
perception if the object necessitates an action according to
the minimum behavioral requirements. We further explicitly
consider uncertainties to obtain a conservative estimation of
the perception relevance.

II. RELATED WORKS

Relevance is currently not sufficiently represented in exist-
ing perception metrics [15]. Therefore, this work will cover
conceptualizations from different related domains. While this
work focuses on a nominal scale, relevance may be also be
conceptualized on an ordinal scale [16]. Two key properties of
relevance are for whom the information may be relevant [17]
and the context in which the information is received [16].

A. Relevance in Planning

In previous work, deep learning with various different
paradigms has been applied to the planning task [18]. Due to
the black box nature of these systems, attention to the input
of the networks is required. These inputs are typically filtered
according to manually designed criteria. Various works adopt
a birds eye view (BEV) grid with preset geometric boundaries
of varying size as input to their planner [19]–[21]. While not
explicitly considered, the grid size defines a region of interest
outside of which objects are implicitly declared irrelevant.
Similar ideas also exist for the testing of AD functions in
simulation [22].

A different approach is to directly consider the states of
a fixed number of objects as planner input [23], [24]. Sim-
ilar considerations are reflected in the Waymo Open Motion
Dataset [25] which limits validation and testing to a maximum
of eight objects. For evaluation, the Lyft Level 5 dataset [26]
focuses on single vehicles of interest and is not suited for
multi-agent motion sequences [27]. In each case, objects
beyond the preselected fixed number are declared irrelevant
without explicit consideration.

A more explicit approach is given by formal models of
planning, which attempt to assure specified safe planning
behavior [28]. An example is the responsibility sensitive safety
(RSS) model, which formalizes the requirement of reasonable
care to define proper responses to dangerous situations [29].
Reachability analysis provides a different approach by defining
sets of unsafe states with respect to an object, where proba-
bilistic approaches may be used to avoid overly conservative
estimations [30]. Both approaches are formulated with respect
to specific objects, which can be interpreted as relevant for the
planning task.

B. Standard Perception Evaluation

One possible approach for defining relevance in perception
is the application of heuristics [28], [31]. A common example

is the assumption that a lower distance to an object corre-
sponds to a higher relevance [32].

While relevance is rarely conceptualized explicitly on com-
mon dataset evaluation metrics, heuristic selection typically
applies. For example, KITTI only evaluates objects above a
certain height when projected to the image plane [13] while
nuScenes [14] sets class-specific distance thresholds [33].
Other heuristics may be present from the annotation proce-
dure. For instance, nuScenes demands the presence of sensor
detection points for object annotation [14] while the Waymo
Open Dataset limits the annotation range [34].

C. Relevance for Perception Evaluation

Considering object relevance for perception safety evalu-
ation is necessary [35] and has incorporated relevance ac-
cording to the downstream task in two different ways. The
first approach is to consider a concrete implementation of a
planner to observe the effect of perturbations on the perception
results [36]–[38]. In this case, the validity of the results
obtained is restricted to the concrete planner [37].

Other approaches consider more general specifications of
the planner. One example is to incorporate modifications of
RSS to distinguish relevant objects to define a safety met-
ric [35]. Instead of a planner specification, reachability anal-
ysis relying on vehicle models have been applied to identify
relevant vehicles [39]. Alternatively, behavioral requirements
for different scenarios are considered for valet parking [40]
or an urban use case [41] In either case, either the behavioral
requirements assume stopping to be valid behavior [39], [40]
or information on the ego intention and road environment are
required [40], [41].

D. Other Relevance Concepts

This section discusses explicit considerations of relevance
in visual scenes and for objects in other context than 3D
perception.

In visual scenes, saliency conceptualizes the attempt to
recognize important objects or regions in a scene [42]. How-
ever, saliency suffers from subjectiveness and variance in
annotation [43], [44]. A related approach is to consider eye
fixation as proxy to identify informative regions [42], [45].
However, fixations depend on context and task [45], [46]
and neglect the ability of humans to interpret peripheral
vision [47]. Additionally, it is unclear how to extend the
concepts to 3D and objects which are occluded or not in the
human field of view.

Closer relation to safety and 3D space is provided by the
field of criticality metrics. These metrics are typically used as
a surrogate for safety in the process of safety validation [48].
A summary over many different criticality metrics is provided
in [49], [50]. Many options beside spatial proximity exist and
there is no clear consensus available on which metric and
which threshold to apply.



Fig. 1. Overview of the proposed relevance method with its key outputs.

III. ABSTRACT METHOD

In this section, a novel abstract concept for conservative
estimation of perception relevance based on collision safety is
presented.

In order to evaluate relevance, a definition is required first.
While different related terms are available in literature, this
work considers situational relevance or utility, which is only
well defined with respect to a task [51]. To simplify the
terminology, this work continues to use the term relevance
to refer to this concept. Thus, it is necessary to first define the
task by specifying a system and its corresponding use case.
Based on this, the use case is decomposed into functional
scenarios. For each of the functional scenarios, the outer
bounds of relevance are derived. The overall process is shown
in Fig.1.

A. Partial System Specification

The partial system specification is required to later define
and specify relevance. For this purpose, a generic architecture,
a task including the high-level requirements as well as system
capabilities are defined.

1) System Architecture: The partial specification is limited
to the external interfaces between modules for the perception
and downstream tasks. The inner workings of each module
remain a black box model. For the system specification,
a modular architecture composed of Sense, Plan and Act
modules is assumed. This simple architecture is commonly
applied for AD and serves as basis for other more complex
architectures. The sense module includes sensing as well as
perception [8]. Firstly, a general object-centric output repre-
sentation is selected. An object list is assumed since it is the
common representation between perception and planning [28].
The downstream task is a plan module which outputs actions
described by a trajectory. These actions or trajectories are then
executed by the act module.

2) System Requirements: To specify the task, a minimum
set of system requirements for actions is defined. Firstly, a

Fig. 2. After the occurrence of an event, the ego behavior is unspecified with
respect to this event. Only after a reaction time a behavior that incorporates
the events behavioral requirements can be assumed.

valid planned trajectory must be executable by the downstream
act module:

REQ1: The actions must adhere to physical limita-
tions.

Secondly, the actions must conform to traffic rules:

REQ2: The actions must adhere to applicable legal
restrictions.

These requirements are high-level and so far only applicable
to the downstream planning task. For the further relevance
concept, concrete requirements for the downstream task are
required. To simplify the following considerations, the scope
is limited to one concrete aspect. In this paper, we focus on
the task of collision safety. These behavioral requirements are
not directly applicable to the perception module. How to link
these requirements to perception for the definition of relevance
is discussed in section III-C.

3) System Capabilities: Another aspect is the specification
of the capabilities available to the system in order to fulfill
these requirements. This work considers a system latency as
well as available acceleration limits.

The latency in the system architecture is shown in Fig. 2.
Assume an event such as an action by another object occurs
at the initial point in time t0. A certain time is required for
the system to perceive the event, plan a trajectory and set
its actuators to perform the planned trajectory. The system
latency or reaction time tr is the time from the event to the
first actuator changing the state of the ego vehicle in response
to the event. Therefore, the above requirements are not applied
to the output of the plan module up to tr.

Only after the reaction time, the system is assumed to
act in accordance with the requirements. These capabilities
may be limited due to outer circumstances or due to system
specifications. For simplicity, this work assumes that the
system is capable of providing two different accelerations.

• minimum guaranteed braking deceleration
• minimum guaranteed acceleration

The latter can refer either to accelerating in longitudinal direc-
tion or steering in lateral direction. These general parameters
describing the system capabilities are applied later in the
relevance concept.



B. Use Case Specification

For the purpose of an initial presentation of the proposed
methodology, a simple use case is considered in order to
limit complexity. Therefore, a highway environment is selected
in this work. Similar use cases are selected for example by
RSS [29] for their initial development of ideas or in the
PEGASUS project [52]. Both a limited number of traffic
participant types and a limited number of scenarios that may
occur contribute to limiting the complexity.

C. Relevance Concept

Having defined both the system and the use case for the
system, a corresponding relevance concept is defined. The
consideration of perception requirements as basis for relevance
raises two core challenges. First, these perception require-
ments are unknown or at least insufficiently specified. Second,
considerable uncertainties remain regarding aspects such as
the future trajectories of other dynamic objects. Additionally,
reliable information for the road is unavailable and cannot
be obtained without high effort. This includes both high-level
information such as the exact layout and low-level information
like local friction coefficients. During the reaction time, the
ego behavior with the resulting ego trajectory is not specified.

In order to overcome these challenges, we propose the
following: Instead of the the perception requirements, we first
consider the acting requirements. The requirements for acting
are better specified, especially since they are subject to traffic
rules. The requirements for acting are each dependent on
the context of the evaluated situation. In order to consider
this context dependence, the use case is decomposed into
individual functional scenarios. For each functional scenario,
existing uncertainties are accounted for by assuming the worst
case for each uncertainty in the given context.

If the uncertainties are accounted for, this allows the transfer
to perception requirements. If a behavioral requirement with
respect to an object exists, the object must be perceived.
Therefore, the corresponding object is relevant for the per-
ception task. Due to the uncertainties, the object is perception
relevant if a potential behavioral requirement is possible within
the uncertainties. More specifically, if the worst case of all
uncertainties results in a behavioral requirement, an object is
relevant for perception.

1) Use Case Decomposition: Depending on different con-
texts within the use case, different behavioral requirements
apply. Decomposition of the use case into functional scenarios
is used to specify the high-level requirements in section III-A2.
The decomposition results in identifiable functional scenarios
with specific behavioral requirements. This makes subsequent
specification of relevance in the form of equations possible.

The representation of the environment around the ego
vehicle is assumed to be a generic object list as defined
in the partial system specification. Any object list limited
to a given point in time contains many objects. Similar
to [39], only pairwise interactions between the ego and a
single dynamic object of interest (OOI) are considered. This
object’s behavior may be additionally restricted by further

objects. Not considering further objects thus overestimates
the possible behaviors, yielding conservative estimates while
reducing complexity. Any object pair at a given point in time
is defined by a parameter set including different values of
parameters such as speed or distance.

For the use case, potential scenarios are identified. Similar
approaches can be found in [29], [40], [41], [52]. The
conditions for which a functional scenario is applied are
formalized in the form of equations. These equations are
wholly dependent on the given concrete parameter set of the
object pair at the time of relevance evaluation. Relying only
on this parameter set, uncertainties exist regarding the road
geometry and future behavior. Depending on these factors,
different scenarios such as a stopping or a merging procedure
may unfold. Therefore, all applicable functional scenarios are
considered as potential scenarios. It needs to be noted that the
scenarios are not mutually exclusive, meaning that multiple
hypothetical scenarios may be considered.

For each hypothetical scenario, the relevance of the OOI
is evaluated as is described in the following section. Similar
to the superposition in [40], the object is considered relevant
to the specified system if it exhibits relevance in any of the
hypothetical scenarios.

2) Relevance for Functional Scenarios: This section out-
lines the suggested approach for defining relevance equations
for a given functional scenario. As first step, applicable be-
havioral requirements are extracted from legal requirements
from German traffic law [53]. The abstract requirements are
then further specified and interpreted for the purpose of this
work. The ego shows valid behavior after the specified system
latency. During the latency of the ego as well as throughout
the scenario for the OOI, worst case behavior is assumed.

The respective behaviors are now specified as trajectories
represented by parametrized equations. In order to develop
these equations, simplified assumptions are used as in the
worst time to collision metric [3]. The objects are treated
as point masses aside from the fact that they possess radii
representing the object size. In addition, Kamm’s circle is
used as simple and comprehensive model to overapproximate
the worst case action space of both vehicles. Kamm’s circle
assumes an isotropic maximum acceleration amax which is
independent of the driving direction [54]. While kinematic
constraints may further limit possible worst case actions, the
assumptions represent conservative estimates as have been
used in other work [3], [55].

With these assumptions, it is possible to specify the respec-
tive possible behaviors of the dynamic objects as well as the
solution space for the ego. Thus, the definition of relevance
can be formulated as:

All objects that can change the set of viable trajec-
tories are relevant for solving the combined plan-
ning/perception task.

IV. METHOD APPLICATION

After outlining the abstract approach, this section presents
the application of said method. This demonstrates the prac-
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ticality of the method and allows comparison with heuristics
from existing perception evaluation. The highway is chosen as
the target domain due its presence in scientific literature.

A. Use Case Decomposition

This section describes how to decompose the previously
defined use case into functional scenarios in order to obtain
behavioral requirements. Common descriptions of scenarios
such as by RSS [29] apply lane-based coordinates. Contrary to
[29], [40], [41], no reliable information on the lane geometry
or the trajectories which may deviate from road lanes is
assumed to be available. Therefore, different coordinates are
required to represent the scenarios.

The respective vehicle coordinates are unsuited, since im-
plicitly a straight road in traveling direction is assumed. Polar
coordinates are more reliable, since any collision requires
the radial distance to approach zero. The situation is also
visualized in Fig. 3 for the case where the road does not
coincide with the direction in which the vehicles are travelling.

Based on the constellation of distance, radial and tangential
velocity, different scenarios are distinguished. If simplifica-
tions are required to derive equations, conservative estimates
are used. The following sections present the decomposition
results first for radial and then for tangential scenarios.

1) Radial Scenarios: First, the different constellations
which are possible with regards to the radial velocity are
discussed. To formally describe the criteria to distinguish
scenarios, the following notation is used. Location vectors are
denoted by r⃗i, where the index 1 refers to the ego vehicle while
the index 2 refers to the OOI. This convention is maintained
for all following equations with the first index referring to the
vehicle if multiple indices are present. Similarly, velocities

are indicated by v⃗i. The vector connecting the vehicles d⃗ is
calculated as:

d⃗ = r⃗2 − r⃗1 (1)

Generally, the following four pairings are possible. The
corresponding criteria for distinguishing the cases are also
presented with the index 0 indicating the initial state.

• ego moving towards OOI, OOI moving away from ego
(R.TA):

d⃗0 · v⃗1,0 > 0 ∩ d⃗0 · v⃗2,0 > 0 (2)

• ego moving away from OOI, OOI moving towards ego
(R.AT):

d⃗0 · v⃗1,0 < 0 ∩ d⃗0 · v⃗2,0 < 0 (3)

• both vehicles moving towards each other (R.TT):

d⃗0 · v⃗1,0 > 0 ∩ d⃗0 · v⃗2,0 < 0 (4)

• both vehicles moving away from each other (R.AA):

d⃗0 · v⃗1,0 < 0 ∩ d⃗0 · v⃗2,0 > 0 (5)

Each scenario is abbreviated with a three letter combination.
The first letter represents whether a radial or tangential sce-
nario is considered. The first letter after the period is whether
the ego is moving towards or away from the object while the
second letter conveys the same information for the OOI.

Some simplifications which are applied to all of these
scenarios are discussed in the following. The radial scenar-
ios use a simple one-dimensional model. All quantities are
projected on the connecting line between the two vehicles in
a conservative fashion. Hereby, the radial distance d between
the objects is:

d = |d⃗| (6)

While the actual path may be longer, the direct distance is
the shortest possible path and thus conservative. Tangential
distance and velocity are neglected, resulting in:

vi,r = |v⃗i,r| =

∣∣∣∣∣v⃗i · d⃗

|d⃗|

∣∣∣∣∣ (7)

The second index r denotes the radial direction in this equation.
While this convention is maintained for all following equa-
tions, the index is optional and does not appear in all cases.
Again, this is conservative since tangential motion may prevent
collisions by evasion. Conservative estimates are used by
assuming maximum acceleration to be available for the worst
case behaviors of both vehicles. The contractually guaranteed
braking acceleration available to the ego in radial direction is
reduced according to the direction of the ego velocity. Part of
the available acceleration due to friction may be required for
tangential motion, i.e. to follow a curved road. This limits the
acceleration available for braking in radial direction ai,r,b to:

ai,r,b = cos(α) · ai,b =
vi,r
vi

· ai,b (8)

In this case, the last index b refers to the braking procedure.
The optional last index refers to states or events in all
following equations.
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Acceleration and steering are limited by the vehicle [56]
and human preference [57] rather than the available friction
on the road. Therefore, the available guaranteed acceleration
is not reduced so that ai,r,g = ai,g.

2) Tangential Scenarios: For the tangential direction, only
two cases require distinction.

• OOI moving away from ego (T.XA):

d⃗0 · v⃗2,0 ≥ 0 (9)

• OOI moving towards ego (T.XT):

d⃗0 · v⃗2,0 < 0 (10)

The abbreviations are used as previously with the distinction
that the X signifies that the ego motion direction is not
relevant.

If the OOI is moving away, tangential dynamics are irrel-
evant. It should be noted that neglecting tangential dynamics
does not mean the absence of relevance since the radial
scenarios are considered separately. If the OOI is moving
towards the ego, there exists a potential merging scenario
where the ego merges in front of the OOI as depicted in Fig. 4.

B. Relevance for Functional Scenarios
This section elaborates the application of the previously

explained method to derive equations for each functional
scenario defined in the previous section.

1) R.TA: Ego moving towards OOI, OOI moving away from
ego: This scenario corresponds to the case that the ego is
following the OOI. For this case, German traffic regulations
(StVO) state the following requirement [53, p.3]:

REQ2.1: The ego vehicle shall be able to brake to
halt behind a vehicle in front to avoid a collision in
the event that the front car suddenly brakes.

The same notion has been demanded as the rule to not hit
others from behind as part of the RSS model [29, p.6-7]. This
requirement of collision avoidance applies even for worst case
assumptions and can be formalized for the minimum distance
dmin as:

dmin > 0 (11)

For the one-dimensional model, the behavior of the vehicles
is given as acceleration in radial direction. The worst case
behavior during the latency is the ego vehicle accelerating
towards the OOI. Throughout the scenario, the OOI has
a braking acceleration directed in the direction of the ego
vehicle.

The worst case accelerations are amax, while the valid reac-
tion of the ego is undertaken with the contractually specified
a1,b. Note that for the case of braking, negative acceleration
values apply. The position ri and velocity vi for a constant
acceleration are given by:

ri,r = ri,r,0 + vi,r,0 t+
1

2
ai,r,0t

2 (12)

vi,r = vi,r,0 + ai,r,0 t (13)

The first index again denotes the vehicle while the second
index 0 refers to the initial state. For both vehicles, the
corresponding radial braking distance ri,r,b is:

ri,r,b =
v2i,r

2ai,r,b
(14)

The ego vehicle accelerates during the reaction time and
then brakes until coming to a full stop. Considering its initial
acceleration in (12) and for the braking (14) by applying (13),
its position after coming to a full stop is:

r1,r,s = r1,r,0 + v1,r,0 t1,r +
1

2
a1,r,0t

2
1,r

+
(v1,r,0 + t1,ra1,r,0)

2

2a1,r,b

(15)

The variable t1,r denotes the reaction time of the ego
vehicle. The minimal distance is achieved when both vehicles
have come to a full stop. This corresponds to subtracting (14)
from the braking distance of the OOI specified according to
(12). Additionally, the sizes of both vehicles si are subtracted
similar to [3]. Including the worst case assumptions, radial
components and (11) yields:

0 < dmin = d0 − s1 − s2 +
v22,r,0
2amax

− v1,r,0 t1,r

− 1

2
amaxt

2
1,r −

(v1,r,0 + t1,ramax)
2

2a1,r,b

(16)



If this condition is fulfilled, no collision is available for any
worst case behavior. If this condition is violated, collision
avoidance may potentially restrict the available ego actions,
which means the other object is relevant.

2) R.AT: ego moving away from OOI, OOI moving towards
ego: This case corresponds to the situation where the ego
vehicle is being followed by another vehicle. The behavioral
requirement from German law is that [53]:

REQ2.2: other vehicles should not be unnecessarily
impeded.

Within this work, impeding is interpreted to mean that the
ego vehicle exerts additional action requirements regarding
collision avoidance on the OOI. This case is conceptually the
same as exchanging the roles in the R.TA scenario. The OOI
therefore has the same requirements of not causing collisions
with the ego vehicle. It is possible to distinguish the case where
the ego vehicle speed is adequate (R.AT+) and the case where
the ego speed is below the desired traveling speed (R.AT-).

3) R.AT+: ego with desired speed moving away from OOI,
OOI moving towards ego: For this scenario it is assumed that
the speed chosen by the OOI is adequate. In this case, REQ2.2
can be interpreted as the following subrequirement:

REQ2.3: The ego vehicle may not restrict the actions
of the following vehicle by unnecessarily braking.

Exchanging the roles in the R.TA scenario allows reusing the
results of the previous section:

0 < dmin = d0 − s1 − s2 +
v21,r,0
2amax

− v2,r,0 t2,r

− 1

2
amaxt

2
2,r −

(v2,r,0 + t2,ramax)
2

2a2,r,b

(17)

Note that the reaction time t2,r and the guaranteed braking
acceleration a2,r,b refer to the OOI in this case. The equation
then signifies the all cases where a full braking of the ego
vehicle does not yet restrict the action space of the following
OOI. Violating the equation means that the ego restricts the
action space of the OOI and thus hinders it which is only
permitted if a valid reason is present. Therefore, the other
object is relevant.

4) R.AT-: ego with less than desired speed moving away
from OOI, OOI moving towards ego: For this case, it is
assumed that the ego speed is initially lower than the desired
ego speed. This situation may occur for example after a lane
change onto a faster lane. In this case, the ego vehicle first
attempts to accelerate to the desired speed v1,r,d. After that,
the scenario is identical to the R.AT+ scenario. Until the
requirements of R.AT+ apply, REQ2.2 can be interpreted as:

REQ2.4: The ego vehicle may not restrict the actions
of the following vehicle by having insufficient speed.

The worst case requirements in this case do not consider
the ego latency, since this is later taken into account when
the lane change is initiated. Therefore, the ego vehicle simply
accelerates towards its desired speed. The OOI accelerates
towards the ego vehicle throughout the scenario.

Using (12) and the worst case assumptions, the distance
between the two vehicles can be computed as:

d = d0−s1−s2+(v1,r,0−v2,r,0)t+
1

2
(a1,r,g−amax)t

2 (18)

The critical situation is the case where the minimal distance
is reached. Since the available guaranteed ego acceleration
a1,g is generally smaller than the worst case acceleration
amax assumed to be available for the OOI, the minimum
distance occurs when the ego vehicle reaches the desired speed
indicated by the index d. The desired velocity is unknown in
the absence of knowledge about the speed limit, but can be
conservatively estimated to be the velocity of the OOI.

td =
v1,r,d − v1,r,0

a1,r,g
(19)

Inserting (19) into (18) and (13) yields the distance between
the vehicles and the velocity of the OOI at the time td,
respectively. With (13), the corresponding velocity of the OOI
is:

v2,r,d = v2,r,0 + amaxtd (20)

Equation (17) from the R.AT+ scenario is adapted with the
following modifications. The initial distance considering ob-
ject sizes (d0−s1−s2) is substituted with the result obtained
from inserting (19) into (18). The initial ego velocity v1,r,0
is substituted by the desired velocity v1,r,d and (20) is used
instead of v2,r,0, resulting in:

0 < dmin = d(t = td) +
v21,r,d
2amax

− v2,r,d t2,r

− 1

2
amaxt

2
2,r −

(v2,r,d + t2,ramax)
2

2a2,r,b

(21)

Note that the reaction time t2,r and guaranteed braking accel-
eration a2,r,b refer to the OOI in this case. As with the other
scenarios, objects violating the requirement are considered
relevant.

5) R.TT: both vehicles moving towards each other: This
case may occur if vehicles are travelling in lanes on opposite
sides of the road or if they are moving laterally towards
each other. For two vehicles moving towards each other,
RSS assumes a correct reaction from both vehicles [29]. A
similar understanding is reflected in the StVO which demands
that stopping should be possible within half of the visible
distance [53]. However, this does not align with worst case
assumptions which are only given by the physically possible
dynamic limits of the dynamic objects [3]. In this scenario,
the worst case for the ego vehicle during the reaction time is
accelerating towards the OOI. After the reaction time, it begins
braking while the OOI accelerates towards the ego vehicle
throughout the scenario.

For this case, the legal requirement of avoiding to harm or
endanger others [53] requires further interpretation to extract
behavioral requirements.



If accidents are unavoidable, minimizing harm and damage
is reasonable. While the ego vehicle cannot influence the other
dynamic objects, it can minimize its own contribution to the
damage by minimizing its speed. Therefore, the requirement
is:

REQ2.5: the ego vehicle shall brake to a standstill
before the other vehicle collides with it.

This means that the requirement for the minimum distance
dmin is:

dmin > 0 (22)

This requirement should be fulfilled for the worst case
braking maneuver of the ego vehicle as described by (14).
The velocity before and after the reaction time is described as
follows:

v1,r = v1,0 + amaxt for t ≤ tr (23)

v1,r = v1,r,b − a1,r,b(t− tr) for t ≥ tr (24)

In this case, v1,r,b is the velocity of the ego vehicle after the
reaction time when it begins to brake. The ego braking time
t1,b is obtained by inserting (23) into (24) and demanding that
v1,r = 0:

t1,b = t1,r +
(v1,r,0 + t1,r amax)

a1,r,b
(25)

The position of the OOI is described by (12), but the velocity
and the acceleration are negative in this scenario. From this,
the ego position after coming to a full stop in (15) and the
sizes of the vehicles are subtracted. Inserting the worst case
assumptions as well as (22) yields:

0 < dmin = d0 − s1 − s2 − v1,r,0 t1,r

− 1

2
amaxt

2
1,r −

(v1,r,0 + t1,ramax)
2

2a1,r,b

− v2,r,0t1,b − 1

2
amaxt1,b

(26)

The velocities of the vehicles are considered to be positive
if they are aimed towards each other. Objects violating this
equation are objects for which a collision is possible and which
are thus relevant.

6) R.AA: both vehicles moving away from each other:
This scenario may again correspond to vehicles travelling on
opposite lanes or to vehicles laterally moving towards each
others. Especially for the latter case, it becomes clear that an
ego braking may be required if the OOI reverses its moving
direction. This case is fundamentally the same requirement
as req:2.5 as described in the previous section. Since the
velocities of the vehicles are pointed away from each other,
negative velocities are inserted in (26). If the requirement is
violated, a collision is possible and the object is therefore
considered relevant.

7) T.XT: OOI moving towards ego: This scenario corre-
sponds to a potential merging scenario where the ego vehicle
attempts to merge in front of the OOI. Similarly to previ-
ous sections, the behavioral requirement REQ2.2 that other
vehicles should not be unnecessarily impeded applies [53].
The ego vehicle is assumed to move onto the other lane and
then accelerate. For this scenario, it is assumed that there is
a suitable target speed for the lane onto which the OOI is
moving. The ego vehicle must not impede the OOI before
reaching the target speed as specified in the R.AT- scenario.
Once the target speed has been reached the scenario becomes
the previously treated R.AT+ scenario.

For this scenario, lane based coordinates with lateral and
longitudinal direction are more suitable than the previously ap-
plied polar coordinates. Since no lane information is assumed
available, a hypothetical worst case lane is constructed. This
worst case lane is given by the current direction of movement
of the OOI since this allows the OOI to accelerate towards
the ego without requiring acceleration for change of direction.
The longitudinal direction ri,∥ is given by:

r⃗i,∥ =

[
xi,∥
yi,∥

]
=

v⃗i
|v⃗i|

(27)

The lateral direction r⃗i,⊥ can be defined by switching the
vector components of r⃗i,∥ with each other:

r⃗i,⊥ =

[
xi,⊥
yi,⊥

]
=

[
−yi,∥
xi,∥

]
(28)

With this, the two velocity components of the ego vehicle
perpendicular and parallel to the direction of the movement of
the OOI can be calculated according to:

v1,⊥ = v⃗1 · r⃗2,⊥ and v1,∥ = v⃗1 · r⃗2,∥ (29)

The movement of the ego vehicle is modeled as a process
consisting of two parts. First, the lateral movement correspond-
ing to the lane change is performed without longitudinal accel-
eration. Afterwards, the ego vehicle accelerates exclusively in
longitudinal direction. This assumption is conservative since
a combined steering and accelerating may potentially shorten
the merging procedure.

During the lane change, worst case assumptions for the ego
latency are required. However, initially steering in the wrong
direction prior to a lane change in the opposite direction is
unrealistic. Moreover, the lane change itself is generally the
worst case scenario since traveling or braking on the current
lane must be possible to ensure safety. This means that in case
of initial movement in the wrong direction, the lane change
can be aborted. Therefore, it is instead assumed that the lateral
velocity v1,⊥ is directed towards the OOI:

(d⃗0 · r⃗2,⊥) · v⃗1,0 ≥ 0 (30)

If this condition is violated, the scenario is not considered to
be a potential merging scenario. Afterwards, the ego vehicle
begins accelerating in lateral direction towards the hypothetical



lane. It then decelerates so that it reaches a lateral velocity of
v1,⊥ = 0 at the lateral position r1,⊥ = 0. Throughout the
scenario, the OOI simply accelerates along its direction of
movement. After that the scenario can be treated as the R.AT-
scenario where the ego is required to accelerate until reaching
the desired target speed.

The lateral velocity and position during the reaction time tr
are:

v1,⊥ = v1,⊥,0 + amax · t (31)

r1,⊥ = r1,⊥,0 + v1,⊥,0 · t+
1

2
amaxt

2 (32)

To obtain the values at the end of the reaction time, it is
necessary to consider the fact that the lateral velocity is
required to be negative. Therefore, it is necessary to consider
the time where a lateral of velocity of v1,⊥,s = 0 is reached,
if this case occurs, by inserting the following in the equations
above:

t′1,r = min

{
t1,r , −v1,⊥,0

amax

}
(33)

After the reaction time, the ego vehicle performs a deliberate
lateral movement to change lanes. For brevity, the substitution
t′ = t−tr is introduced. The index s indicates the point in time
after the reaction time of the ego where it begins switching
lanes. The index c is used for the point in time where the
ego vehicle changes its behavior from laterally accelerating to
laterally decelerating with the same acceleration of a1,g since
both are steering maneuvers. The movement is described by:

v1,⊥ = v1,⊥,s − a1,g · t′ for t′ ≤ t′c (34)

v1,⊥ = v1,⊥,c + a1,g · (t′ − t′c) for t′ > t′c (35)

The corresponding location in lateral direction considering the
available acceleration of ag for t′ ≤ t′c is described by:

r1,⊥ = r1,⊥,s + v1,⊥,s · t′ −
1

2
a1,gt

′2 (36)

After the reaction time, the location for t′ > t′c is:

r1,⊥ = r1,⊥,c + v1,⊥,c · (t′ − t′c) +
1

2
a1,g(t

′ − t′c)
2 (37)

The ego vehicle comes to a stop in lateral direction at the
desired position r1,⊥ = 0 after a halting time t′h. These
conditions are given by:

v1,⊥,h = v1,⊥(t = t′h) = 0 (38)

r1,⊥,h = r1,⊥(t = t′h) = 0 (39)

By solving this equation system, the time required for the
lateral movement is calculated. First, (34) and (35) are inserted
into (38):

0 = v1,⊥,h = v1,⊥,s + a1,g · (t′h − 2t′c) (40)

Next, (31), (32) and (37) are inserted into (39).

0 = r1,⊥,s + v1,⊥,s · t′c −
1

2
a1,gt

′
c
2

+ (v1,⊥,s − a1,g · tc) · (t′h − t′c)

+
1

2
a1,g(t

′
h − t′c)

2

(41)

These equations can be solved for th, thus yielding the time
required for the lateral movement.

t′c =
v1,⊥,s

amax
+

√
r1,⊥,s

a1,⊥,g
(42)

t′h = t′c −
v1,⊥,s

a1,⊥,g
(43)

During the lateral movement, a constant longitudinal veloc-
ity is assumed. After completing the lateral movement, the ego
vehicle accelerates as in scenario R.AT-. However, instead of
the radial direction everything is projected to the longitudinal
direction. In addition, the time to reach the desired velocity
from (19) must be modified to consider the reaction time as
well as the time required for the lateral movement:

t′d = tr + t′h +
v1,∥,d − v1,∥,0

a1,∥,g
(44)

As previously, the desired velocity is unknown in the absence
of knowledge about speed restrictions. However, it can be
conservatively estimated by using the speed of the OOI so that
v1,∥,d = v2,0. Modifying (20) and (18) accordingly yields:

v′2,d = v2,0 + amaxt
′
d (45)

d(t = t′d) = r1,∥,0 − s1 − s2 + (v1,∥,0 − v2,0)t
′
d

+
1

2
(a1,∥,g − amax)t

′
d
2 (46)

Substituting for td and v2,r,d in (21) delivers:

0 < dmin = d(t = t′d) +
v21,∥,d

2amax
− v′2,d tr

− 1

2
amaxt

2
r −

(v′2,d + tramax)
2

2a1,∥,g

(47)

Any objects violating this requirement are considered relevant
for the ego vehicle.

V. RESULTS

This section presents results from applying the presented
method to publicly available datasets. Popular perception
datasets typically focus on urban scenarios and only cover
a limited sensor range which may limit their suitability for
highway applications [58]. Instead, this work presents results
on the highD dataset [59]. The highD dataset includes vehicle
trajectories extracted from video recordings from a drone.
Vehicle trajectories are available for German highways and
encompass road segments with a length of approximately
420 m.

In order to apply the equations developed in previous
sections, concrete parameter values are required. The values
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Fig. 5. Visualizations of object relevance resulting from different functional scenarios on a highway segment from the highD dataset. Since tangential and
radial relevance criteria may overlap, tangential relevance is indicated by the yellow edge and dotted hatch.

are chosen to be realistic under typical conditions encountered
on a highway. However, they may not be applicable to any
and all situations and further substantiation of the argument
is required. The maximum acceleration limited by available
friction is chosen as amax = 10 m

s2 in accordance with [3],
[55]. Braking deceleration during emergency stops reach at
minimum ab = 7 m

s2 even on wet road surfaces [60]. The
available longitudinal acceleration is speed dependant and
differs for different types of vehicles. An acceleration of
ag = 0.5 m

s2 is chosen based on results from [56]. For lateral
maneuvers, drivers generally display accelerations which are
smaller than the physically feasible accelerations. At highway
speeds, the accelerations are between 1−2 m

s2 , indicating that
the guaranteed acceleration is limited by the longitudinal ac-
celeration. For the reaction times, a common value for humans
in the case of surprise intrusions of 1.5 s is found [61]. These
values are used for both of the vehicles where applicable.

The method of this work is only applied to a subset of the
highD data to limit computation and memory consumption.
Only the first of multiple track files from the dataset is used,
since these 348 000 bounding boxes are considered sufficient
for this work. Results are visualized in two different ways. A
exemplary overview for a single frame is presented in Fig. 5
to provide intuitive results.

Note that the aspect ratio is not equal in order to improve
visibility especially for the lateral velocity components. More
detailed information regarding the distribution of relevant ob-
jects according to different criteria is provided in Fig. 6. Each
line represents an empirical cumulative distribution function
(ECDF) over the distance for a given category of relevance
or objects. Additional reference is provided by visualizing
the two common criticality metrics time headway and time
to collision (TTC). The common recommendation of road
administrations is a time headway of 2 s [49]. By multiplying
the time headway requirement with the ego velocity, the
results can be directly displayed as distance distribution. TTC
requirements in literature range from 1.5-4 s depending on
source and situation [49]. Since this work only uses the values
to provide an intuitive reference, the threshold is arbitrarily
selected to be a upper value of 4 s. By only considering
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Fig. 6. ECDF of distances for all objects and objects which are considered
relevant according to different criteria. The distribution for a typical suggested
time gap for driving on a highway is provided as reference.

objects below the TTC threshold, another distance distribution
is obtained.

VI. DISCUSSION

This work first presents a general method for conceptual-
izing and deriving relevance. Its practicality was shown by
applying it to the use case of object detection on highways.
Nevertheless, we consider the method sufficiently general
to be applicable to other systems and use cases. Examples
are different systems such as a traffic sign detector or a
different use case such as urban environments. However, the
procedure must be modified to consider different requirements
and scenarios.

The application of the method to the use case yields the
relevance of objects. Overall, the exemplary results appear
plausible. In addition, they are supported by an argumentation
which considers safety. Since all results are based on conserva-
tive estimates, the process is designed to avoid false negatives
regarding relevance. The distance distributions in Fig. 6 are
mostly above the distances indicated by time headway and



time to collision criteria. Since the other criteria are not
designed for the R.AA scenario, this scenario is not considered
here. While the time headway intersects the relevance criteria
of this work, the TTC indicates that this is due to its lack of
consideration of relative velocity. Therefore, the conservative
design yields the expected results. On the other hand, this
increases the likelihood of false positives regarding relevance.
However, in the context of testing perception this is the in-
tended behavior. Safety is improved since stricter performance
requirements are imposed on the perception systems.

One further question is whether the method is applicable
to other road regulations than the German StVO [53] used
as basis in this work. While details differ, examples of other
traffic rules such as the California Driver’s Handbook [62]
and the Japanese Road Traffic Act [63] share similar general
objectives of avoiding collisions and ensuring safety. Since
collision safety is generally only implicitly specified, this work
proposed to further specify safety while considering high-
level objectives. Thus, specifics of the German StVO are
only weakly expressed in this work. While further explicit
validation is required, a transfer to other traffic rules seems
plausible.

The parametrization of the equations is only required for
the final application to the real world dataset. Generally,
the parameter values depend on the use case as well as
the system. Therefore, the assumed reaction times and brak-
ing accelerations for the OOI may not apply to all traffic
participants and situations. Conditions such an icy or oily
road surface do not occur in the considered dataset. Such
circumstances would further reduce the available deceleration
and acceleration. Thus, in other applications such conditions
need to be considered in choosing the parameter values or an
argumentation for their omission is required.

Considering these requirements developed in this work has
implications for perception testing. One notable fact is that
the distance of the objects at which they become relevant
depends on the scenario. This indicates that heuristics of
circular regions of relevance as in [13], [14] are unsuited to the
highway domain. Overall, the distances obtained in this work
are large, reaching approximately 250 m for the R.TA scenario
and up to 400 m in the other scenarios. Notably, this value is
substantially higher than sensor range of 250 m by the Cirrus
dataset [58] already explicitly targeting highway applications.
Furthermore, the values approach the boundaries imposed by
the highD dataset used for visualization. This may indicate
that more explicit consideration of relevance for perception
and a corresponding argumentation are required.

The results of this work allow to identify objects which are
relevant to the perception task. However, an overall validation
of the results is difficult since to the best of our knowledge,
no validation methods are available in literature. Nevertheless,
it should be noted that current perception evaluation implicitly
defines relevance. The predominant approach is using arbitrary
heuristics using distance or human visibility. Therefore, the
principled argumentation presented in this work is considered
a substantial improvement.

VII. CONCLUSION & OUTLOOK

A concept for perception specific relevance and a novel
approach for determining a conservative estimation of per-
ception relevance was presented. The method was applied
to the use case of highway driving. It was subsequently
evaluated and discussed based on existing data of German
highways. The results indicate that the heuristics applied in
current datasets may be insufficient for perception testing.
Future work may attempt to integrate the results of this work
into datasets for perception testing. An additional potential use
case is the design of sensor setups. Leveraging the information
on relevance may aid the decision what sensors and what
detection ranges are required.

Within the scope of this paper, the use case was limited
to highways as proof of concept. The authors consider the
application to the systems and use cases as a possible next step
in research. Examples include urban environments or other
systems such as a traffic sign detection. This may yield insights
regarding the general applicability of the presented method.
However, the requirements, scenarios and equations may differ
substantially. Extending the presented method accordingly and
studying the differences is left for future work.

Another aspect for future research is the validation of the
methods presented. The authors propose an approach relying
on evaluating an prediction component. We consider this an
adaptation of the fundamental approach presented by [36]. As
a modification, it is possible to substitute the planner with a
prediction component trained on human driving behavior. One
advantage of prediction over planning is open loop training.
In addition, the objective for training and evaluation is better
specified. The overall performance of the prediction compo-
nent is expected to deliver the reliability of the prediction
for validation in the given scenario. By contrasting different
inputs for the prediction, it is possible to obtain an estimation
if the relevance definition is adequate. The prediction is first
applied with all objects including both relevant and irrelevant
objects as input. Here, the prediction quality can directly be
assessed if offline data is available. Next, the prediction is
applied with only the relevant objects as input. If the relevant
objects are correctly determined, the prediction performances
in both cases are expected to be identical. A drop in prediction
performance indicates an object falsely identified as irrelevant.
The specificity of the relevance model may be assessed by
comparing the prediction performance with all relevant objects
against a subset thereof. If the prediction performance remains
unchanged, it may be indicative that an irrelevant object was
falsely declared relevant.

We hope that this work encourages a more explicit consid-
eration of relevance for perception evaluation and can serve
as a future baseline.
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