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Robot and Sensor
Networks for 
First Responders

T
he Oklahoma City bombing and
attacks on the World Trade Center
are unforgettable events in which
humans were ill-equipped to re-
spond. The need to collect, inte-

grate, and communicate information effectively
in emergency response scenarios exceeds the
state of the art in information technology. Com-
manders can’t easily locate their personnel or
diagram the inside of affected structures. Shar-
ing information between firefighters is limited
to verbal communication over radio, because
visibility inside a burning building can be re-

duced to inches. Furthermore,
it’s impossible to send humans
to some places, either because
the access area is too small or
the danger too great. This
emergency response problem
provides an interesting and
important test bed for studying
networks of distributed mobile
robots and sensors. 

Here, we describe the component technologies
(see the “Related Work” sidebar) required to
deploy a networked-robot system that can aug-
ment human firefighters and first responders, sig-
nificantly enhancing their firefighting capabili-
ties. In a burning building at a firefighting training
facility, we deployed a network of stationary

Mote sensors, mobile robots with cameras, and
stationary radio tags to test their ability to guide
firefighters to targets and warn them of potential
dangers. Our long-term vision is a physical net-
work that can sense, move, compute, and reason,
letting network users (firefighters and first respon-
ders) Google for physical information—that is,
information about the location and properties of
physical objects in the real world. 

Our vision
The physical network we’re building as part of

a collaborative National Science Foundation
Information Technology Research project will
include several types of nodes (or agents). Some
will be small mobile robots (either autonomous
or teleoperated), some might be stationary sen-
sors placed in the environment during an opera-
tion, and others might be computers embedded in
the suits of emergency response personnel. 

During an operation, we envision that, along
with emergency personnel, tens of agents will enter
a building about which potentially little is known
(see Figure 1a). If floor plans are available a pri-
ori, agents will use them to expedite the search
process, acquiring information and providing an
integrated view for situational awareness. The
agents’ small size will let them penetrate nooks
and niches, possibly being teleoperated by a
human operator.

A network of distributed mobile sensor systems can help first responders
during emergencies. Experiments conducted at a burning building with
firefighters show the sensors’ potential to localize themselves and 
acquire and combine information, providing an integrative view of a
dynamically changing environment.
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Once inside, the agents will auto-
nomously organize themselves to com-
municate effectively, integrate informa-
tion efficiently, and obtain relative
position information quickly. They will
record temperature gradients, measure
concentrations of toxins and relevant
gases, track sources of danger, and look
for human victims. They will then cordon
off areas of threat (for example, areas
where the temperature is greater than
300°F) and convey to remote human
operators information about the envi-
ronment and about emergency response
personnel inside the building (see Figure
1b). Information broadcast from each
group will be integrated into an immer-
sive environment that rescue workers and
firefighters can visualize on remote work-
stations or helmet-mounted displays (see
the “Panoramic Display” sidebar). Addi-
tionally, a microphone on the agent will
let a trapped human call for help, and the
agent’s ability to localize (identify its spa-
tial location) with assistance from its
neighbors will help rescuers find the
trapped victim (see Figure 1c).

Losing inexpensive robots because of
fire or falling debris is much more
acceptable than human injuries or
deaths. For example, in the event of con-
tamination from hazardous materials
arising from a spill or transportation
accident, we could deploy the network
to determine the extent of the contami-
nation and the speed with which it’s
propagating. We could integrate simul-
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Figure 1. A motivating scenario: 
(a) A team of six robots enter a burning 
building, dispersing radio tags and Mote
temperature sensors. (b) The team adapts
to failures, using robots with failed 
actuators as static sensors and relays, 
and guiding robots with failed sensors
through smoke and past rubble using
information obtained via the network. 
(c) The network guides human firefighters
to potential targets for rescue and to the
fire’s source while warning them of 
dangerous areas along the way.



taneous measurements of chemical con-
centration over a widespread, distributed
area, letting the network follow the
source’s movement—for example, fol-
lowing a chemical plume as it spreads in
the air, a moving object on the ground,
or the source of a fire.

As a first step toward realizing this
vision, we conducted experiments in 
a burning building at the Allegheny
County firefighting training facility in
Pittsburgh. Based on these experiments,
we highlight three key challenges to real-
izing an intelligent robot network: local-
izing robots, maintaining the flow of rel-
evant information, and controlling the
robot network.

Localization
Localization in the dynamic environ-

ments that search and rescue operations
pose is difficult because we can’t pre-

sume an infrastructure or even make
simple assumptions—for example, we
can’t assume responders will be able to
see known features. The system thus
must be able to localize each node in the
network, including those attached to
firefighters.

Our method
We propose combining small (12 × 9

cm), low-cost (approximately US$40)
radio tags (or beacons) with conventional
line-of-sight optical sensors, because res-
cue personnel and robots can easily dis-
perse the radio tags, and optical sensors
can operate in the visible or infrared (IR)
spectrum. A robot can query these radio
tags, and any tags within range will reply.
The robot can then estimate the distance
to each responding tag by determining
the time elapsed between sending the
query and receiving the response. 

Because this method doesn’t require a
line of sight between the tags and the
mobile robot, it’s useful in many envi-
ronmental conditions where optical
methods fail. Because each tag transmits
a unique ID number, robots can auto-
matically associate distance readings
with the appropriate tags, easily solving
the data association problem—a diffi-
cult issue in environments that can be
visually obscured. Robots that first
responders can’t locate using the RF sys-
tem might be able to sense their position
with respect to other RF-located robots,
using the robots’ optical sensors.

Because we don’t initially know where
the tags are located, and because their
positions can change during operation,
robots must localize both the receiver and
the tags simultaneously. This problem is
often known as Simultaneous Localiza-
tion and Mapping (SLAM).1 Although
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C urrent research in pervasive computing,1,2 sensor networks,3

and active perception4 is relevant to our work. In addition,

several other projects are investigating search and rescue applica-

tions. Perhaps the two most relevant projects are the Scout project

at the University of Minnesota, where small robots are used for

mapping and exploration, and the University of South Florida effort

to effectively deploy remotely operated, radio-controlled robots in

real disaster areas, including a successful attempt at the World

Trade Center.5 There is even a competition for robot search and

rescue.6

In contrast to these efforts, our focus is on deriving useful func-

tionality from the network and autonomously deploying the net-

work. So, the results we describe in this article are first steps toward

developing autonomous networked solutions to control and per-

ception problems that arise in emergency response scenarios. 

From an application viewpoint, our work differs from the work at

the University of South Florida in that our project concerns automat-

ing support for first responders as opposed to search and rescue.

First responders need real-time deployment of communication and

computation infrastructure. They need adaptive, active, and proac-

tive processing for information flow, and their world is dynamic and

dominated by the difficulties of the rapidly changing threat (such as

fire) and uncertainties associated with the information. In search and

rescue, the automation is post hoc and the real-time adaptive and

proactive aspect of the computation isn’t crucial. The two problem

domains (support for first responders and search and rescue) are

synergistic and solutions to both problems are needed to develop 

a comprehensive program that supports national infrastructure

security.
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it’s generally assumed that a receiver can
measure both range and bearing to “fea-
tures,” we can determine only range—
and even that measurement might be very
noisy. To localize robots using range-only
measurements, we adapted the well-
known estimation techniques of Kalman
filtering, Markov methods, and Monte
Carlo localization.2 All three methods
estimate robot position as a distribution
of probabilities over the space of possi-
ble robot positions. We also have an algo-
rithm that can solve SLAM in cases
where approximate a priori estimates of
robot and landmark locations exist.2

The primary difficulty stems from the
annular distribution of potential relative
locations, resulting from a range-only
measurement. Because the distribution
is highly non-Gaussian, SLAM solutions
derived from Kalman filters are ineffec-
tive. In theory, Markov methods (prob-

ability grids) and Monte Carlo methods
(particle filtering) have the flexibility to
handle annular distributions. In fact,
they have more flexibility than we
need—they can represent arbitrary dis-
tributions, but we need only deal with
well-structured annular distributions.
Unfortunately, the scaling properties of
these methods severely limit the number
of landmarks robots can map.

We’ve implemented a compact way to
represent annular distributions together
with a computationally efficient way of
combining annular distributions with
each other and with Gaussian distribu-
tions. In most cases, we expect the results
of these combinations to be well approx-
imated by mixtures of Gaussians so that
we can apply standard techniques such
as Kalman filtering or multiple hypoth-
esis tracking to solve the remaining esti-
mation problem.

We’ve also extended these results to
deal with the case in which the tag loca-
tions are unknown using a simple boot-
strapping process. The idea is to use the
best estimate of robot localization along
with measured ranges to an unknown tag
to coarsely estimate the tag’s location.
Once we have an estimate, it’s added
to the Kalman filter, which improves
the estimate along with estimates of
other (previously seen) tags. Because this
method takes advantage of the problem’s
special structure (in that it’s an easier
mapping problem than a simultaneous
location and mapping problem), it’s less
computationally cumbersome in that it
reasonably estimates the tag’s location,
avoiding local minimas.

We can also combine range-only mea-
surements with range and bearing or
bearing-only measurements available
from robot cameras. Our robots are
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W hen robots or people interact with a sensor network, it

becomes an extension of their capabilities. We’ve thus

developed software that allows an intuitive, immersive display of

environments. Using panoramic imaging sensors that small robots

can carry into the heart of a damaged structure, the display can be

coupled to head-mounted sensors. These sensors then let a remote

operator look around in the environment without the delay associ-

ated with mechanical pan and tilt mechanisms (see Figure A). Dis-

tributed protocols collect data from the geographically dispersed

sensor network and integrate this data into a global map (such as

a temperature gradient) that can also be displayed on a wearable

computer to the user.

Even if practical limitations on size and packaging make it diffi-

cult to display this information to firefighters, such information

would be invaluable to commanders outside the building, who

typically have limited information about where firefighters are

located and the local information accessible to each individual.

According to the National Institute for Occupational Safety and

Health, such information can help commanders better coordinate

and guide firefighters. 

Panoramic Display

Figure A. The 360° panorama of a room in the burning building taken by a catadioptric system. 



equipped with omnidirectional cameras
that currently work in the visible and
near-IR range. IR omnidirectional cam-
eras are feasible but are not yet off-the-
shelf.

Experiment and results                        
To benchmark the radio tags’ perfor-

mance, we conducted localization exper-
iments in a 30 m × 40 m flat, open, out-
door environment with an autonomous
robot where we could use highly accurate
(2 cm) GPS receivers, a fiber-optic gyro,
and wheel encoders for ground truth. We
equipped the robot with an RF ranging
system (Pinpoint from RF Technologies)
that has four antennae pointing in four
directions and a computer to control the
tag queries and process responses. 

For each tag response, the system pro-
duces a time-stamped distance estimate
to the responding tag, along with the
unique ID number for that tag. The dis-
tance estimate is simply an integer esti-
mate of the distance between the robot
and tag. A calibration step conducted

ahead of time produces a probability
density function (PDF) for each mea-
surement. The calibration step takes
many measurements from candidate
environments, using them to determine
an offset of the mean and standard devi-
ation for each reading. That is, for each
range reading we could measure, we cal-
culated the offset of the experimental
mean from the reading and the standard
deviation of the reading. We expect that
this calibration needs to be done only
once to get noise characteristics based
on various environments.

We distributed 13 RF tags throughout
the area and then programmed the robot
to drive in a repeating path among the
tags. With this setup, we collected three
kinds of data: the robot’s ground truth
path (from GPS and inertial sensors), the
robot’s dead-reckoning estimated path
(from inertial sensors only), and the
range measurements to the RF tags. Fig-
ures 2 and 3 show results from these
experiments (greater details of the data
set and results obtained appear else-

where3). Although the error for individ-
ual range readings has a standard devi-
ation of as much as 1.3 m, the tags local-
ized the robot to within 0.3 m of its
location.

Although our results are preliminary
because they were obtained outdoors,
they’re still promising. It’s important to
recognize that multipath can severely
affect the time-of-flight measurement in
populated indoor environments. How-
ever, our preliminary experiments in
office buildings show that we can reject
multipath by estimating position uncer-
tainty to accept or reject range readings
using a mechanism such as a chi-squared
filter. That is, the more uncertain the posi-
tion estimate, the more likely the algo-
rithm is to incorporate a large difference
between measured and expected range. 

Additionally, because we don’t assume
we’ll get range readings from all or any
particular set of tags, the fact that only
some might be visible at any given time
isn’t a problem, because we use dead
reckoning between range readings. If the
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Figure 2. (a) 13 RF tags in known locations, in conjunction with a wheel encoder and gyro, localize a robot moving in an open area.
The lines between the paths and tags show two range measurements (one noisy). (b) A cumulative distribution function of errors 
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traveled 1,401 m. Over the course of the run, 14,633 range readings were received, of which 163 were rejected. The mean Cartesian
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range readings are obtained in a fashion
such that little overlap exists between
the tags that are heard (as in a long lin-
ear traverse), then odometric errors
come into play and the map is topolog-
ically correct rather than metrically cor-
rect. (The reference frame for the map
and localization is arbitrary and can be
either specified by an axis formed by two
of the tags or by the robot’s initial start-
ing position, such as at a building’s
entrance.)

In addition to localizing robots, which
have the potential to interact with radio
tags and other robots, it’s also necessary
to localize other sensors. A robot deploy-
ing the sensors can localize them using
techniques such as the robot-assisted
localization method.4

Information flow
Sensors can locally store information

about the area they cover or forward it
to a base station for further analysis and
use. They can also use communication to
integrate their sensed values with the rest
of the sensor landscape. With localized
information, we can build global maps
of sensory information (such as a tem-
perature map) and use them to navigate
humans or robots to a target, avoiding
potentially dangerous areas. Network
users (robots or people) can use this infor-
mation as they traverse the network.

In the Allegheny experiments, we used
Mote sensors to measure environmental
conditions such as temperature, humid-
ity, and chemical concentrations of tox-
ins. Each Mote sensor (www.xbow.com/
Products/Wireless_Sensor_Networks.htm)
consisted of an Atmel ATMega128
microcontroller (with a 4 MHz, 8-bit
CPU, a 128-Kbyte flash program space,
4-Kbyte RAM, and 4-Kbyte EEPROM),
a 916 MHz RF transceiver (50 Kbps,

100 ft. range), a Universal Asynchronous
Receiver-Transmitter, and a 4-Mbit ser-
ial flash. A Mote runs for approximately
one month on two AA batteries. It
includes light, sound, and temperature
sensors, but you can add other types of
sensors. Each Mote runs the TinyOS
operating system. Because of the limited
sensing and computational power, Mote
sensors must be deployed either manu-
ally or by robots at locations that are reg-
istered on the map.

Our work in this area has led to two
novel developments. First, we’ve devel-
oped distributed protocols for naviga-
tion tasks in which a distributed sensor
field guides a user across the field.4 Sec-
ond, we’ve developed the Sensory Flash-
light, a handheld device that lets a net-
work user (human or robot) interact
with the network as a whole or talk to
individual nodes in the network. An
alternative approach would be to tag the
Motes with pinpoint devices.

The navigation guidance application
is an example of how simple nodes dis-
tributed over a large geographical area
can assist with global tasks. This appli-
cation relies on the user’s ability to inter-
act with the network as a whole and
with specific nodes. This interaction is
directed at retrieving data from the net-

work (such as collecting local informa-
tion from individual nodes and collect-
ing global maps from the network) and
injecting data into the network (such as
configuring the network with a new task
or reprogramming its nodes).

In our experiments,5 we started a fire
in a room and obtained local tempera-
ture data from each sensor. A commu-
nication protocol running over the entire
system uses the local data to compute a
global temperature map in this space,
ultimately producing a temperature gra-
dient for the space, computing the map
and the gradients during the fire. For this
experiment, we manually deployed and
localized the Mote sensors at the loca-
tions marked in Figure 4a. The Mote
sensors established multihop communi-
cation paths to a base station placed at
the door. The sensors sent data to the
base station over a period of 30 minutes,
from which we were able to create a tem-
perature gradient (see Figure 4b).

Figure 5a shows our prototype Sen-
sory Flashlight (the name is derived from
the optical flashlight metaphor), which
lets a mobile node interact with a sensor
field. The prototype comprises an ana-
log compass, an alert LED, a pager
vibrator, a three-position mode switch,
a power switch, a range potentiometer,

OCTOBER–DECEMBER 2004 PERVASIVEcomputing 29

Actual tag locations
Initial estimate of
the tag's location
Final estimate of
the tag's location

True path
Estimated path

Figure 3. When we don’t initially know a
tag’s location, we can approximate it
using a batch scheme first and then add
it to a Kalman filter to continuously
update the tag’s position along with the
robot’s position. 



some power conditioning circuitry, and
a microcontroller-based CPU/RF trans-
ceiver. The processing and RF commu-
nication components and the sensor net-
work are Berkeley Motes (Figure 5b and
5c show the Mote board and Mote sen-
sor board).

The Flashlight’s “beam” comprises sen-
sor-to-sensor, multihop-routed RF mes-
sages that send or return information. A
switch selects the sensor type (such as
light, sound, or temperature). When
pointed in a specific direction, the sensor

reports information received from any
sensors in that direction. The human-
operated version includes a silent vibrat-
ing alarm, with the vibration amplitude
encoding the distance (either actual dis-
tance estimated or the number of hops)
to the triggered sensor. A potentiometer
sets the detection range while an elec-
tronic compass supplies heading data
indicating the direction in which the
device is pointed. Thus the flashlight col-
lects information from all the sensors
located in that direction and provides its

user with sensory feedback. The device
can also issue commands to the sensors in
that direction.

We envision using the Flashlight as a
handheld or robot-held device that can
help guide robots or human responders
along relevant paths that might dynam-
ically change over time, because the
Flashlight can reconfigure the wireless
sensor network in a patterned way. Fur-
thermore, it can facilitate interaction
with the network, both consuming and
dispersing the network’s stored infor-
mation and changing and reacting to its
topology. Finally, it lets the user “mark”
geographic regions with information,
enabling effective management of sen-
sors and efficiency in message routing.

We deployed 12 Mote sensors along
corridors in our building and used the
Flashlight and the communication infra-
structure presented here to guide a
human user out of the building (see Fig-
ure 6). The Flashlight was used by a
human in the building to interact with
sensors to compute the next direction of
movement toward the exit. For each
interaction, the user did a rotation scan
until the Flashlight was pointed in the
direction computed from the sensor
data. The user then walked in that direc-
tion to the next sensor. Each time, we
recorded the correct direction and the
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Figure 4. (a) An ad hoc network of robots and Mote sensors deployed in a burning building at the Allegheny Fire Academy, 23
August 2002 (from an experimental exercise involving Carnegie Mellon University, Dartmouth, and the University of Pennsylvania).
(b) The temperature gradient graph collected using an ad hoc network of Mote sensors.

Figure 5. (a) The Flashlight prototype, (b) a Mote board, which has the computer and
communication system, and (c) a Mote sensor board, which holds the sensors.
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direction the Flashlight detected. Its
directional error was eight percent (or
30 degrees) on average. However,
because the corridors and office door-
ways are wide, and the sensors suffi-
ciently dense, it successfully identified the
exit and never directed the user toward
a blocked or wrong configuration.

Certainly, a device such as the Flash-
light raises many practical and theoret-
ical questions: How dense should the
sensor network be for such applications,
given the feedback accuracy? How can
the Flashlight’s functionality be inte-
grated into mobile robots? It would also
be useful to integrate multiple sensors
and multiple directions into the Flash-
light. These are some directions of ongo-
ing and future work.

Network control
Robots augment sensor networks’ sur-

veillance capabilities using mobility. We
envision large, networked groups of
robots and sensors operating in dynamic,
resource-constrained, adversarial envi-
ronments. The constraint in resources
comes from the fact that each node might
have to operate for relatively long peri-
ods without recharging and without
human attention, while the adversarial
conditions are typical of emergency
response. Because there could be numer-
ous agents and because the system must
be robust enough to add and delete new
sensors or vehicles, each agent must be
anonymous. Furthermore, each node
must operate asynchronously and be
agnostic to who its neighbor is (in other
words, the neighbors are interchange-
able). There will be variations in dynam-
ics from agent to agent. However, while
individual agents might not exhibit per-
formance guarantees, groups offer guar-
antees at the population level that
algorithm designers must model and
understand. Groups of this type will typ-
ically operate with little or no direct
human supervision, and it will be diffi-

cult, if not impossible, to efficiently
manage or control such groups through
programming or teleoperation. Thus,
managing such large groups will be
extremely challenging and will require the
application of new, yet-to-be-developed
methods of communication, control,
computation, and sensing specifically tai-
lored to the control of autonomously
functioning robot networks.

The robots used in our experiments are
car-like robots equipped with omni-
directional cameras as their primary sen-
sors.5 The communication among the
robots relies on IEEE 802.11b network-
ing. By using information from its cam-
era system, each robot can estimate only
its distance and bearing from its team-
mates. However, if two robots exchange
information about their bearings to each
other, they can also estimate their rela-
tive orientations. We use this idea to com-

bine the information of a group of two
or more robots to improve the group’s
knowledge about its relative position. We
can combine this information with radio
tag information to get local or global
position and orientation information.

We decompose the team’s motion into
a gross position (and orientation) descrip-
tor g and its shape or distribution ρ. We
can model g as an element of a Lie group
(a differentiable manifold obeying the
group properties and satisfying the addi-
tional condition that the group opera-
tions are differentiable), while ρ depends
on the representation used for the shape
space. Previously, we’ve established the
mathematical framework for decentral-
ized controllers that let a team of robots
achieve a desired position and shape tra-
jectory.6 This work also showed how to
compose such deliberative motion con-
trollers with reactive controllers that are
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necessary to circumvent unexpected
obstacles. Other work discusses abstrac-
tions and control laws that allow par-
tial state information to be used effec-
tively and in a scalable manner for
numerous units.7

In this example, we assume that a
nominal map of the building is available
and that a network of Mote temperature
sensors has been deployed in the build-
ing. The nominal map lets robots
develop potential-field-based planners
to navigate while achieving a desired

shape. The ability to communicate with
each other and with Mote temperature
sensors lets the team incrementally build
a global temperature map.

In the absence of any significant tem-
perature gradient detected by the sensors,
the robots can use a potential-field con-
troller to navigate the building, travers-
ing specified waypoints while maintain-
ing formation (see Figure 7a). Because
each robot can communicate with Mote
sensors in its neighborhood, they each
sense a different temperature and thus

establish gradient information. When this
gradient is significant, the robots switch
controllers and follow the temperature
gradient toward the fire’s source (see Fig-
ure 7b). Omnidirectional visible and IR
cameras provide information back to one
or more remotely located human respon-
ders. At any point, when commanded by
a human, the robots can switch back to a
designated goal, ignoring the temperature
gradient (see Figure 7c).

We can easily tailor these algorithms
to adapt to constraints that sensors
impose (such as a limited field of view)
and radios (such as a weak signal). This
lets robots stay within reasonable dis-
tances of each other so that they can
function as a team. They’re also scalable
to large numbers of robots1 and lend
themselves to a “swarm” paradigm for
navigation and autonomous exploration.

A
lthough this set of experiments
didn’t provide a complete
demonstration, it did reveal
component solutions that can

enhance the first responders’ capabili-
ties. The firefighters were quick to see
the potential but also sensitized us to the
extreme environments they must func-
tion in. 

For example, we can’t expect fire-
fighters to carry anything substantial or
deploy devices carefully. Similarly, be-
cause firefighters often must crawl to
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Figure 7. Three robots switching motion
plans in real time to get information from
the building’s hottest spot: (a) In the
absence of any significant temperature
gradient detected by the sensors, the
robots can use a potential-field controller
to navigate the building, traversing 
specified waypoints while maintaining
formation. (b) A network of Mote sensors
distributed on the ground obtains a 
gradient of temperature. (c) At any point,
when commanded by a human, the robots
can switch to a new goal.



avoid the smoke and heat, this has impli-
cations for designing displays and devel-
oping the sensors they wear. Further-
more, even though floor plans of
buildings in many US cities have been
computerized and are available over the
Internet, firefighters have no way of inte-
grating this information for emergency
response. Finally, firefighters and emer-
gency response personnel who have used
robotic devices claim that robots are
most useful as enablers for sensing.
However, the need to remotely control
each robot means that significant time
and manpower is spent during an oper-
ation that necessitates speed of response
and efficiency. This points to the need
for autonomy with robot and sensor net-
works, and the infrastructure to support
network deployment. 

Addressing these needs will require sur-
mounting many challenges in mechanical
design, control, sensing and estimation,
and human-robot interaction—which is
why first response is such a compelling
and unifying application for pervasive
computing. In our current work, we’re
developing scalable algorithms for large
numbers of networked heterogeneous
agents (some simple and specialized,
some static, some mobile, some control-
lable, some human) that will have to
coordinate in an environment that might
be poorly known, dynamic, and
obscured. Because each sensor, by itself,
might not provide useful information—
and might not even survive—the func-
tionality stems from the network and its
ability to adapt on-the-fly.

As part of our collaborative NSF ITR
project, we’re also examining the synergy
between communication, control, and
perception in support of such applica-
tions and developing new algorithms for
communication-assisted control, com-
munication-assisted sensing, and control
and perception-assisted communication.
We’ll explore in greater depth how to use
a communication network to control the

mobility of the agents as a group and
how each agent can use the network to
infer its relative location and develop an
integrated model of its environment.
We’re also exploring how the agents’
ability to control their position and ori-
entation can help sustain the communi-
cation network.
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