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Human-Robot Teaming
for Search and Rescue

F
ive years ago, Hiroaki Kitano proposed
Urban Search and Rescue as a Grand
Challenge problem to the robotics com-
munity, arguing there were significant
challenges to be surmounted in the

areas of human-robot interaction and multirobot
operation. In response, the US National Institute

of Standards and Technologies
introduced physical USAR ref-
erence test arenas—environ-
ments “designed to represent, at
varying degrees of verisimili-
tude, challenges associated with
collapsed structures.”1 Since
then, USAR has emerged as the
canonical human-robot interac-
tion (HRI) problem, presenting
an obstacle-ridden, unknown
environment that can challenge
robotic exploration even with

the best of human assistance. 
NIST originally designed the arenas to advance

research in autonomous robotics, but no team
has yet succeeded in operating robots auto-
nomously. Recent NIST efforts have turned to
identifying interface features and HRI strategies
that lead to successful human-robot joint explo-
ration.2 Beyond the arena wall, little experience
exists with robots in actual USAR operations.
Most of this comprises reports by Robin Mur-
phy and her students of their experiences at the
World Trade Center3 and in disaster response

training exercises.4 Conclusions drawn from such
real-world experiments support the conventional
wisdom that robot interface design must remain
a critical aspect of USAR robotics research for
such systems to function and support real-world
disaster settings.

In cooperation with NIST, we have embarked
on a research program focusing on the enabling
technologies of effective USAR robotic rescue
devices. The program is also researching system-
level design, evaluation, and refinement of USAR
rescue architectures that include teams of sensor-
laden robots and human rescuers. Here, we pre-
sent highlights from our research, which include
our multiagent system (MAS) infrastructure, our
simulation environment, and our approach to
sensor fusion and interface design for effective
robotic control. 

An agent-based architecture
Although the vision of robots working seam-

lessly with humans and software agents to save
lives in an urban disaster is attractive, its realization
requires significant scientific advances to address
some fundamental challenges. One challenge is
coordinating the actions of a set of heterogeneous
robots; existing multirobot coordination algo-
rithms and systems are ill suited to this domain.
Most systems implemented on robots elicit emer-
gent behavior wherein individual robots follow
simple coordination rules, without any explicit
teamwork models or goals. This breaks down
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when a team includes people because the
robots can’t explain their actions and
their role as a team player. Other chal-
lenges include facilitating interoperabil-
ity between existing teams—including
robot teams and human teams developed
and trained separately—and reasoning
about dynamically changing goals across
these teams. Efficient solutions to these
problems require communication and
teamwork models.

Current MAS research addresses these
issues. An MAS is a loosely coupled net-
work of agents that interact to solve
problems that are beyond a single
agent’s capacity or knowledge. MASs
offer distributed computation; resist
individual agent failure; facilitate mul-
tiple existing legacy systems’ intercon-
nection and interoperation; and can effi-
ciently retrieve, filter, and globally
coordinate information from sources
that are spatially distributed. 

The RETSINA MAS
In our disaster response team instanti-

ation, we used RETSINA,5 an MAS that
categorizes agents into four types based
on their function. Interface agents facili-
tate user interaction. Task agents seek to
accomplish user goals. Middle agents
provide infrastructure for dynamic run-
time discovery of robots and agents that
can perform a given task. Such discovery
is important when you need to find a
replacement for a damaged or failed
robot. For example, in real disaster envi-
ronments, rescue organizations arriving
at unpredictable times must be able to
dynamically identify robots with needed
abilities while coordinating and fielding
resources. Information agents can access
various external information sources,
such as disaster site blueprints, hazardous-
materials shipping records, and other vital
information. Researchers in academia

and industry have used RETSINA success-
fully in aircraft maintenance, demining
activities, military logistics planning, and
financial portfolio management.5

Applying RETSINA to real robots
Extending the MAS infrastructure to

teams that include physical agents poses
two main challenges. First, each robot
must have social awareness—knowledge
of the MAS infrastructure’s existence
and how to use the infrastructure to
function as a team member. Although
robots may vary in morphology and
capability, they must have a reasoning
layer consistent with task agents in the
RETSINA system. We developed a novel
robot architecture that transforms a
physical robot into a robot agent. The
robot agent architecture (see Figure 1)
extends the commonly used three-tier
architecture, with each higher layer
enforcing a functional abstraction on the
layer below and each lower layer de-
creasing the look-ahead horizon while
increasing detail. The agent layer con-
tains high-level reasoning and RETSINA

communication modules, including the
necessary social awareness for interac-
tion. The executive layer is responsible
for plan execution and monitoring devi-
ations. The control layer encapsulates
the physical robot behavior implemen-
tation. This representation combines the
functional abstraction of standard three-
tier architectures with a high-level seman-
tic abstraction that transforms the robot
into a robot agent suitable for conven-
tional software agent coordination and
cooperation.

A second challenge in extending MASs
to physical agents arises from commu-
nication challenges. Physical agents
share the same high-level communica-
tion requirements as software agents but
must also communicate information
about their state and the environment
state. This low-level communication has
high frequency and low latency require-
ments, yet because the robots are mobile
and must communicate wirelessly, the
available bandwidth is significantly
lower for multirobot systems than multi-
software-agent systems. An MAS usually
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has one standard for communication
between all agents: an agent communi-
cation language. ACLs incur overhead
that makes them impractical or infeasi-
ble for the transfer of low-level data such
as video, audio, sensory, or telemetry
data. In response to these opposing needs
for high- and low-level communication,
we developed a two-tiered communica-
tion hierarchy, allowing additional,
more efficient lines for low-level com-
munication. Integrating the two-tiered
communication architecture into the
RETSINA MAS significantly improved the
system’s performance6 on physical
robots for USAR (see Figure 2). 

Simulation environment
The scarcity and expense of USAR-

capable robots has severely restricted
USAR robotics research. Field research
shows that mobility is only one problem
hindering effective use of robots for
search and rescue.3 Testing human per-
ception, situational awareness, and
teamwork depends on combining sensed
data, human interaction, and automa-

tion in experiments. Expense, unrelia-
bility, and difficulties in running partic-
ipants in parallel, especially in multiro-
bot experiments, make physical robotics
impractical for the large samples,
repeated trials, and varied conditions
needed for HRI research. To support
HRI, a robotic simulation must accu-
rately render the user interface (particu-
larly, camera video), represent robot
automation and behavior, and represent
the remote environment that links the
operator’s awareness with the robot’s
behaviors. By anchoring the simulation
to actual platforms and sensors, we hope
to extend our experiments to novel,
large, and hazardous environments with
control of greater numbers of robots. 

To meet these requirements, we devel-
oped USARsim7,8 a high-fidelity, exten-
sible simulation of the NIST USAR are-
nas using the Unreal game engine (see
Figure 3). The USAR arenas provide a
controlled environment for comparing
the effectiveness of different robotic
designs, control and mapping algo-
rithms, and team regimes. Each arena

(yellow, orange, or red) can contain mul-
tiple “victims”—mannequins outfitted
with thermal signatures, carbon dioxide
emitters, and both noise (for example,
screams for help) and motion (for exam-
ple, waving of hands and fingers) as mul-
timodal clues to the victims’ vital signs.
The quantitative challenge is discover as
many victims as possible quickly and
convey sufficient information for human
rescuers to navigate the disaster and
approach the victims. The arenas pose
search tasks with varying difficulty on
different dimensions. Challenges to
mobility progress from the office-like
environment of the yellow arena to the
nearly impassable rubble of the red
arena. Perceptual difficulties vary, from
visually confusing patterns, glass panels,
mirrors, and sonar-absorbing padding
in the yellow arena to the few perceptual
difficulties in the red arena. 

Our simulated environments include
these three arenas and the larger, fixed
USAR reference site in an abandoned
Nike silo on the NIST Gaithersburg cam-
pus. Because the Unreal engine uses stan-

Telemetry
commands

Video
State information

Telemetry

commands

Video

State

information
Personal Exploration Rover

Corky

Environment: disaster area

High-level communication Low-level communication

Figure 2. Interactions in our agent-based urban search and rescue system, involving the Personal Exploration Rover and Corky, two
robots we developed and deployed.



dard terrain representations reachable
through translation chains9 from most
3D-modeling and GIS (geographic infor-
mation system) formats, we can add new
environments with relative ease. The
Unreal client-server architecture for mul-
tiplayer games lets multiple, independent
robots participate in a single simulation.

We added GameBots, a modification
to the game engine that let us control
bots, synthetic players running simple
reactive programs, through a normal
TCP/IP socket. This gives us direct access
to range data needed to simulate sensors
and the ability to directly control para-
meters, such as wheel velocity, to simu-
late robot dynamics. Because synthetic
characters don’t get a rendered view of
the scene, we must provide camera views
another way. Unreal’s client options
offers a “spectate” mode. As a specta-
tor, a client can attach its viewpoint
(camera location and orientation) to any
other player, including a bot. By com-
bining a bot controlled by GameBots
with a spectator client, we can simulate
a robot with access to the bot’s simulated
sensor data and the spectating client’s
simulated video feed. 

We develop physical robots and their
simulations in parallel, which provides
complementary advantages. Simulations
let us conduct studies involving many

participants and trials, and building
robotic platforms lets us validate these
findings and identify aspects the simula-
tion missed. Robots and simulation fol-
low the same architecture with the user
interacting with the robot through
RETSINA agents. We constructed the
detailed models of the simluation’s
robots from the vehicle class of the
Karma physics engine, a component of
the Unreal engine. Because we can’t
access Unreal’s rendering engine directly,
we must acquire images from video
memory and store them compressed on
an image server. This lets us vary frame
rates to match observed camera feeds
and provide images for visual process-
ing. We can simulate high-quality ana-
log video by presenting the renderer’s
raw output. By combining accurate
models of robot dynamics and controls,
camera field of view and frame rate, and
the environment, we create HRI tasks.
These might allow the robot to become
entangled with unseen debris, and visual
clutter and unaccustomed perspective
could thwart victim recognition. Conse-
quently, operators can easily become
confused and lost just as in the actual
tasks. We developed two platforms in
this manner: Corky, an experimental
two-wheeled robot designed for USAR,
and the Personal Exploration Rover

(PER), an educational robot modified
for USAR tasks. Human-in-the-loop
simulation showed robot frame rates
were too low for effective teleoperation
and that more support for the operator’s
situation awareness was needed. This led
to our three-frame panoramic display
and the mediated and incremental tele-
operation control modes. 

We also find simulation to be a valu-
able tool for investigating general HRI
issues. In a series of experiments involv-
ing larger, more extreme terrains, we
examined an operator’s ability to use
multiple cameras under a variety of con-
trol regimes10,11 and investigated the
advantages of gravity-referenced views
over separated displays of attitude.12 The
next series of experiments prompted by
field experience at USAR competitions
will examine strategies for combining
egocentric and exocentric views to im-
prove the human operator’s situational
awareness and performance in control-
ling multirobot teams. 

Although we developed USARsim to
assist our own research into robotic
teams, the interest it aroused prompted
us to make it available to the wider
research community. (Download the
simulation at http://usl.sis.pitt.edu/ulab/
usarsim_download_page.htm.) A Robo-
cup rescue demonstration league will use
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USARsim in 2005, adding ActivMedia
Pioneer robots (P2AT and P2DX) and
the iRobot ATVR Jr. to the robot plat-
form. The simulated robots can be con-
trolled using the Player, Pyro, or native
Gamebot interfaces. 

Real-world environment and
robot platforms

Urban disaster sites’ mobility and
sensing challenges (reflected in the red,
orange, and yellow NIST arenas) vary
widely. A disaster site with small con-
fined voids and narrow passages might
require serpentine robots that can crawl
through such spaces. Conversely, you
might more efficiently search a relatively
intact building using a larger, faster robot
carrying more sensing and processing
power. Clearly, USAR robot teams need
heterogeneous platforms to successfully
tackle the myriad challenges faced. 

Our research focuses on enabling het-
erogeneous robots to work semiau-
tonomously or in conjunction with
humans to explore this challenging
environment. Although our research
emphasis is in designing algorithms and
user interfaces rather than robot plat-
forms, the lack of commercially avail-
able, robust, and inexpensive robots
prompted the design of two different
mobile platforms, which we displayed in
the 2004 RoboCup US Open Urban
Search and Rescue league competition.
In this competition, we entered two- and
three-robot teams with heterogeneous
sensors and mobility in each of seven
rounds, logging over five total robot
hours of operation and locating eight
victims, to place third overall. Our phys-
ical robot team currently consists of sev-
eral PERs and Corky (see Figure 2).

Here, we address two interesting chal-
lenges—namely, sensor fusion and inter-
face design for effective robot control.

Sensor fusion
USAR provides an excellent test bed

for the positive and negative identifica-
tion of victims. The range of heat, noise,
rubble, and lighting conditions and vic-
tim status confound any available sen-
sor. For example, infrared sensors can
detect victims entombed in rubble but
are easily confused by excess ambient
heat or alternative heat sources such as
fire. Vision systems provide data intu-
itive for humans but fail in situations
with insufficient lighting or excess dust
and debris. We thus combine data from
multiple sensors using sensor fusion
techniques.13

Each sensor has an associated proba-
bility density function, pi = fi(xi), where
xi is the measurement from sensor i and
pi is the probability that a victim is pres-
ent. To account for accuracy discrepan-
cies of various sensors in different situa-
tions, we use confidence values. Each
sensor i has its own confidence ci, where
higher values of ci indicate more reliable
sensor results. Given a set of n sensors
and associated measurements of some
location, the equation in Figure 4 repre-
sents the probability that this location
contains a victim.

This problem formulation is suffi-
ciently broad to represent the variety of
sensors available, the reliability of sen-
sors in different situations, and the fusion
of information from different robots or
information sources. We developed a sen-
sor suite that you can place on an arbi-
trary mobile platform or distribute
among multiple robots and characterized

the probability density function, pi, for
these sensors. This sensor suite consists
of a USB Web camera, microphone,
pyroelectric sensor, and infrared camera
used for detecting motion, sound, heat
waves in the human emission spectrum,
and heat and motion based on infrared
images, respectively. We employed a
series of experiments to develop the prob-
ability density function and confidence
values for each sensor in the USAR envi-
ronment.13 You can use results of the sen-
sor fusion algorithm to identify and direct
a human operator’s attention to possible
victims (see Figure 5).

Control interface
Search and rescue robots are designed

to have adjustable levels of autonomy.
This requires not only the development
of control algorithms to increase auton-
omy but also a system to enable an exter-
nal agent to exert varying degrees of con-
trol over the robot. We desig ned an
interface agent that provides the opera-
tor the necessary feedback and enables
the operator to control the robot as
desired (see Figure 6).

The interface agent has three separate
components. The communication mod-
ule handles all communication with the
robot and other agents. The feedback
module continuously polls the robot for
information on the environment (for
example, video) and robot (for example,
battery level) states and displays this data
to the user. In the feedback module, we
significantly improved operator perfor-
mance by adding the ability to request
panoramas of the environment to expand
the robot’s effective field of view. Expe-
rience in the simulator demonstrated that
operators needed a wider field of view to
maintain situational awareness and cor-
rectly locate the robot in its environment.
The control module lets the operator con-
trol the robot’s attention using the pan-tilt
head and the robot position using one of
four control paradigms:

pf =
c1f1 x1( ) + c2 f2 x2( ) + ...+ cn fn xn( )

c1 max f1 x1( )( ) + c2 max f2 x2( )( ) + ...+ cn max fn xn( )( ) =
ci pi

i=0

i=n

∑

ci max pi( )
i=0

i=n

∑

Figure 4. The probability that a particular location contains a victim. xi is the 
measurement from sensor i, and pi is the probability that a victim is present. Each 
sensor i has its own confidence ci.



• Direct teleoperation gives the opera-
tor fine-grain control of the robot by
translating joystick commands
directly to motor velocities, overrid-
ing obstacle avoidance safeguards.

• Incremental teleoperation is useful
when frame rates and frequencies are
too slow or lag is too long for direct
teleoperation. The operator com-
mands the robot to turn or drive a
short distance, stop, and sense.
Although slower than direct control,
incremental control imposes no per-
formance requirements on network
throughput and latency.

• Command mode lets the operator
direct the robot to drive or turn a cer-
tain distance. The robot performs this
action or, if prevented by an obstacle,
alerts the operator. A status bar shows
the operator the robot’s progress. The
operator can stop the robot at any
time.

• Mediated mode lets the operator select
a point of interest in the field of view
and sends the robot to that position. If
the robot can’t reach the position, it
alerts the operator. Like command
mode, driving in mediated control
mode is safe in that the robot is
actively scanning for obstacles and
avoiding them. 

M
any open problems remain
in USAR, including opti-
mally searching a space with
distributed, heterogeneous

robots with spatiotemporal coordination,
applying learning techniques to improve
sensor fusion, developing better control

interfaces for multiple robots, and improv-
ing individual robots’ autonomy, mobility,
and sensors. Future work by this and other
hybrid (simulation and real-world) research
teams holds great promise for developing
field-worthy solutions that will assist fire-
fighters in USAR conditions.
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robot explore that victim.
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