
64	 PERVASIVE computing� Published by the IEEE CS n 1536-1268/08/$25.00 © 2008 IEEE

s o f t w a r e a r c h i t e c t u r e

Toward a General
Software Infrastructure
for Ubiquitous
Computing
This general software architecture is designed to support ubiquitous
computing’s fundamental challenges, helping the community develop
and assess middleware and frameworks for this area.

Cristiano André da Costa
Federal University
of Rio Grande do Sul

Adenauer Corrêa Yamin
Catholic University of Pelotas

Cláudio Fernando Resin Geyer
Federal University
of Rio Grande do Sul

T he most profound technologies
are those that disappear. They
weave themselves into the fab-
ric of everyday life until they are
indistinguishable from it.”1 Mark

Weiser’s visionary statement summarizes what’s
expected from pervasive or ubiquitous comput-

ing (ubicomp): user access to
the computational environ-
ment, everywhere and at all
times, by means of any device.
The difficulty lies in how to
develop applications that will
continually adapt to the envi-
ronment and remain work-
ing as people move or change
devices.2

The more traditional mobil-
ity goal of providing compu-
tation “all the time, every-
where”3 is considered a reactive

approach to information access. However, it
represents a proactive step toward ubicomp. For
this purpose, we need a new class of software,
but the limited number of languages and tools
available still hinders this field’s development.4

Ubiquitous applications need middleware to
interface between many different devices and
end-user applications.3 The aim is to hide envi-
ronment complexity by isolating applications
from the explicit management of protocols,
distributed memory access, data replication,

communication faults, and so on. Middleware
can also solve heterogeneity problems related to
architectures, operating systems, network tech-
nologies, and even programming languages,
promoting their interoperation. On the other
hand, a framework is an environment, compris-
ing APIs, user interfaces, and tools, that simpli-
fies software development and management in
a specific domain. We can use frameworks to
develop middleware and to build software that
runs on that middleware.

Our proposed general architectural model for
ubicomp supports frameworks and middleware
while considering all the challenges we believe
significant in the field. Here, we highlight the
numerous requirements that are essential to the
area and that software infrastructure should
cover.

Ubiquitous computing challenges
Previous studies present issues that are unique

or still open in ubicomp (see the “Related Work
in Ubiquitous Computing” sidebar). Table 1
summarizes the main issues.

Heterogeneity is a concern derived from
distributed systems. Ubicomp software must
hide infrastructure differences from users and
manage the required conversions from one
environment to another, addressing protocol
mismatches. In this scenario, developers using
a device-independent approach have to create
application logic only once.

“

s o f t w a r e a r c h i t e c t u r e

JANUARY–MARCH 2008	 PERVASIVE computing� 65

Another related issue inherited from
distributed systems is scalability. Ubi-
comp systems will likely involve count-
less users, devices, applications, and
communications on an unprecedented
scale. We must avoid centralized solu-
tions, reduce distant interactions, and
prevent bottlenecks.

Sometimes the system can’t execute

according to functional specifications.
Additionally, problems related to mis-
specifications might arise. Such situa-
tions lead to failures. Avoiding failures
that are more frequent and more severe
than what is acceptable leads to depend-
ability, a concept that integrates the attri-
butes of availability, reliability, safety,
integrity, and maintainability. The term

pervasive dependability refers to these
needs in the scope of ubicomp.5

Security is a concept strictly related
to dependability. A system is secure if
measures exist to ensure availability,
integrity, and confidentiality. We could
also use many distributed-systems secu-
rity mechanisms in ubicomp, but they
must be lightweight to preserve both

S calability, heterogeneity, integration, invisibility, context
awareness, and context management are all challenges to

be addressed, according to Debashis Saha and Amitava Mukher-
jee.1 Except for integration, which we discuss indirectly as part
of spontaneous interoperation and integration in invisibility, we
include all these aspects in the article and in table 1.

Tim Kindberg and Armando Fox base their work on two fun-
damental characteristics: physical integration and spontaneous
interoperation.2 They also emphasize some common areas in
ubicomp scenarios, all directly or indirectly discussed in our pro-
posed model.

The article by Guruduth Banavar and his colleagues at IBM
envisions a device-independent application-development pro-
cess with a highly dynamic load-time system that embraces
discovery, negotiation, and dynamic selection of presentation.3
This model at execution involves dynamic resource sharing,
application migration, and failure detection and recovery. Of
these, data sharing is the only feature that we don’t list; instead,
we consider it to be a part of (logical) mobility.

Eila Niemelä and Juhani Latvakoski propose interoperability,
heterogeneity, mobility, survivability and security, adaptability,
self-organization, and augmented reality with scalable content.4
Their concept of self-organization amplifies the idea of adapta-
tion by adding a virtual context to the one sensed by users.

Robert Grimm and his contemporaries at the University of
Washington suggest three “fault lines” for ubicomp: transpar-
ency, heterogeneity, and the use of a single abstraction for data
and code.5 To address this last issue, they recommend keeping
data and functionality separate. We don’t tackle this in this
article, but satisfying this condition would be possible using a
different data representation, such as tuples.6

An article by Intel researchers Roy Want and Trevor Pering
proposes power management, discovery, user interface adapta-
tion, and location-aware computing.7 We don’t directly con-
sider power management in this article; as an alternative, we
present the more general issue of context management. The
same applies to location awareness.

Martin Modahl and his colleagues propose a taxonomy for the
building blocks of a software infrastructure called UbiqStack. 8
It has five subsystems: registration and discovery, service and
subscription, computation sharing, context management, and
data storage and streaming. The first four categories corres
pond roughly to our more generic discovery, interoperation,
cyber foraging, and adaptation. We don’t address the fifth one
directly, but we believe our proposal is more comprehensive
because we allow for several other categories. Of the research
projects mentioned here, Modahl and his colleagues’ work is
the only one that proposes a software architecture for ubicomp,
although Banavar and colleagues offer a new application model
considering its life cycle.3

References

	 1.	 D. Saha and A. Mukherjee, “Pervasive Computing: A Paradigm for the
21st Century,” Computer, vol. 36, no. 3, 2003, pp. 25−31.

	 2.	 T. Kindberg and A. Fox, “A System Software for Ubiquitous Comput-
ing,” IEEE Pervasive Computing, vol. 1, no. 1, 2002, pp. 70−81.

	 3.	 G. Banavar et al., “Challenges: An Application Model for Pervasive
Computing,” Proc. 6th Int’l Conf. Mobile Computing and Networking
(Mobicom 00), 2000, ACM Press, pp. 266−274.

	 4.	 E. Niemelä and J. Latvakoski, “Survey of Requirements and Solutions
for Ubiquitous Software,” Proc. Mobile Ubiquitous Computing Conf.,
ACM Press, 2004, pp. 71−78.

	 5. 	R. Grimm et al., “Systems Directions for Pervasive Computing,” Proc.
8th Workshop Hot Topics in Operating Systems (Hotos VIII), 2001, IEEE
CS Press, pp. 147−151.

	 6.	 R. Grimm et al., “System Support for Pervasive Applications,” ACM
Trans. Computer Systems, vol. 22, no. 4, 2004, pp. 421−486.

	 7.	 R. Want and T. Pering, “System Challenges for Ubiquitous and Perva-
sive Computing,” Proc. 27th Int’l Conf. Software Eng. (ICSE 05), 2005,
ACM Press, pp. 9−14.

	 8.	 M. Modahl et al., “UbiqStack: a Taxonomy for a Ubiquitous Comput-
ing Software Stack,” Personal and Ubiquitous Computing, vol. 10, no.
1, 2006, pp. 21−27.

Related Work in Ubiquitous Computing

66	 PERVASIVE computing� www.computer.org/pervasive

software architecture

the spontaneity of interactions and the
limitations of some devices.6

Moreover, privacy—guaranteeing
how such information will be used
or passed on—will be extremely dif-
ficult. Another associated challenge is
trust, which should be considered in
this kind of heterogeneous, dynamic
scenario. Since there’s neither a fixed
infrastructure nor a specific domain,
we must use a trust management sys-
tem to measure how much information
should be disclosed.7

Spontaneous interoperation is the
bringing together of constantly chang-
ing components from several devices,
enabling reciprocal communication.8
We need this spontaneity because of
the volatile nature of ubicomp, whose

components are in continual motion
and interacting with different sets of
services.

Another challenge, mobility, provides
access to applications and data wher-
ever users go and however they move.
Mobility can be either physical (related
to equipment or users) or logical (related
to code or data). Applications should be
able to move from one device to another,
and data access should be maintained
(“follow-me” applications).9

Mobile computing has also intro-
duced the idea of context awareness—
that is, inferring context to supply infor-
mation or services in the case of limited
or intermittent availability.10 Context
awareness is broader in ubicomp than
in mobile computing, as devices must

sense changes and software should act
proactively.

Context management is action in
response to sensed data, adapting
services to environmental changes. It
can also expand devices’ capacity by
using available resources in the cur-
rent context.

HCI design is also a significant fac-
tor. As computers become “smarter,”
HCI’s intensity and quality are bound
to increase.3 The focus on user inter-
faces evolved from software design, but
it acquired a different meaning after
mobile computing and new modes of
interaction emerged. Another issue is
the merging of user data with the real
environment, redirecting attention to
transparent user interaction.

TABLE 1
Ubiquitous computing issues and challenges.

Issue Alias Focus area Motive

Heterogeneity Distributed systems Allowing a variety of services
Providing different types of devices, networks, systems, 	
and environments

•
•

Scalability Localized
scalability*

Distributed systems Enabling large-scale deployments
Increasing the number of resources and users

•
•

Dependability 	
and security

Fault tolerance† Mission-critical 	
and distributed 	
systems

Avoiding failures that are more frequent and more 	
severe than acceptable
Providing availability, confidentiality, reliability, safety, 	
integrity, and maintainability

•

•

Privacy and trust Internet and mobile
computing

Protecting against bad use of personal data
Defining the trustworthiness of interacting components

•
•

Spontaneous 	
interoperation

Volatility Mobile computing Allowing interaction with a set of components that can 	
change both identity and functionality
Permitting association and interaction

•

•

Mobility Follow-me
applications

Mobile computing Providing application and data access anywhere, anytime
Enabling the user environment to go along with the user

•
•

Context 	
awareness

Perception Mobile computing Perceiving the user’s state and surroundings
Inferring context information

•
•

Context 	
management‡

Smartness, masking
uneven condition, 	
adaptability

Mobile computing Modifying system behavior based on perceived context 	
information
Adapting to the current situation

•

•

Transparent 	
user interaction

HCI** Ubiquitous 	
computing

Merging the user interface with the real world
Letting users focus on tasks with minimal distraction

•
•

Invisibility Ubiquity, 	
pervasiveness

Ubiquitous 	
computing

Letting users focus on tasks, not tools
Making computers disappear in the background

•
•

* Physical distance is a significant issue in pervasive computing: we must consider the important role that local interactions play. † This term is more restrictive than “dependability,” which community use is converging on.‡ Some authors consider context management a part of context awareness.
** This term is used in a more general sense.

JANUARY–MARCH 2008	 PERVASIVE computing� 67

The last issue, invisibility, is directly
related to ubicomp itself. It’s about keep-
ing user focus on the task rather than
the tool.1 To fulfill this vision, software
must satisfy user intent by helping (not
obstructing) it. Software should learn
with the user and, in some cases, let the
user change preferences, interacting, as
Mahadev Satyanarayanan suggested,
“almost at a subconscious level.”11

Proposed model
Figure 1 presents the general infra-

structure model we propose, including
each issue we highlighted in table 1
and the corresponding characteristics
that should be available to address it.
The structure is then divided consider-
ing application life cycle (design time,
load time, and runtime).12 Design time
is when the application is conceived,
extended, or maintained. At load time,
applications are loaded onto specific
devices. At runtime, the user executes
and uses applications.

Each row in the figure presents a
challenge (in an oval box on the far
left) and the essential characteristics to
be addressed at design time, load time,
and runtime, respectively. Some chal-
lenges, such as “privacy and trust” and
“dependability and security,” are more
closely related than others (there’s no
horizontal line separating these ovals).
In this situation, we can define depend-
ability as the ability to deliver services
that we can justifiably trust. Moreover,
to attain privacy protection, collected
personal data should be secure. Close
dependence also involves context man-
agement and context awareness, and
invisibility and transparent user inter-
action, making it difficult to draw an
exact borderline.

The issues’ order in the figure doesn’t
imply a layered model, in which each
tier depends on the services provided by
the other. From the bottom of the figure
up, services are organized from lower

level to higher level. The challenges that
distributed systems already tackle are at
the bottom, the issues related to mobile
computing are in the middle, and the
challenges that arise with ubicomp are
at the top.

A framework can provide the
abstractions ubicomp needs at design
time. The design-time column shows
all the characteristics of this stage. The
same applies to load time and runtime.
However, to provide the characteris-
tics required in these stages, we suggest
using middleware. Let’s take a closer
look at each row of the general archi-
tectural model.

Heterogeneity
Several levels of heterogeneity exist,

in both hardware (including networks,

devices, screen sizes, and power capabil-
ity) and software (including languages,
component models, and structures). To
facilitate the bridging between hetero-
geneous systems, we should use open
standards, with published interfaces and
standardized communication mecha-
nisms, enabling easier system extension
and reimplementation.

Also, frameworks for device-inde-
pendent projects can make it possible
for different hardware, even from
diverse vendors, to use the same source
code, sometimes with little alteration.
Thus, we can keep the developed
application almost unmodified, limit-
ing change to device drivers or to the
framework itself.

The current solution to heterogeneity
is to use middleware with a common,

Invisibilty

Transparent
user interaction

Transparent
user interaction

Context
management

Context
awareness

Mobility

Spontaneous
interoperation

Privacy and
trust

Dependability
and security

Scalability

Heterogeneity

Adaptable
applications

Design time

Interact devices

Abstract services

High-level interfaces

Abstract user interfaces

Abstract interaction
elements

Privacy standards

Trust reasoning

Verification

Security design

Spontaneous
component design

Device-independent

Open standards

Scalable solutions
without bottlenecks

Mobile code and
data design

Framework

Minimal user
intervention

Load time Runtime

Seamless integration Preserve user attention

Contextual services

Discovery

Dynamic generation of interfaces

Adaptation and cyber foraging

Code and data (logical) mobility

Middleware

Trust management

Fault, error, and failure handling

Security mechanisms

Association and composition

Virtual machine

Interoperability languages and protocol

Automatic deploy
and installation

Maximize local
interactions

Privacy protection

Interoperation

Physical mobility

Tangible interaction

Meet user intent

Actuator service

Figure 1. General architectural model for
ubiquitous computing.

68	 PERVASIVE computing� www.computer.org/pervasive

software architecture

integrated API and a unified binary for-
mat. This binary file should run on a vir-
tual machine, such as Java, that would
be available on all platforms. How-
ever, different device capabilities mean
that we can’t always employ the same
virtual machine, run the same binary
code, or expect the available features
to remain unchanged. For instance,
Java has different virtual machines for
mobile devices and PCs. Nevertheless,
using a virtual machine reduces the cost
of heterogeneity because fewer changes
are needed compared to languages that
generate specific machine codes.

Finally, we must focus on components’
interoperability, the “ability to under-
stand the exchanged information and to
provide something new originating from
the exchanged information.”13 Interoper-
ability languages such as XML are com-
monly used, making it possible to repre-
sent data in a standard, structured form,
more portable between applications. In
other cases, software converts source
data into a format that’s both expected
and transparent to the user. However,

differences might occur between the
source and destination versions. Besides,
protocols that can negotiate services
and resources between applications and
devices must be available, allowing inte-
gration during load and execution.

Scalability
To address the problem of scalability,

we must develop software that consid-
ers the abundance of users, interactions,
components, and devices, avoiding

centralized solutions and bottlenecks.
Applications should be automatically
loaded and managed at load time.
Besides, whenever a new application
is available, it should be automatically
deployed and installed, because manual
software distribution and installation
for each device would be impractical.

During execution, we should reduce
interaction with distant resources. This
idea, localized scalability,11 should be
a ubicomp goal even if it conflicts with
the current guideline of network trans-
parency (in which local and remote
resources are accessed with identi-
cal operations, their physical location
notwithstanding). We should consider
resources’ location and give priority to
local interactions over distant ones.

Dependability and security
In the scope of ubicomp, reliabil-

ity, availability, and safety must be
maximized. Minimizing the cost of
maintainability and the effort to pre-
serve integrity is also vital. In terms
of security, we must deal directly with

the attribute of confidentiality but also
with availability and integrity.

During application development,
verification could diagnose and remove
faults.

The failure-detection and recovery
strategies we use today (such as check-
pointing, compensation, isolation, or
reconfiguration) could be applied to
ubicomp as well. Because applications
execute in environments and there’s
always a context involved, require-

ments differ from those of traditional
computing. Also, devices are a means
of access to applications, but some
device failures might not be speci-
fied in the application or middleware.
Besides device and application failure,
we should also consider network and
service failure.

We ought to differentiate failures (sit-
uations requiring detection and recovery
mechanisms) from system changes (situ-
ations where adaptation takes place). To
have an adaptable system, we must spec-
ify which types of changes will cause
adjustments, even though we can’t pre-
dict all possible situations. Sometimes,
unpredicted change occurs, or the sys-
tem might generate unspecified results.
We should detect and recover these
examples of failures (no adaptation is
possible). Also, we shouldn’t consider
disconnections as failures but rather as
part of the system specifications, treat-
ing them with adaptation mechanisms.

We must design a ubiquitous system’s
security with certain characteristics in
mind:14

User centricity. Users should be able
to circumvent security mechanisms
that are discordant with common
practices.
Context mechanisms. The security
mechanism should be near the activ-
ity in which it makes sense.
Selection. Users should be able to
understand and manage the employed
solutions. Only in this way can they
choose a suitable mechanism accord-
ing to the security needed in each
action and context.

Security mechanisms should scale
to devices with limited resources,
expect lack of knowledge, and allow
dynamicity of mobility.7 For instance,
user authentication through login and
password wouldn’t be feasible for every
device. We need other methods; for

•

•

•

 To have an adaptable system, we must specify

which types of changes will cause adjustments,

even though we can’t predict 	

all possible situations.

JANUARY–MARCH 2008	 PERVASIVE computing� 69

example, the system could exploit bio-
metric information or authenticate on
the basis of people’s locations.

Privacy and trust
Privacy and trust relate directly to

security concerns. We treat them sepa-
rately from dependability and security
because of their magnitude in ubicomp.
Although we try to deal with privacy
through legislation, we should also
apply technology because of the risk
of a user exposing too much personal
information to an environment. The
user might even be unaware of the sur-
veillance. Moreover, the amount and
accuracy of sensor-collected data will
likely increase as ubicomp advances.
Furthermore, privacy protection is par-
ticularly difficult in ubiquitous systems
because of location sensitivity. The con-
text-aware mechanism of sensing the
exact user location could be exploited
for tracking purposes. With this mech-
anism, we can infer users’ movements
and activities, associating them with
their personal information.

During design, we should apply pri-
vacy standards. Each standard, enforced
by jurisdiction and market, comprises
a group of procedures that we should
observe in data collection.7 During the
execution phase, we should employ
protection mechanisms to realize these
standards. For instance, data could be
accumulated anonymously or deleted
after a period of time.

Trust management can establish the
reliance on exchanged information and
ensure only authorized users can access
that information. The difficulty lies in
precisely defining an interacting entity’s
trustworthiness and granting permis-
sions on the basis of that decision. In
some cases, little or no evidence is avail-
able about an entity and, as in our daily
trust decisions, it’s more of a subjective
notion. Apart from being subjective,
trust is nonsymmetric (two interact-

ing components have different degrees
of trust in each other), situation-spe-
cific (dependent on context), dynamic
(increasing or decreasing over time),
and inherently associated with risk (no
reason to trust if risk isn’t involved).15
Because of these, there should be trust-
reasoning support. This reasoning
analysis is made on the basis of avail-
able information and considering the

various aspects of trust. Solutions for
uncertainty should also be present.

Spontaneous interoperation
The first step is to design spontane-

ous components—that is, entities that
support frequent change among com-
municating partners and that can easily
interact with others. To accomplish this
design, we need a dynamic environ-
ment with assorted infrastructures and
partners. The framework can facilitate
the development of spontaneous com-
ponents and provide a generic interface,
which will be combined to create spe-
cific entities during execution. Ideally,
we should specify components using a
uniform description language and then
build them independently of context.13

During execution, components asso-
ciate with each other. Association is the
logical relationship established between
components that allow interactions; we
call these interactions interoperation.6
When we assess association, three
points are important:

scale—efficiently choosing compo-
nents to associate in a scenario with

•

various possible partners;
scope—defining the extent to which
components must be considered and
including all possible partners; and
boundary principle—considering the
physical limits (or other criteria) when
defining the scope of association.6,8

We can also use discovery services (in this
article, a context-awareness characteris-

tic) as part of the association solution.
Interoperation depends on the com-

munication models employed. In ubi-
comp, we tend to use models based on
event systems or tuple spaces because of
the asynchronous nature of the former
or the ease of development and inher-
ent persistence of the latter. Occasion-
ally, both models are used in the same
middleware. Conversely, we can apply
other forms of communication such as
message passing, remote invocation, or
agent systems.

Composition is a special case of asso-
ciation in which external components
control internal ones; all interoperation
passes through those external compo-
nents, redirecting or modifying the asso-
ciation. Composition facilitates adapta-
tion and mobility. Each device can have
a specific component nesting all others
and making all the required changes to
their specific interfaces and capabilities.
When a component migrates from one
device to another, it enters in the spe-
cific device components and continues
to issue the same set of operations. The
adaptation process is up to each device’s
outer component, as is the redirection

•

•

The difficulty in trust management lies

in precisely defining an interacting entity’s

trustworthiness and granting permissions 	

on the basis of that decision.

70	 PERVASIVE computing� www.computer.org/pervasive

software architecture

of messages or events arriving after an
inner component has migrated.

Mobility
In ubicomp, users change devices fre-

quently, but user applications and data
must always be available. This means
that the environment should migrate

from one device to another. Besides,
migration also helps in reducing com-
munication costs and preventing dis-
connection.

To support code migration during
load and runtime, components must be
designed with mobile technology. We
can obtain this by using languages and
systems compatible with code mobil-
ity. During execution, middleware has
to deal with the mobile component and
manage migration. To achieve this, the
middleware should be aware of the
network and not treat it in a transpar-
ent manner.

We must also address data mobility.
We can’t always employ remote data
access, owing to the possibility of dis-
connection or deficiency of resources.
In these situations, we could move or
copy data to different locations, pro-
vided we pay attention to data coher-
ence and synchronization. Also, specific
applications or hardware might require
conversion between different formats.

Besides logical mobility, we need to
consider physical mobility. As people
move, the devices in use will change
their network addresses. This is because
they will be communicating with dif-
ferent access points and being assigned
to different IP addresses. The DHCP
(Dynamic Host Configuration Proto-

col) provides this dynamic acquisition
of addresses, allowing devices to main-
tain service access, regardless of loca-
tion. However, it might be difficult for
other components to interoperate with
those devices, because the IP routing
mechanism is based on fixed locations
and might lose packets when addresses

change. In addition, their updating on
the DNS is slow, due to extensive use
of cache.

To support physical mobility, we can
employ a location management strategy.
Conceptually, this strategy consists of
two operations: search, which a node
invokes when it needs to communicate
with a mobile device; and update or reg-
istration, which the mobile node per-
forms to inform its current location.16
Another crucial concern is ensuring that
a mobile node remains connected while
moving from one scope to another.
This handoff involves deciding when
to change to a new scope, selecting it,
acquiring resources, and rerouting pack-
ets to the new location.16

Context awareness
To be ubiquitous, middleware must

use relevant information and services
available in the surroundings. Dis-
covery is the component that detects
services and devices in the current con-
text, while sensors infer the significant
information that the context manager
can use to reason about actions to take.
Adding context awareness to middle-
ware increases device usability and
allows better user interaction.

We need framework support to assist
the implementation of context-aware

applications. In particular, we need a
set of abstract services that program-
mers can employ when building their
components, and we need high-level
interfaces that hide specific devices or
sensor details from the user.10 Thus, we
can split the acquisition of context from
its use, which is one of the most impor-
tant issues toward a more disseminated
use of context.17

To manage this contextual informa-
tion, middleware must provide at least
four categories of contextual services:

context subscription and delivery—a
service that can notify a component
when an event occurs;
context query—a mechanism to find
a suitable information or service;
context transformation—the conver-
sion of low-level data into high-level
information; and
context synthesis—the aggregation
of context information to generate a
more precise or detailed context.10,16

These services can supply contextual
information to applications. Context
management can be further improved
by offering various imperceptible layers
of interpretation, such as transforma-
tion and synthesis; by using distributed
sensors transparently; by making con-
text acquisition constantly available;
and by storing context and history.17

We also need dynamic resource discov-
ery (a mechanism to dynamically locate
and enumerate resources) available in
the environment or matching certain
requirements.18 A resource could be a
service, application, device, or any other
component. Requirements are sets of
specifications or characteristics to which
the needed resource must comply.

Many resource-discovery systems
exist today with different purposes
and design. However, when applied to
ubicomp, these approaches have some
limitations—for example, in terms of

•

•

•

•

In ubicomp, users change devices frequently,

but user applications and data must 	

always be available.

JANUARY–MARCH 2008	 PERVASIVE computing� 71

their interoperability, integration with
users, and scalability.18 We desire a
system that doesn’t need manual or
static configuration and that can find
required resources in every environ-
ment at any time.

Context management
By detecting context, we can affect

system behavior. This change can be
made by adapting the system to the new
conditions or augmenting the available
resources to compensate for the lack
of some feature. Another possibility is
changing the context using actuators—
that is, software-controlled devices that
affect the real world. An actuator can
activate a device, alter a physical condi-
tion such as temperature or luminosity,
or execute a logical action (such as load-
ing code, altering parameterization, or
moving components). To support this
management, we need abstract inter-
action elements in design time. We can
also use these elements during execu-
tion, according to context.

Adaptability is a central concept in
ubicomp. Adaptation consists in adjust-
ing aspects of applications to changes in
operating environments. The most com-
mon use of adaptation is in resource-
aware applications, when there is a sig-
nificant difference between resources
presented in the environment and those
needed.9 These resources could be,
among others, network bandwidth,
energy, storage space, or computing
power. Some approaches to resource
adaptation include fidelity reduction,
QoS systems, or the suggestion of cor-
rective actions.11 The first method con-
sists in changing the application to a
minimal use of limited resources. The
second keeps a certain resource at a
satisfactory level. The last one relies on
user intervention to make the desired
resources available.

Adaptation is important to other
kinds of applications besides resource-

aware ones: location-aware applica-
tions need to consider physical loca-
tion; context-aware applications use
sensors or monitors to infer state and
choose a strategy; and situation-aware
applications use the most general form
of adaptation, perceiving other nearby
applications and their usage context.9
In the latter case, adaptation takes
place depending on usage context and
user preferences, since adaptation deci-
sions are external to applications.

A special case of adaptation is cyber
foraging. Mobile devices usually have
limited capabilities, such as processor
power, memory, and battery life. With
those constraints, it’s sometimes diffi-
cult to satisfy the user’s computational
needs. To minimize this problem, we
can use nearby machines as computing
and data-staging servers, thus augment-
ing capability.11 Cyber foraging means
sharing or dividing code or data among
servers and mobile devices, which mid-
dleware can do automatically during
load- and execution-time. Alternatively,
it could be user-initiated—for instance,

when anticipating changes in connec-
tivity or device.

Servers used to augment capabilities
of mobile devices are sometimes called
surrogates.19 These surrogates may
employ encryption algorithms in stored
data. Thus, the users of these servers
can’t access information saved there.

Transparent user interaction
We should design device-neutral

applications—that is, we shouldn’t
start with the presentation and then
build up the programming logic from

that.12 To accomplish this, during
design, we can define abstract user
interfaces and predict different types
of interaction so that deciding which
interface to use can be postponed
until execution. Another option is
to dynamically generate the inter-
faces during execution on the basis
of abstract definitions, specific device
features, and contextual information.
This option requires less effort dur-
ing design and tends to consume more
processor power and communication
latency during execution. However, it
facilitates the use of contextual data.

Generating interfaces suited to each
specific device eases the design of trans-
parent user interaction. These interfaces
must consider the most natural form of
interaction for those specific devices,
and also contextual information and
user behavior (such as preferences and
history needs).

A broader concept wouldn’t focus
only on the human-computer inter-
face of devices but rather on design-
ing the physical interaction itself. This

idea leads to tangible interaction and
its use in the scope of ubicomp. The
idea of tangible interaction is to create
a richer interaction experience by cou-
pling digital information with physical
artifacts, using the human body as an
interface and combining real objects
and devices with computers in interac-
tive spaces.20 The challenge consists
in creating interfaces seamlessly inte-
grated with the real world and consid-
ering social, personal, and emotional
human experience. Finally, to achieve
a proper transparency, people should

We desire a system that doesn’t need manual

or static configuration and that can find required

resources in every environment at any time.

72	 PERVASIVE computing� www.computer.org/pervasive

software architecture

be able to focus on their task intui-
tively, with minimal involvement in
system issues.

Invisibility
The first step toward an invisible

system is to design adaptable applica-
tions. We need framework support that
eases this development, following the
goals of disappearing computing and of
keeping the user focused on the task. At
runtime, we require uninterrupted use,
with minimal user intervention. For
instance, disconnection periods could
occur in mobile devices. Actually, the
system must mask this disconnection
by keeping services uninterrupted and
still satisfy the user’s needs, maybe with
some degradation.

An important characteristic toward
invisibility is seamless integration. This
requires much effort from middleware
and the careful development of each
system element, considering many
aspects presented on the other layers of
the proposed architecture. Guruduth
Banavar and his colleagues propose a
task-based model that links the abstract

interaction to the application logic.12
This model facilitates integration, since
tasks are highly abstract and can be
used at load- and runtime to build sys-
tems with other applications, services,
and capabilities that are available in the
pervasive environment. This can bring
the notion of a task-aware system.19

To be invisible during runtime, a
system must act unobtrusively, meet-
ing the user’s expectations without
human intervention. Debashis Saha
and Amitava Mukherjee affirm that

“humans can intervene to tune smart
environments when they fail to meet
user expectations automatically.”3 We
can anticipate user needs by capturing
user intent. We should also preserve
user attention. The user is the most
important resource in a system,19 and
keeping him or her focused on the task
can foster invisibility.

I t’s still difficult to find a software
infrastructure that has all the nec-
essary characteristics presented
here. In the past, projects such

as Aura,19 CoolTown, 6 Gaia,4 One.
World,2 and ISAM21 tried to accom-
plish many aspects of ubicomp. How-
ever, it’s hard to address several open
research topics in one project. The ten-
dency today is to provide middleware
or frameworks for specific issues. In
spite of this tendency, we think that a
general infrastructure model for soft-
ware can help to develop pervasive
middleware or frameworks. We trust
that this model could also be useful
as a standard for assessing proposals

and suggesting needed features. To ful-
fill Weiser’s vision, future ubiquitous
infrastructures should, as this model
proposes, seamlessly integrate many
different challenges.

References
	 1.	 M. Weiser, “The Computer for the

Twenty-First Century,” Scientific Am.,
vol. 265, no. 3, 1991, pp. 94–101.

	 2.	 R. Grimm et al., “System Support for Per-

vasive Applications,” ACM Trans. Com-
puter Systems, vol. 22, no. 4, 2004, pp.
421−486.

	 3.	 D. Saha and A. Mukherjee, “Pervasive
Computing: A Paradigm for the 21st Cen-
tury,” Computer, vol. 36, no. 3, 2003, pp.
25−31.

	 4.	 M. Román et al., “A Middleware Infra-
structure for Active Spaces,” IEEE Perva-
sive Computing, vol. 1, no. 4, 2002, pp.
74−73.

	 5.	 C. Fetzer and K. Högstedt, “Challenges in
Making Pervasive Systems Dependable,”
Future Directions in Distributed Com-
puting, A. Schiper et al., eds., Springer,
2002, pp.186−190.

	 6.	 G. Coulouris et al., “Mobile and Ubiqui-
tous Computing,” Distributed Systems:
Concepts and Design, 4th ed., Addison-
Wesley, 2005, pp. 657−719.

	 7.	 P. Robinson et al., “Some Research Chal-
lenges in Pervasive Computing,” Privacy,
Security and Trust within the Context of
Pervasive Computing, P. Robinson et al.,
eds., Springer, 2005, pp. 1−16.

	 8.	 T. Kindberg and A. Fox, “A System Soft-
ware for Ubiquitous Computing,” IEEE
Pervasive Computing, vol. 1, no. 1, 2002,
pp. 70−81.

	 9.	 I. Augustin et al., “Towards Taxonomy
for Mobile Applications with Adaptive
Behavior,” Proc. 20th Int’l Symp. Paral-
lel and Distributed Computing and Net-
working (PDCN 02), ACTA Press, 2002,
pp. 224−228.

	10.	 A. Dey, “Understanding and Using Con-
text,” Personal and Ubiquitous Comput-
ing, vol. 5, no. 1, 2001, pp. 4–7.

11.	 M. Satyanarayanan, “Pervasive Com-
puting: Vision and Challenges,” IEEE
Personal Comm., vol. 8, no. 4, 2001, pp.
10-17.

	12.	G. Banavar et al., “Challenges: An Appli-
cation Model for Pervasive Computing,”
Proc. 6th Int’l Conf. Mobile Computing
and Networking (Mobicom 00), 2000,
ACM Press, pp. 266−274.

	13.	 E. Niemelä and J. Latvakoski, “Survey of
Requirements and Solutions for Ubiqui-
tous Software,” Proc. Mobile Ubiquitous
Computing Conf., ACM Press, 2004, pp.
71−78.

	14.	 P. Dourish et al., “Security in the Wild:

The user is the most important resource 	

in a system, and keeping him or her focused 	

on the task can foster invisibility.

JANUARY–MARCH 2008	 PERVASIVE computing� 73

User Strategies for Managing Security as
an Everyday, Practical Problem,” Personal
and Ubiquitous Computing, vol. 8, no. 6,
2004, pp. 391−401.

	15.	 V. Cahill et al., “Using Trust for Secure
Collaboration in Uncertain Environ-
ments,” IEEE Pervasive Computing, vol.
2, no. 3, 2003, pp. 52−61.

	16.	 F. Adelstein et al., Fundamentals of Mobile
and Pervasive Computing, McGraw-Hill,
2005.

	17.	 A. Dey et al., “A Conceptual Framework
and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applica-
tion,” HCI J., vol. 16, nos. 2–4, 2001, pp.
97−166.

	18.	 F. Zhu, M. Mutka, and L. Ni, “Service
Discovery in Pervasive Computing Envi-
ronments,” IEEE Pervasive Computing,
vol. 4, no. 4, 2005, pp. 81−90.

	19.	 D. Garlan et al., “Project Aura: Toward
Distraction-Free Pervasive Computing,”
IEEE Pervasive Computing, vol. 1, no. 3,
2002, pp. 22−31.

	20.	 E. Hornecker, “A Design Theme for Tan-
gible Interaction: Embodied Facilitation,”
Proc. 9th European Conf. Computer Sup-
ported Cooperative Work (ECSCW 05),
2005, Kluwer, pp. 23−43.

	21.	 I. Augustin et al., “ISAM, Joining Con-
text-Awareness and Mobility to Building
Pervasive Applications,” ch. 4, Mobile
Computing Handbook, M. Ilyas and I.
Mahgoub, eds., CRC, 2004, pp. 73−94.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/csdl.

the Authors
Cristiano André da Costa is an associate professor at the University of Vale
do Rio dos Sinos and a doctoral candidate at the Federal University of Rio
Grande do Sul. His research interests include software infrastructure for ubiq-
uitous computing, context awareness, distributed systems, and operating
systems. He received his MSc in computer science from the Federal University
of Rio Grande do Sul. He’s a member of the IEEE, the ACM, and the Brazilian
Computer Society. Contact him at Instituto de Informática, Universidade do
Vale do Rio dos Sinos (Unisinos), Av. Unisinos 950, 93022-000, São Leopoldo,
RS, Brazil; cac@unisinos.br.

Adenauer Corrêa Yamin is an associate professor in the Computer Science
Department at the Catholic University of Pelotas and works on the technical
staff of the Informatic Center of Federal University of Pelotas. His research 	
interests include ubiquitous, grid, parallel, and distributed computing. He
obtained his PhD in computer science from the Federal University of Rio Grande
do Sul. He’s a member of the ACM and the Brazilian Computer Society. Con-
tact him at Universidade Católica de Pelotas, Rua Félix da Cunha 412, Pelotas,
96010-000, RS, Brazil; adenauer@ucpel.tche.br.

Cláudio Fernando Resin Geyer is an associate professor at the Informatics
Institute of the Federal University of Rio Grande do Sul. His research interests
include ubiquitous computing, parallel and distributed computing, grid com-
puting, and distributed objects. He received his PhD in informatics from the
Joseph Fourier University. He’s a member of the ACM and the Brazilian Com-
puter Society. Contact him at Universidade Federal do Rio Grande do Sul, Av.
Bento Gonçalves 9500, Porto Alegre, 91501-970, RS, Brazil; geyer@inf.ufrgs.br.

Engineering and Applying
the Internet
IEEE Internet Computing reports emerging tools,
technologies, and applications implemented
through the Internet to support a worldwide
computing environment.

In 2008, we’ll look at:

• Crisis Management
• Virtual Organizations
• Useful Computer Security
• Mesh Networking
• Service Mashups
• and more! www.computer.org/internet/

