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Abstract—The proliferation of IoT devices which can be more easily compromised than desktop computers has led to an increase in
the occurrence of IoT-based botnet attacks. In order to mitigate this new threat there is a need to develop new methods for detecting
attacks launched from compromised IoT devices and differentiate between hour and millisecond long IoT-based attacks. In this paper
we propose and empirically evaluate a novel network-based anomaly detection method which extracts behavior snapshots of the
network and uses deep autoencoders to detect anomalous network traffic emanating from compromised IoT devices. To evaluate our
method, we infected nine commercial IoT devices in our lab with two of the most widely known IoT-based botnets, Mirai and
BASHLITE. Our evaluation results demonstrated our proposed method’s ability to accurately and instantly detect the attacks as they
were being launched from the compromised IoT devices which were part of a botnet.

Index Terms—Internet of Things, Botnets, Anomaly detection, Autoencoders.
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1 INTRODUCTION

A S the number of Internet of Things (IoT) devices de-
ployed dramatically increases worldwide [1], and the

traffic volume of IoT-based DDoS attacks reaches unprece-
dented levels [1], [2], [3], the need for timely detection of
IoT botnet attacks has become imperative for mitigating
the risks associated with these attacks. Instantaneous detec-
tion promotes network security, as it expedites the alerting
and disconnection of compromised IoT devices from the
network, thus stopping the botnet from propagating and
preventing further outbound attack traffic.

Botnets such as Mirai are typically constructed in several
distinct operational steps [1], namely propagation, infection,
C&C communication, and execution of attacks. Unlike most
previous studies on botnet detection (see Table 1), which
addressed the early operational steps, we focus on the
last step. We concentrate on large enterprises, which are
expected to face an ever growing range and quantity of
IoT devices, normally connecting to their networks via Wi-
Fi (short-range communications like Bluetooth and ZigBee
are not in our current scope). These devices can be either
self-deployed (e.g., smart smoke detectors) or dynamically
introduced from the outside by employees and visitors (e.g.,
BYO wearables).

Assuming that botnet attacks are unlikely to disappear,
the fundamental question we address is as follows. Given
a large number of heterogeneous IoT devices connected
to an organizational network, can we devise a centralized,
automated method that is highly effective and accurate in
detecting compromised IoT devices which have been added
to a botnet and have been used to launch attacks?

For detecting attacks launched from IoT bots we pro-
pose a network-based approach, which uses deep learning
techniques to perform anomaly detection. Specifically, we
extract statistical features which capture behavioral snap-

shots of benign IoT traffic, and train a deep autoencoder
(one for each device) to learn the IoT’s normal behaviors. The
deep autoencoder attempts to compress snapshots. When
an autoencoder fails to reconstruct a snapshot, then it is a
strong indication that the observed behavior is anomalous
(i.e., the IoT device has been compromised and is exhibit-
ing an unknown behavior). An advantage of using deep
autoencoders, is their ability to learn complex patterns, e.g.,
of various device functionalities. This results in an anomaly
detector with hardly any false alarms. We empirically show
that the autoencoders’ false alarm rate is considerably lower
than three other algorithms commonly used for anomaly
detection [13].

The following are the benefits of using this approach to
detecting infected IoTs:

Heterogeneity tolerance. Compared to classical comput-
ing environments, the IoT domain is highly diverse [2], [3].
However, by profiling each device with a separate autoen-
coder, our method addresses the growing heterogeneity of
IoT devices.

Open World. Typically in deep learning applications,
models are trained to classify based on labels provided by
experts (e.g. malicious or benign). However, our autoen-
coders are trained to detect when a behavior is abnormal.
Thus our method can detect new previously ’unseen’ bot-
net behaviors, which is important given the continuously
evolving variants [2] or new botnets, which already make
most detection methods obsolete [14].

Efficiency. In the enterprise scenario, it is common that
the traffic data of all connected hosts is monitored, but the
amount of monitored traffic is prohibitively large to store
and use for training deep neural networks. Our method uses
incremental statistics to perform the feature extraction, and
the training of the autoencoders can be performed in semi-
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TABLE 1: Prior studies conducted on the detection of IoT-related anomalies, botnets, and malware attacks

Paper Detected
Botnet

Botnet
Operational

Step

Attack(s) Detection
Approach

Deployment
Level

Assumed
Environment

Research
Type

Data
for

Evaluation

[2] Linux.Darlloz
worm, Mirai Infection DDoS Intrusion prevention,

traffic monitoring
Network

(routers, gateways) - Survey -

[3] Mirai
Various operational

steps, depending
on the malware

DDoS - - - Survey -

[4] Mirai Scanning
(propagation)

Mirai-infected
IoT devices scan

for further devices

Dynamic
updating

of flow rules
”Thin fog” Critical

infrastructures Experimental
Emulated
IoT nodes,

simulated data

[5] - -
Worm propagation,

code injection,
tunneling attack

Deep packet
anomaly detection Host - Experimental Two real

devices

[6]
ZORRO, *.sh,

GAFGYT,
KOS, nttpd

All -
Honeypot to
collect and

analyze attacks
Both - Experimental Real

data

[7] - -
Devices are
attacked by
a DoS attack

Hybrid: signature-
based and anomaly

detection (BPN)
Host WSN Experimental Simulation

[8] - -
Routing attacks
(sinkhole and

selective-forwarding)

Hybrid: specification-
based and anomaly
detection (OFPC)

Network
(routers and
root nodes)

6LoWPAN WSN,
representing
a smart city

Experimental Simulation

[9] - - -
Several methods,

including
anomaly detection

Network
(cloud)

Sensing systems
and distributed
cloud platforms

Survey on
challenges and

detection approaches
-

[10] - -
ICMP flood, replication, wormhole,

TCP SYN flood, HELLO jamming, data
modification, selective forwarding, smurf

Knowledge
driven,

anomaly detection
Network

Adapts to ZigBee/XBee/
6LoWPAN (on IEEE 802.15.4),
WiFi (on IEEE 802.11), and BT

Experimental Real devices,
simulated data

[11] - -
Routing attacks like spoofed

or altered information,
sinkhole, selective-forwarding

Hybrid: signature-
based and

anomaly detection

Hybrid:
border router

and hosts
6LoWPAN Experimental Simulation

[12] - - -
Several methods,

including
anomaly detection

Host and
network - Survey -

online manner (train on a batch of observations and then
discard). Therefore the training is practical, and there is no
storage concern. Additionally, our method is network-based
so it does not consume any computation, memory, or energy
resources from the (typically constrained) IoT devices. Thus,
our method does not jeopardize their functionality or impair
their lifespan. Our focus on the attack operational step (as
opposed to the early steps) also makes our method indif-
ferent to the botnet propagation protocols and the possibly
encrypted [14] C&C channels.

The contributions of this paper can be summarized as
follows:

1) To the best of our knowledge, we are the first to ap-
ply autoencoders to IoT network traffic for anomaly
detection, as a complete means of detecting botnet
attacks. Even in the larger domain of network traffic
analysis, autoencoders have not been used as fully
automated standalone malware detectors, but rather
as preliminary tools for either feature learning [15]
or dimensionality reduction [16], or at most as semi-
manual outlier detectors which substantially depend
on human labeling for subsequent classification [17] or
further inspection by security analysts [13].

2) Unlike previous experimental studies on the detection
of IoT botnets or IoT traffic anomalies which relied
on emulated or simulated data ([4], [7], [8], [10]), we
perform empirical evaluation with real traffic data,
gathered from nine commercial IoT devices infected
by authentic botnets from two families. We examine
Mirai and BASHLITE, two of the most common IoT-
based botnets, which have already demonstrated [1]
their harmful capabilities. To enable reproducibility
and address the lack of public botnet datasets [14],
particularly for the IoT, we share our network traces at
http://archive.ics.uci.edu/ml/datasets/detection of
IoT botnet attacks N BaIoT.

2 RELATED WORK

The botnet detection methods suggested thus far can be
categorized based on (1) the specific operational step to be
detected, and (2) the detection approach. Table 1 is based
on this categorization and further summarizes previous
studies on the detection of IoT-related anomalies, botnets,
and malware attacks.

Among the botnets’ operational steps, previous IoT-related
detection studies (e.g., [4] and [5]) focused mainly on the
early steps of propagation and communication with the
C&C server. However, given that botnet attacks continue
to mutate on a daily basis [1] and become increasingly
sophisticated [2], we anticipate that some of these mutations
will eventually succeed at bypassing existing methods of
early detection. Moreover, mobile IoT devices might get
contaminated when connected to external networks. For
instance, smartwatches may connect to dubious free Wi-Fi
networks when their owners arrive at airports. Hence, mon-
itoring organizational networks for identifying the early
steps of infection alone is insufficient. Accordingly, we focus
on a later step of a botnet operation, when IoT bots begin
launching cyberattacks. In that sense, our method adds a last
line of defense security layer. It instantly detects the IoT-based
attacks and minimizes their impact by issuing an immediate
alert which recommends the isolation of any compromised
device from the network until it is sanitized.

Among the suggested botnet detection approaches, a pri-
mary distinction is made between host-based [5], [7] and
network-based [4], [8], [9], [10] approaches. We consider
host-based techniques less realistic for detecting compro-
mised IoT devices, because (1) we cannot rely on the good
will of all IoT manufacturers to install designated host-
based anomaly detectors on their products; (2) there is
limited access to some IoT devices (e.g., wearables), so the
installation of software on end devices cannot be enforced;
(3) the constrained computation and power of most IoT
devices impose constraints on the complexity and efficiency
of host-based anomaly detection algorithms, which also

http://archive.ics.uci.edu/ml/datasets/detection_of_
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TABLE 2: Extracted features

Value Statistic Aggregated by Total Number
of Features

Packet size (of outbound packets only) Mean, Variance Source IP,1 Source MAC-IP,2
Channel, Socket3 8

Packet count Number Source IP, Source MAC-IP,
Channel, Socket 4

Packet jitter (the amount of time
between packet arrivals) Mean, Variance, Number Channel 3

Packet size (of both inbound and
outbound together)

Magnitude, Radius, Covariance,
Correlation coefficient Channel, Socket 8

1 The source IP is used to track the host as a whole.
2 The source MAC-IP adds the capability to distinguish between traffic originating from different gateways and spoofed IP addresses.
3 The sockets are determined by the source and destination TCP or UDP port numbers. For example, all of the traffic sent from
192.168.1.12:1234 to 192.168.1.50:80 (traffic flowing from one socket to another).

Further details and the datasets themselves are publicly available at
http://archive.ics.uci.edu/ml/datasets/detection of IoT botnet attacks N BaIoT.

might consume energy and computation from the devices
and thus harm their functionality; and (4) in the enterprise
scenario we assume, where various and numerous IoT de-
vices connect to the organizational network, a single non-
distributed solution is preferred.

A hierarchical taxonomy of network-based botnet detec-
tion approaches, not limited to the IoT domain, is proposed
by [14]. Honeypots are one of the detection sources sur-
veyed in this study. Honeypots have commonly been used
for collecting, understanding, characterizing, and tracking
botnets [6]. However, they are not necessarily useful for
detecting compromised endpoints or the attacks emanat-
ing from them. Moreover, honeypots normally require a
substantial investment in procurement or emulation of real
devices, data inspection, signature extraction, and keeping
up with mutations. As per [14], normal networks constitute
an alternative detection source, where network intrusion
detection systems (NIDSs) monitor traffic data continuously
and automatically, while using pattern matching to detect
signs of undesirable activities. Such patterns may rely on
(1) signatures identified by honeypots, (2) DNS traffic with
a potential C&C server, (3) traffic anomalies [5], (4) data
mining, or (5) hybrid approaches [7], [8]. Similar to [5], we
find that the anomaly-based approach is best suited for de-
tecting compromised IoT devices, because these connected
appliances are typically task-oriented (e.g., specifically de-
signed to detect motion or measure humidity). Accordingly,
they execute fewer, and potentially less, complex network
protocols, and exhibit traffic with less variance than PCs.
As such, detecting deviations from their normal patterns
should be more accurate and robust.

Many detection algorithms were surveyed in [14], how-
ever artificial neural networks were left uncited, and autoen-
coders were not mentioned at all. Such works within the
greater domain of cybersecurity have been published more
recently, yet they are dissimilar to our approach, unrelated
to the IoT, and often not directly connected to botnets. For
instance, [15], [16] and [18] applied shallow autoencoders
for preliminary feature learning and dimensionality reduc-
tion, followed by Random Forest, Deep Belief Networks,
and Softmax, respectively for classification and fine-tuning.
Although autoencoders were extended for outlier detection
in [17], they still required security analysts to actively label

data for subsequent supervised learning. Closer to our ap-
proach, the authors of [13] apply deep learning to system
logs for detecting insider threats. Differently from us, they
use DNNs and RNNs (LSTMs), and depend on further
manual inspection.

In conclusion, our method differs from previous studies
as we learn from benign data by training deep autoencoders
for each device, and use them as standalone automatic
tools for instantaneous detection of existing and unseen IoT
botnet attacks.

3 PROPOSED DETECTION METHOD

The method we propose for detecting IoT botnet attacks
relies on deep autoencoders for each device, trained on
statistical features extracted from benign traffic data. When
applied to new (possibly infected) data of an IoT device,
detected anomalies may indicate that the device is compro-
mised. This method consists of the following main stages:
(1) data collection, (2) feature extraction, (3) training an
anomaly detector, and (4) continuous monitoring.

Data collection. We capture the raw network traffic data
(in pcap format) using port mirroring on the switch through
which the organizational traffic typically flows. To ensure
that the training data is clean of malicious behaviors, the
normal traffic of an IoT is collected immediately following
its installation in the network.

Feature extraction. Whenever a packet arrives, we take a
behavioral snapshot of the hosts and protocols that commu-
nicated this packet. The snapshot obtains the packet’s con-
text by extracting 115 traffic statistics over several temporal
windows to summarize all of the traffic that has (1) origi-
nated from the same IP in general, (2) originated from both
the same source MAC and the same IP address, (3) been
sent between the source and destination IPs (channel), and
(4) been sent between the source to destination TCP/UDP
sockets (socket).

We extract the same set of 23 features (capturing the
above, see Table 2) from five time windows of the most
recent 100ms, 500ms, 1.5sec, 10sec, and 1min. These features
can be computed very fast and incrementally and thus
facilitate real time detection of malicious packets. Addition-
ally, although generic these features can capture specific

http://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
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behaviors like source IP spoofing [2], characteristic of Mi-
rai’s attacks. For instance, when a compromised IoT device
spoofs an IP, the features aggregated by the Source MAC-
IP, Source IP and Channel will immediately indicate a large
anomaly due to the unseen behavior originating from the
spoofed IP address.

Training an anomaly detector. As our base anomaly
detector, we use deep autoencoders and maintain a model
for each IoT device separately. An autoencoder is a neu-
ral network which is trained to reconstruct its inputs af-
ter some compression. The compression ensures that the
network learns the meaningful concepts and the relation
among its input features. If an autoencoder is trained on
benign instances only, then it will succeed at reconstructing
normal observations, but fail at reconstructing abnormal
observations (unknown concepts). When a significant re-
construction error is detected, then we classify the given
observations as being an anomaly.

We optimize the parameters and hyperparameters of
each trained model such that when applied to unseen traffic
the model maximizes the true positive rate (TPR, detecting
attacks once they occur) and minimizes the false positive
rate (FPR, wrongly marking benign data as malicious). For
training and optimization, we use two separate datasets
which only contain benign data, from which the model
learns patterns of normal activity. The first dataset is the
training set (DStrn), and it is used for training the au-
toencoder, given input parameters such as the learning rate
(η, the size of the gradient descent step), and the number
of epochs (complete passes through the entire DStrn). The
second dataset is the optimization set (DSopt), and it is
used to optimize these two hyperparameters (η and epochs)
iteratively until the mean square error (MSE) between a
model’s input (the original feature vector) and output (the
reconstructed feature vector) stops decreasing. Stopping at
this point prevents overfitting DStrn, thus promoting bet-
ter detection results with future data. DSopt is later used
to optimize a threshold (tr) which discriminates between
benign and malicious observations; finally, it is also used
to optimize the window size (ws), by which the FPR is
minimized.

Once the model training and optimization is complete
the tr∗ is set. This anomaly threshold, above which an
instance is considered anomalous, is calculated as the sum
of the sample mean and standard deviation of MSE over
DSopt (see Equation 1).

tr∗ =MSEDSopt
+ s(MSEDSopt

) (1)

Preliminary experiments revealed that deciding whether
a device’s packet stream is anomalous or not based on a
single instance enables very accurate detection of IoT-based
botnet attacks (high TPR). However, benign instances were
too often (in approximately 5-7% of cases) falsely marked
as anomalous. Thus we base the abnormality decision on a
sequence of instances by implementing a majority vote on a
moving window. We determine the minimal window size
ws∗ as the shortest sequence of instances, a majority vote
which produces 0% FPR on DSopt (see Equation 2).

ws∗ = argmin
|ws|

(|{packet ∈ ws|MSE(packet) > tr∗}| > |ws|
2

)

(2)
Continuous monitoring for anomaly detection. Even-

tually, we apply the optimized model to feature vectors
extracted from continuously observed packets, to mark each
instance as benign or anomalous. Then, a majority vote on a
sequence (the length of ws∗) of marked instances is used
to decide whether the entire respective stream is benign
or anomalous. Consequently, an alert can be issued upon
the detection of an anomalous stream, as it might indicate
malicious activity on the IoT device.

4 EMPIRICAL EVALUATION

In our experiments, we strived to authentically represent
IoT devices deployed in an enterprise setting, infected by
real-world botnets, and executing genuine attacks.

Lab setup. To replicate a typical organizational data flow,
we collected the traffic data from IoT devices that were
connected via Wi-Fi to several access points, wire connected
to a central switch which also connects to a router. For
sniffing the network traffic, we performed port mirroring
on the switch, and recorded the data using Wireshark. To
evaluate our detection method as realistically as possible,
we also deployed all of the components of two botnets (see
Figure 1) in our isolated lab and used them to infect nine
commercial IoT devices (see Table 3).

Botnets deployed. We focused on two of the most
common IoT botnet families: BASHLITE and Mirai. We
deployed both of them in our labs and collected traffic data
before and after the infection.

BASHLITE (also known as Gafgyt, Q-Bot, Torlus, Lizard-
Stresser, and Lizkebab) is one of the most infamous types of
IoT botnets, and its code and behavior can be found in other
IoT malware as well. To launch an attack, the botnet infects
Linux-based IoT devices by brute forcing default credentials
of devices with open Telnet ports. In our research, the IoT
devices were infected using the binaries from the IoTPOT
dataset [6] (namely Gafgyt). In order to adjust the attacks
to our lab, the IP address of the C&C server was extracted
from the malware’s binary, and all of the network traffic to
this IP was routed to a server in our lab that functions as
a C&C server. Once a new bot connected to this server and
was under its control, this server was able to command the
infected device to launch attacks.

Mirai is the second botent we deployed in our isolated
network, using its published source code [19]. The exper-
imental setup included a C&C server and a server with a
scanner and loader. The scanner and loader components
are responsible for scanning and identifying vulnerable IoT
devices, and loading the malware to the vulnerable IoT de-
vices detected. Once a device was infected, it automatically
started scanning the network for new victims while waiting
for instructions from the C&C server.

Attacks executed. The following is the list of attacks
executed and tested in our lab.
• BASHLITE Attacks

1) Scan: Scanning the network for vulnerable devices
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Fig. 1: Lab setup for detecting IoT botnet attacks

2) Junk: Sending spam data
3) UDP: UDP flooding
4) TCP: TCP flooding
5) COMBO: Sending spam data and opening a connection

to a specified IP address and port
• Mirai Attacks

1) Scan: Automatic scanning for vulnerable devices
2) Ack: Ack flooding
3) Syn: Syn flooding
4) UDP: UDP flooding
5) UDPplain: UDP flooding with fewer options, optimized

for higher PPS
Experimental results and discussion. Each of the nine

sets of benign data we collected in our lab, corresponding
to the nine IoT devices, was divided chronologically into
three equidimensional sets: (1) DStrn for training the au-
toencoder, (2) DSopt for parameter optimization, and (3)
the benign part of DStst for estimating FPR. In order to
imitate real-world settings and thus assess our method more

realistically, we made sure to incorporate traffic from the
entire (normal) life cycle of the devices. Particularly, in each
of the three sets of each IoT device we included not only
traffic data of frequent actions (e.g., a webcam transmitting
video) but also infrequent actions (e.g., accessing a webcam
via the mobile app, moving in front of it, or booting it).

For training and optimization we used Keras. Each au-
toencoder had an input layer whose dimension is equal to
the number of features in the dataset (i.e., 115). As noted
by [16] and [15], autoencoders effectively perform dimen-
sionality reduction internally, such that the code layer be-
tween the encoder(s) and decoder(s) efficiently compresses
the input layer and reflects its essential characteristics. In
our experiments, four hidden layers of encoders were set
at decreasing sizes of 75%, 50%, 33%, and 25% of the input
layer’s dimension. The next layers were decoders, with the
same sizes as the encoders, however with an increasing
order (starting from 33%). Table 3 provides technical details
about the training stage, while focusing on the dataset prop-
erties, the optimized hyperparameters of the autoencoders,

TABLE 3: Overview of the training stage: dataset properties and training summary, optimized hyperparameters for
autoencoders, and botnet infections

Dataset Properties and Training Summary Optimized Hyperparameters of Autoencoders Botnet Infections
Device

ID
Device Make and Model Device Type Number

of Benign
Instances

Training
Time
(sec)

Object
Size
(kB)

Learning
Rate
(η)

Number
of Epochs
(epochs)

Anomaly
Threshold

(tr∗)

Window
Size

(ws∗)

Mirai BASHLITE

1 Danmini Doorbell 49,548 555 172 0.012 800 0.042 82 ! !

2 Ennio Doorbell 39,100 215 172 0.003 350 0.011 22 - !

3 Ecobee Thermostat 13,113 54 172 0.028 250 0.011 20 ! !

4 Philips B120N/10 Baby Monitor 175,240 292 172 0.016 100 0.030 65 ! !

5 Provision PT-737E Security Camera 62,154 275 172 0.026 300 0.035 32 ! !

6 Provision PT-838 Security Camera 98,514 795 172 0.008 450 0.038 43 ! !

7 SimpleHome XCS7-1002-WHT Security Camera 46,585 220 172 0.017 230 0.056 23 ! !

8 SimpleHome XCS7-1003-WHT Security Camera 19,528 190 172 0.006 500 0.004 25 ! !

9 Samsung SNH 1011 N Webcam 52,150 150 172 0.013 150 0.074 32 - !
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(a) Methods’ detection accuracy (b) Methods’ detection time (seconds)

(c) Average FPR explained by traffic characteristics (d) Detection time explained by traffic characteristics

Fig. 2: Experimental results using the test set: comparison of methods and potential explanations

and the botnet infections.
Following the stage of autoencoder training and opti-

mization, we used the same (benign) data to train three
other algorithms commonly used [13] for anomaly detec-
tion: Local Outlier Factor (LOF), One-Class SVM, and Iso-
lation Forest. We optimized their hyperparameters exactly as
we did for the autoencoders, including tr and ws. Finally, we
executed all of the above attacks with the same duration
via Mirai and BASHLITE’s C&C servers. Then we extracted
the features from the malicious data and appended each be-
nign part of DStst (previously mentioned) to the respective
malicious part of DStst, to form a single test dataset per
IoT device with both benign and malicious instances. The
experimental results on DStst (see Figure 2) are promising:

• Our method succeeded in detecting every single attack
launched by every compromised IoT device, i.e., TPR of
100%. As evident in Figure 2a, LOF and SVM reached
similar TPRs, much better than the Isolation Forest which
demonstrated an inferior and highly variable TPR.

• Our method also raised the fewest false alarms. It
demonstrated a mean FPR of 0.007±0.01, lower and
more consistent than SVM (0.026±0.029), Isolation Forest
(0.027±0.041) and LOF (0.086±0.081).

• Moreover, our method required only 174±212 millisec-

onds to detect the attacks, and frequently much less time.
As evident in Figure 2b, for most of the evaluated IoT
devices the average detection time of our method was
lower than all the other methods. Assuming that the
detection of attack-related anomalies can automatically
trigger an immediate isolation of the compromised IoT
device from the network, launched attacks can be stopped
in less than a second. This is a substantial reduction
from the typical duration of DDoS attacks [20], whose
distribution normally ranges between 20-90 seconds, plus
a long tail where 10% of the attacks continue more than a
day, and 2% last longer than a month.

In terms of TPR, FPR and detection time, the deep
autoencoders exemplified superiority for most devices. This
is probably due to the ability of deep architectures to learn
nonlinear structure mapping and approximate complex
functions [16]. Additionally, the constrained complexity of
deep autoencoders, imposed by the reduced dimensionality
in the hidden layers, prevents them from learning the trivial
identity function [13]. Therefore, deep autoencoders tend
to fit common patterns better than uncommon ones. This
is beneficial for IoT devices, as they normally are task-
oriented, so their specified functionality should translate
into few normal traffic patterns. Despite this tendency to
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fit common traffic patterns (generated by frequent actions),
the autoencoders succeeded in capturing patterns of the in-
frequent actions (e.g., boots) as well, demonstrated through
low FPR. In real-world applications, the FPR can be adjusted
by manipulating the tr∗ and/or ws∗, however with some
cost of TPR and detection times.

5 CONCLUSION

Although the autoencoders in our experiments obtained an
FPR of zero on most IoT devices in a test set, the difference in
the FPR among the remaining IoT devices led us to further
analyze our data. We observed that the Philips B120N/10
baby monitor demonstrated the highest FPR relative to the
other devices; it also produced the largest amount of traffic
(see Table 3), so one could expect that the abundance of
training instances would result in more robust machine
learning models. However, this device also has the most
diverse set of capabilities, as it is equipped with a two-way
intercom function, motion detection, audio detection, and
several other sensors for ambient light, temperature, and
humidity. Given this, it might be more difficult to capture
its normal behavior, and therefore future observations may
be subject to more categorization errors.

Accordingly, we hypothesize that the difficulty in captur-
ing the normal traffic behavior varies among IoT devices,
and that this difficulty may be correlated with (1) the
device’s capabilities, and (2) the network communications
it normally produces. A similar notion was raised by [2],
who argues that the specialized functionality of today’s IoT
devices leads to predictable behaviors. In turn, the ease of
establishing baseline behaviors for IoT devices facilitates
anomaly detection as a means of detecting attacks. To this
end, interesting questions arise:
• Can the predictability of traffic behavior of IoT devices be

quantified?
• Can the relation between the predictability level and the

static features of IoT devices (e.g., number and type of sen-
sors, memory size, operating system) or dynamic features
(e.g., number of unique destination IPs per hour, variance
of the ratio between outgoing and incoming traffic) be
formalized?

• Can these features be ranked based on their influence on
this predictability level?

We presume that the predictability of traffic behavior
can be directly translated into performance measures of
anomaly detection. For example, an IoT device with a high
level of traffic predictability would make any anomalous
action stand out, and thus the TPR should increase and
detection times should decrease in this case. For empirical
validation we extracted static and dynamic features from the
(benign) training set. Then we trained regression models to
study these features’ effect on the average FPR and detection
times, obtained on the test set by the four detection methods
we evaluated. Figures 2c and 2d depict our preliminary
findings via the features found most significant. Figure 2c
shows how an increase in the variability of inbound traf-
fic translates (p-value=0.019) into larger average FPR. This
makes sense, as lower predictability is prone to manifest
through unpredictable (yet benign) traffic behaviors, falsely
identified as anomalous. Figure 2d shows how an increase

in the maximal volume of inbound traffic promotes (p-
value=0.001) longer detection times. As we optimize ws∗ to
reach 0% FPR on DSopt, lower predictability leads to higher
ws∗ (more instances for majority voting) and subsequently
higher detection times.

Ultimately, a solid predictability score can be leveraged
by large organizations in order to ensure network function-
ality and limit the impact that compromised devices might
have on the network. That is, security policies may not
allow the connection of IoT devices with low predictability
scores to their networks, since they pose difficulties in attack
detection. In our future work we plan to further define
and investigate the subject of traffic predictability, both
theoretically and empirically.

As another extension to the current study, we also plan
to evaluate transfer learning techniques by assessing the
accuracy of models trained on specific devices when they
are applied to identical devices, possibly when connected to
other organizational networks. This can help (1) save time
(e.g., organizations can deploy models previously learned
elsewhere, without the need to collect data and train the
models themselves), and (2) detect compromised IoT de-
vices which have been contaminated prior to connecting to
the organizational network, such that the organization has
no benign data of them for model training.
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