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Abstract—Future healthcare systemswill rely heavily on clinical decision support

systems (CDSS) to improve the decision-making processes of clinicians. To explore the

design of future CDSS, we developed a research-focused CDSS for the management of

patients in the intensive care unit that leverages Internet of Things devices capable of

collecting streaming physiologic data from ventilators and other medical devices. We

then created machine learningmodels that could analyze the collected physiologic data

to determine if the ventilator was delivering potentially harmful therapy and if a deadly

respiratory condition, acute respiratory distress syndrome (ARDS), was present. We also

present work to aggregate thesemodels into amobile application that can provide
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responsive, real-time alerts of changes in ventilation to providers. As illustrated in the

recent COVID-19 pandemic, being able to accurately predict ARDS in newly infected

patients can assist in prioritizing care. We show that CDSSmay be used to analyze

physiologic data for clinical event recognition and automated diagnosis, and we also

highlight future research avenues for hospital CDSS.

& CLINICAL DECISION SUPPORT systems (CDSS)

are computer systems designed to digest large

amounts of patient-generated data, and detect

complications of care and other adverse health-

care consequences. When used properly, CDSS

can improve quality of care by warning of harm-

ful drug interactions, improve physician diagno-

ses, and reduce costs of care.1 These benefits

have prompted large amounts of research into

the design and development of future CDSS in a

variety of healthcare environments.

One of the places CDSSwill have a large impact

is in the treatment of critically ill patients in the

intensive care unit (ICU). Patients in the ICU can

havemultiple, complex ailments andmust be con-

tinuously monitored by clinicians and multiple

life support machines. The mechanical ventilator

is one such machine integral to the care of

patients with respiratory failure. When utilized

properly, ventilators act to reduce effort required

for breathing and allow a patient’s lungs to heal.

When used improperly, ventilators can cause

harm due to poorly configured settings or deliv-

ery of support inappropriate for a patient’s diag-

nosis. These issues can have adverse effects that

include longer hospital stays, increased sedation

requirements, lung injury, and even death.2,3

One way patients can receive ventilator-

induced lung injury is from a phenomena called

patient-ventilator asynchrony (PVA). PVA occurs

when ventilator configuration is misaligned with

patient demands for respiration. PVA has been

linked to increased work of breathing, patient dis-

comfort, and in a small study, increased mortal-

ity.3 Clinicians can detect PVAs during bedside

examination, but PVA detection can be delayed

due to lack of 24/7 access to appropriately trained

clinicians. PVA detection can be performed with

electronic algorithms, but most algorithms rely

only on expert rules that may not generalize to

broader patient populations seen in the ICU.

Patients can also be harmed by misdiagnosis

of underlying lung injury. One commonly

misdiagnosed condition is acute respiratory dis-

tress syndrome (ARDS), which is a severe form

of respiratory failure that has a mortality rate of

35%–46%.4 However, ARDS still remains under-

recognized because diagnostic criteria can be

subjective and the physiologic manifestation

of ARDS can vary by patient. Research has

attempted to automate ARDS diagnoses via

expert-derived rules, but these efforts have been

limited in accuracy and generalizability by their

reliance on subjective criteria and local practice

patterns.5 ARDS is often a serious complication

of various underlying conditions, including sep-

sis, pneumonia, and respiratory illness such as

the COVID-19. The mortality rate of infected

COVID-19 patients who developed ARDS is 50%.6

In the presence of a pandemic such as COVID-19

that puts unprecedented strain on health-care

systems, early ARDS detection can help priori-

tize care delivery.

In this article, we investigated ways to create

more performance analytics to detect ARDS and

PVA by utilizing machine learning (ML). ML has

been used to create data driven predictive mod-

els that have shown to be generalizable for pre-

dicting outcomes in major health systems across

diverse patient populations.7–10 By leveraging ML

and physiologic data collected in the ICU, we

make the following contributions to the litera-

ture. 1) We created an integrated software and

hardware platform that leverages IoT devices to

transmit and store physiologic data from the ven-

tilator and other machines performing physio-

logic monitoring in the ICU.11 2) We developed a

ML classifier to detect PVA in the ICU. 3) We

developed a data-driven, ML-based diagnostic

system for performing real-time disease detec-

tion of ARDS in the ICU. 4) We designed a mobile

application that enables physicians to track real-

time breathing information for their patients and

provides alerts for ARDS disease screening

and ventilator asynchronies. Our platform (see

Figure 1) serves as an example of next-generation
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CDSS that will enable pervasive and intelligent

monitoring of patients in the ICU, early detection

of disease, timely intervention, and improved

care of ventilated patients.

SYSTEM ARCHITECTURE

We developed our data collection architecture

to be capable of supporting large, multicenter,

clinical studies of patient-ventilator interactions,

and IoT-based multisensor, multipatient monitor-

ing. Our system requirements include: 1) continu-

ous and automated data collection from multiple

concurrently operating mechanical ventilators;

2) unobtrusive, nondisruptive operation so as not

to influence patient care; 3) ability to maintain

temporally accurate data and preserve correct

data linkage between patient and collected venti-

lator waveform data (VWD); 4) ease of use of the

data acquisition hardware by nontechnical users.

5) database archival storage; and 6) ability to gen-

erate alerts to and receive feedback from doctors

to improvemechanical ventilatormanagement.

To accomplish these goals, we used a small,

unobtrusive IoT device that acts as an information

aggregator by collecting data from mechanical

ventilators and other sensors or medical devices.

For our prototype architecture, we chose to use

the Raspberry PiTM (RPi) microcomputer, a small

Linux-based computer that, with customized soft-

ware, can be attached to a ventilator to collect

and stream VWD to a server through a wireless

access point. Once collected, VWD is attributed to

a specific patient by having physicians link VWD

files to a specific patient via mobile application.

The linkage process is performed without use

of private patient information by referencing

the patient via an anonymized token. Linkage of

tokens to protected health information extracted

from the electronic health record (EHR) is

ensured with use of a secure encrypted file. To

ensure temporally accurate linkage of collected

VWD to EHR data, we required the RPi’s to con-

nect to the hospital’s network time protocol serv-

ers before commencing data collection, followed

by time stamping of VWD files.

Our data attribution and time alignment pro-

tocol can be extended to collect other types of

medical device data. In a pilot study, we have

extended our RPi-based architecture to acquire

patient blood oxygenation (SpO2) data from

wireless pulse oximeters, allowing synchronous

acquisition and aggregation of both VWD and

SpO2 data. Other device data can be incorpo-

rated for aggregation as well, provided they can

communicate with the RPi over Bluetooth, WiFi,

or wired cable.

Once device data are collected, it is for-

warded to a database for storage. Analytic algo-

rithms can then be applied to the data for

anomaly detection and diagnostic purposes,

with analytic outputs subsequently accessed

Figure 1. 1. Raspberry Pi microcomputers collect data from the mechanical ventilator. 2. A doctor performs

linkage of a patient to a Raspberry Pi. 3. VWD is stored in a database with proper patient attribution. 4. VWD is

processed by analytic modules aimed at diagnostic aid and detection of abnormalities. 5. Alerts are sent to

clinicians to review and take appropriate actions to improve patient care.
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retrospectively for research or in near real-time

for decision support.

As a result of our work, we have been able to

collect one of the largest collections of breath-

level VWD reported to date having collected 467

patients, and 47 990 952 recorded breaths for use

in developing clinically validated analytic algo-

rithms to support CDS system development.10

DETECTION OF PATIENT VENTILATOR
ASYNCHRONY

There are currently no intelligent/automated

systems integrated into mechanical ventilators

capable of detecting PVAs and generating alerts

to clinicians. Current systems consist of simple

threshold-based alarms that are prone to fre-

quent false positive alerts, which cause clini-

cians to ignore them. The only reliable way to

detect PVA is via bedside examination of

patients, but this can only occur during sched-

uled clinician visits, and even then, studies have

shown that even trained clinicians often fail to

consistently recognize PVA.12

To improve the speed and accuracy of PVA

detection, we aimed to create a system that could

compute upon VWD and automatically classify a

breath as normal or PVA (see Figure 2). To auto-

matically distinguish different types of breathing,

PVA detection algorithms must have the ability to

extract quantitative features from breaths instead

of relying on visually subjective breath character-

istics. The analytic systems should be capable of

handling data heterogeneity and be effective in

categorizing information from any patient.13 We

also sought to identify breaths that were poten-

tially confounding to our PVA recognition system

such as clinical artifact caused by routine aspects

of care or transient waveform abnormalities.

From our repository of collected data, we

extracted VWD from 35 patients who received

ventilation at the University of California Davis

Medical Center. For each patient, we selected a

period of approximately 300 breaths where PVA

was highly prevalent. Two ICU physicians inde-

pendently annotated 9719 individual breaths to

achieve a ground truth labeled data set. Classifi-

cation was performed via a combination of clini-

cally guided heuristic rules and visual inspection,

and each breath was labeled as one of four cate-

gories: normal, artifact, double trigger asyn-

chrony (DTA), or breath stacking asynchrony

(BSA). We targeted DTA and BSA because they

are two of the most common forms of PVA and

are thought to contribute to ventilator induced

lung injury. Artifact breaths like suction and

cough were identified and included in the dataset

because they share characteristics with common

forms of PVA that can result in false-positive PVA

classification. All artifact and normal breaths

were then included together and labeled as non-

PVA. Any disagreements in breath classification

were reconciled between the reviewing clini-

cians, and a consensus label was chosen. Using

this process, we created one of the largest dual-

adjudicated datasets devoted to PVA detection

Figure 2. A. displays a normal breath and how information can be extracted from breaths in general. We

define volume inhaled (TVi) as the amount of air breathed in on a breath. Tidal volume exhaled (TVe) is the

amount of air exhaled. Positive end expiratory pressure (PEEP) is the minimum pressure setting for a

ventilator. B. shows a series of breaths that occur due to a suctioning procedure. C. shows a breath stacking

event, where a patient breathes in significantly more air than they exhale. D. shows a double trigger, which is

two breaths that occur in rapid succession.
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reported to date. In total our dataset contains

1928 BSA breaths, 752 DTA breaths, and 7039

non-PVA breaths.

After completing breath-level annotation, we

used the ventMAP software suite to extract clini-

cally relevant features from VWD.13 In total, we

derived 16 different features from each breath

(see Figure 2A). After features were extracted

from VWD, we evaluated multiple supervised ML

models to perform PVA classification. PVA classi-

fication was done on a per-breath basis where

each breath is trained and classified based on a

corresponding class label of non-PVA, BSA, or

DTA. When training our models, we encountered

a class imbalance issue because the number of

PVA breaths were disproportionate to the num-

ber of non-PVA breaths in our dataset. Imbal-

anced training sets can be an obstacle to training

accurate classifiers, resulting in decreasedmodel

performance when classifying DTA 8 in our case.

We explored multiple methods to correct for

class imbalance including: random under sam-

pling (RUS) and the synthetic minority oversam-

pling technique (SMOTE). We found that SMOTE

offered the best balance of recall and specificity

while RUS offered better recall than SMOTE at the

cost of decreased specificity. In our experiments,

we found that our models performed best when

we used SMOTE to create a 1:1:1 ratio of non-

PVA, DTA, and BSA observations for our training

set. This ratio created the same number of DTA

and BSA observations while keeping non-PVA

observations static.

In our prior work,7 we evaluated 10 ML algo-

rithms: SVM, extreme learning, naı̈ve bayes, mul-

tilayer perceptron (MLP), and six tree-based

approaches, namely decision trees, extra trees

classifier, random forest, Adaboost, extremely

random trees classifier (ERTC), and gradient

boosted classifier (GBC). The performance of

these algorithms was evaluated through k-fold

validation, where we left one patient’s data out

for testing, and used the rest for training. This

yielded 35 training and testing folds, correspond-

ing with the number of patients in our dataset.

The performance metrics of interest are accu-

racy, recall, and specificity. Precision was not

reported because its measurement would be

biased because we focused on specifically

selected regions of breath data with high PVA

occurrence. Our explorations showed that

ERTC, GBC, and MLP, achieve the best perfor-

mance, but each with its own tradeoffs.8 ERTC

achieved better accuracy for DTA class, while

GBC and MLP performed better for BSA. An

ensemble classifier consisting of ERTC, GBC, and

MLP outperformed all other classifiers in terms

of recall (sensitivity) and specificity, and the

results are summarized in Table 1(a). The high

accuracy of our ensemble classifier was the

result of numerous optimizations and DTA per-

formance was especially assisted by the use of

SMOTE. These results suggest that ML-based

PVA detection algorithms have potential to be

translated into clinical practice where they may

improve the quality of care for patients receiving

mechanical ventilation.

RAPID AND ACCURATE ARDS
DETECTION

ARDS is a form of severe respiratory failure

that results from lung injury. ARDS is commonly

caused by infections like pneumonia, sepsis, or

trauma, and has been shown to be exacerbated

by ventilator mismanagement.14 The diagnosis of

ARDS has proven to be a major barrier to proper

patient management, in part because some ARDS

diagnostic criteria are recognized subjectively by

clinicians (e.g., – chest x-ray findings), while

others may be delayed by ordering of diagnostic

tests.4 In this regard, it has been reported that

physicians only diagnosed ARDS in 34% of

Table 1. Summary of detection results for (a) Per-breath

detection of non-PVA, DTA, and BSA using ensemble

classifier. (b) Patient-level predictions of our random

forest ARDS classifier model. Predictions are made from

a majority vote using the number of windows classified

as either non-ARDS/ARDS within the first 24 hours of a

patient’s ventilation data.
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patientswith ARDS on the first day that diagnostic

criteria were present, and in only 60% of patients

with ARDS at any time during their ICU stay.4

Accurate, and prompt diagnosis can be criti-

cal for improving an ARDS patient’s chance of

survival. In a seminal study, it was found that

ARDS patients who were treated with low vol-

umes of air from ventilators had a significantly

higher survival rate than those that received

physiologically normal amounts of air.14 How-

ever, this and other treatments prescribed for

ARDS are associated with substantial side effects

and discomfort, making accurate diagnosis criti-

cal to minimizing harms and optimizing chances

of recovery.

To improve the process of diagnosing ARDS,

we investigated applying ML methods to VWD

collected in the ICU (as described in our system

architecture). We selected 50 patients with mod-

erate to severe ARDS and 50 patients with non-

ARDS pathophysiology for model training and

validation. To reduce classification errors, we

required two clinicians to agree on each patient’s

diagnosis.

For patients diagnosed with ARDS, we

extracted the first 24 h of VWD available after

ARDS diagnostic criteria were first present in the

medical record. For patients without ARDS, we

used the first 24 h of VWD collected after

patients were placed on a ventilator. We focused

on processing the first 24 h of data because our

goal was to diagnose ARDS at an early enough

time point in the syndrome when providing the

information to clinicians might still change

patient outcomes. We then extracted nine fea-

tures from VWD that were determined by expert

clinicians to potentially contain physiologic sig-

natures of ARDS. We avoided inclusion of fea-

tures that might indicate that ARDS had already

been diagnosed such as low delivered gas vol-

umes or the increased ventilation pressures typi-

cal of ARDS treatment protocols. To construct

individual observations for our MLmodel, we cal-

culated the median value of these 9 features for

sequences of 400 consecutive breath windows.

Utilizing these long window lengths helped

to minimize the impact of breath to breath

variability.

We performed supervised ML by associating

each window with the pathophysiology of its

patient. We used supervised learning to train a

Random Forest classifier that could classify indi-

vidual windows as either ARDS or non-ARDS (see

Figure 3A). In testing, we performed patient-level

classifications by aggregating all window predic-

tions present in the 24-h time period. The most

commonly represented physiology was then pre-

dicted for each patient by a majority vote (see

Figure 3B).

For our ARDS classifier, all training and test-

ing of our model was performed using five-fold

cross validation with a Random Forest classi-

fier. Our results for this preliminary series of

experiments, accepted for abstract presenta-

tion at the 2019 International Conference of the

American Thoracic Society, suggest that ARDS

can be detected with performance superior to

that reported by ICU physicians.15 Table 1(b)

shows that our ARDS Random Forest classifier

identified ARDS patients with a recall of 88%,

specificity of 92%, precision of 91%, and AUC

of 0.88.

Figure 3. A. Raw waveform data from each 400-breath “read” length is extracted from the ventilator and then

attributed as either belonging to an ARDS patient or a non-ARDS patient based on dual clinician diagnosis.

These data are then sent to a Random Forest classifier for training. B. Test subjects are then evaluated with the

trained classifier. A final diagnosis is performed by the classifier by evaluating which diagnosis received a

majority of votes across all reads evaluated by the model in a given period of analysis.
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While our work on a patient level ARDS classi-

fier is in ongoing development, it demonstrates

proof of concept that learning algorithms can

detect discrete disease signatures from physio-

logic monitoring data that may be integrated

into future CDSSs.

MOBILE APPLICATIONS FOR VWD

There are two major limitations of existing

mechanical ventilators that present barriers to

effective patient monitoring and limit the adop-

tion of ventilation-focused CDSS. First, state of

the art ventilator alarms uses simple, threshold-

based rules (e.g., – alarm for any breath with vol-

ume over “x”) that lack flexibility in terms of cus-

tomization, and sophistication with regard to

analytics. Second, alarm settings cannot be con-

figured remotely and, in most hospitals, alerts

cannot be viewed using mobile devices. Clini-

cians must therefore be in a patient’s room to

directly observe how a patient is breathing, and

are forced to abandon monitoring when called

away.16 Even when physicians are bedside, lim-

ited alarm sophistication and configurability can

cause frequent false alerts, resulting in overly

wide alarm thresholds that can cause long peri-

ods of asynchronous breathing and deteriora-

tion in a patient’s physiologic state to go

unnoticed. These problems highlight the need

for mobile device-based CDSS to improve the

monitoring and management of patients requir-

ing mechanical ventilation.

To address these problems, we have devel-

oped an iOS application and associated architec-

ture to enable research and development of real-

time monitoring and CDSS for VWD. Several core

application features were designed to address

existing deficiencies in ventilation monitoring, to

enable innovations in decision support algorithm

development, and to integrate into real-world

clinical practice workflows. First, we allow clini-

cians to remotely view a patient’s waveform data

in near real time, in order to provide on-demand

snapshots of overall clinical trends in ventilation

(see Figure 4A). Second, real time processing of

VWD by our computing architecture and ven-

tMAP software package12 enables remote alerting

of clinicians to the presence of ventilator asyn-

chrony and other forms of off-target ventilation.

Breaths that are determined to be asynchronous

are labeled on the screen, enabling clinicians to

Figure 4. A. Mobile application displaying waveform data of one patient, with breaths labeled with detected

asynchronies and excessive tidal volumes. The area below the chart contains statistics of breaths currently

being displayed. Pinch-zoom functionality allows custom selection of time frames for waveform display,

summary statistics, and event labeling. B. Discrete look back time frames over which breath statistics can be

calculated. These options are selected via left swipe from the screen displaying patient waveform information.

C. Example result of breath statistics calculated for a 5-min time frame. Both clinically relevant metadata and

PVA statistics are shown.
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get an overview of asynchrony trends and their

duration. The application also includes the abil-

ity to compute breathing statistics over variable,

clinician-configurable periods of time (see

Figure 4B and C). The application’s flexibility in

this regard both enables clinicians to validate

that prescribed treatment protocols are being

implemented properly and allows greater sophis-

tication in alarm logic including use of event

class, severity, frequency, and proportion over

configurable periods of time.

We utilized AppleTM push notifications to

directly alert clinicians to ventilation problems.

Alert settings are configurable on the mobile

application, allowing clinicians to set separate

alert configuration for each patient. This allows

each clinician to receive alerts that are relevant

to his or her practice and each patient’s physiol-

ogy. In addition to more traditional alert parame-

ters such as respiratory rate and tidal volume,

we enable alerts for the occurrence of asynchro-

nies such as DTA and BSA that are derived from

our ML models,8 and we employ artifact recogni-

tion algorithms to reduce false positive event

detection.13 All these alerts have provider-con-

figurable boundaries and adjustable rolling time

windows that can be modified on the device

rather than the ventilator and turned on and off

as a patient’s condition evolves. This ability may

prove useful to individualize alert logic and to

reduce the occurrence of clinically irrelevant

and false alarms.

To address the limited availability of ground

truth data sets for ML algorithm development,

the application was also designed to include a

real time breath annotation mechanism. In the

case of an uncertain prediction probability, the

application can query the clinician to classify

the ambiguous breaths (see Figure 5). In doing

so, the application enables the accumulation of

labeled data to improve the alert system’s accu-

racy and usability.

Finally, we built a prototype of the ML-driven

ventilation management and alert system using

a client-server model with modest cloud comput-

ing resources (2 CPUs, 4G memory, Ubuntu

14.04) on Amazon Web Services. Our goal was to

investigate the performance of our system when

implemented using real-time data processing in

a cloud computing framework. We benchmarked

the server-side processing delays to complete

the following three key operations while simulat-

ing 1, 10, and 20 simultaneous patients (20 repre-

sents a typical full ICU patent load).

� Microbatch processing: Time taken to pro-

cess and store new incoming data (20-breath

batch), perform feature extraction, and PVA

detection.

� Data retrieval: Time taken to retrieve 5 min of

data (ventilator data, breath meta data, and

PVAs) from an iPhone application (5 min was

the default polling interval)

� Alert processing: Time taken to digest classi-

fication results for all patients and generate

alerts

For each task, we repeated the experiments 20

times to ensure statistical validity. We found our

system was able to perform PVA detection in

1.047 s and perform data retrieval and all alert

processing in 0.125, and 0.107 s on average for 10

patients (see Table 2). In general, data retrieval

and alert processing time were negligible (sub-

seconds) over different loads. Even at full ICU

load (20 patients), the average microbatch

processing time was less than 2 s and less than

4 s 90% of the time. Given that most breaths on a

Figure 5. A. Breaths that were classified

ambiguously by the machine learning classifier are

displayed to clinicians for clarification. B. After

selecting a breath, clinicians are presented with

relevant breath-level statistics to assist with

classification, and a configurable list of breath

classes to select.
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ventilator last 2–3 s, we conclude that our system

is capable of real time data processing.

Nevertheless, our prototype cannot guarantee

better thanworst case performance (9.512 s for 20

patients) due to the lack of dedicated resources.

Variations in the processing delay were due to

competing background workloads on the same

server. This demonstrates the potential implica-

tions of using cloud platform for real-time data

analytics in an intelligent CDSS system. Future

research is needed to further explore the advan-

tages and disadvantages of dedicated edge com-

puting platforms on premise versus cloud

platforms, especially for future application scenar-

ios where the data-driven analytics may be part of

a closed loop systems controlling fluids and medi-

cation administration, ventilators, or other medi-

cal devices where low computation time variance

and subsecond latencywill be critical.

BEDSIDE TO CLOUD AND BACK
Future improvements in healthcare delivery

and patient outcomes will depend heavily on the

development of effective CDSS, which will in turn

depend on clinical studies testing CDSS effective-

ness. Such studieswill evaluate potential improve-

ments in care gained from rapidly alerting

physicians to events such as PVA or diagnoses

like ARDS. These trials will be a key part of future

learning healthcare systems that will design, test,

and implement automated CDSS, where data will

be continuously streamed from the bedside,

analyzed in the cloud, and returned to clinicians

at the point of care in the form of actionable

diagnostic and predictive alerts. In this regard, we

envision a future where CDSS are designed specifi-

cally around IoT sensors, cloud computing and

EHR integration, and mobile device-based access

to CDSS feedback in a “provider-in-the-loop”

implementation framework where inaccurate

decisions made by ML algorithms can be cor-

rected by clinicians to continuously refine algo-

rithmperformance over time.

There are several potential limitations to our

current approach. First, this work has been per-

formed at a single center and limited to a single

data type. Second, for disease diagnosis we have

yet to include additional data types from sources

such as the EHR in our diagnostic algorithms,

which may present substantial systems integra-

tion and informatics challenges across the

highly heterogeneous healthcare technology

landscape. Future CDSS research and develop-

ment frameworks will be needed before addi-

tional clinical data can be used to develop real-

time diagnostic and predictive CDSS. Finally, our

current prototype is able to accommodate a

small-medium size hospital with 10–20 ICU

patients. Future work will incorporate software

optimizations to handle scalability issues to

cope with larger cohorts of patients.

CONCLUSION
In conclusion, we have developed an auto-

mated platform for collecting, monitoring, and

performing diagnosis on physiologic data col-

lected in the ICU. Our work fits broadly within

emerging efforts in critical care medicine to

improve the timeliness and quality of care

through technology-enabled healthcare delivery.

CDSS that integrate IoT-based patient monitoring

devices, analytics operating on real-time physio-

logic data, and ML algorithms stand to improve

diagnosis, prognostication, and adverse event rec-

ognition in the ICU. Through ongoing multidisci-

plinary research and development, advanced

CDSSwill reduce the cognitive burdenon care pro-

viders, improve quality of care, reduce patient suf-

fering, and realize greater value in care delivery.

Table 2. Summary of the server-side processing delays for

three tasks: Microbatch processing, data retrieval, and
alert processing under different patient loads. The mean,

standard deviation, 90th percentile, andmaximumdelays

are reported in seconds, rounding to three decimal places.

N Task
Mean

(s)

Std.

(s)

90%

(s)

Max.

(s)

1
Microbatch
Processing

0.329 0.059 0.329 0.973

Data Retrieval 0.098 0.031 0.118 0.122

Alert Processing 0.002 0.000 0.002 0.003

10
Microbatch
Processing

1.047 0.641 1.789 4.075

Data Retrieval 0.125 0.145 0.311 0.559

Alert Processing 0.107 0.079 0.209 0.274

20
Microbatch
Processing

1.942 1.347 3.457 9.512

Data Retrieval 0.272 0.220 0.346 2.045

Alert Processing 0.357 0.283 0.681 0.914
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