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Littering is a significant challenge for environmental sustainability and a major
burden for cities and densely populated areas. Current solutions for litter
monitoring, such as litter watch campaigns and city-operated litter collection, are
costly and challenging to conduct at a large scale. This article presents a vision for
using autonomous ground vehicles (AGVs) for litter monitoring and removal and
introduces a mechanism for AGVs that uses thermal dissipation resulting from
sunlight to identify and remove litter objects. We identify and highlight key
challenges for deploying the envisioned solution on a city scale, and demonstrate
the feasibility of the solution through extensive experiments.

Littering and illegal waste dumping are wide-
spread problems that have several negative
consequences to the society.1 Among others, lit-

tering decreases the aesthetic value of environments,
damages natural ecosystems, causes harm and risks of
injury to animals and citizens, and even can contribute
to the spread of diseases. Littering is also a significant
economic burden to the society. For example, the
Clean Europe Network with estimates suggesting that
the costs of land litter cleaning exceed 10 billion euros
within the European Union.2 Litter that persists in the
physical environments can also result in indirect long-
term impacts. For example, wind and rainfall can trans-
port urban litter into water ecosystems where they can
harm organisms and even enter the food chain.3

Litter monitoring and removal are essential for
reducing litter andmitigating its negative consequences.

Themost common solution for litter monitoring is to rely
on human effort and dedicated cleaning operations,
through volunteering, coordinated municipal operations,
or litter watch programs that allow reporting litter. Col-
lecting litter can be effective when it is performed regu-
larly but carrying out the effort is costly and logistically
challenging. This makes litter collection infeasible as a
large-scale and long-term strategy.4 Litter watch activi-
ties, in turn, tend to be limited to systematic and large-
scale littering, rather than addressing small-scale litter-
ing that gradually accumulates. Besides relying on
human effort, there have been some early efforts to
develop technologies for litter monitoring, particularly
object detection from camera images being a popular
approach.5-7 These can either operate based on pictures
taken by citizens or fixed infrastructure, such as smart
waste bins, or be mounted on aerial drones.8 These
methods perform best for litter objects that have only
recently been discarded and that remain intact as they
mostly learn to recognize specific types of objects.
Indeed, the accuracy of object detection models can
drop up to 69% when presented with discarded litter in
new situations.9 Similarly, the performance of object
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recognition can drop significantly when the objects are
partially occluded by the environment.10 Object detec-
tion approaches also require a considerable amount of
computational power making them unsuited for large-
scale continuousmonitoring. Another option is to rely on
contact-based sensing, such as optical (laser) sensing9

or Fourier transform infrared (FTIR) spectroscopy.11

These solutions require close contact to the objects, e.g.,
optical sensing requires the sensor to be within 2 cm
from the object,9 which means they are not feasible for
practical deployments. FTIR additionally suffers from
high power, which makes it ill-suited for autonomous
ground vehicles (AGVs). To help mitigate and overcome
littering, there is thus a need for new littermonitoring sol-
utions that can operate continuously, increase the scale
ofmonitoring, and operate robustly across environments
and different types of litter.

This article contributes a research vision for city-
scale litter monitoring using AGVs and develops an
innovative solution for using AGVs for litter identifica-
tion by taking advantage of the thermal dissipation of
litter objects. In our vision, as illustrated in Figure 1,
AGVs monitor and identify litter objects in the environ-
ment and inform relevant stakeholders of the current
litter situation with the city. We develop a method for
litter identification that uses thermal cameras to pig-
gyback absorption of thermal radiation caused by the
sun on the litter objects and use the dissipation char-
acteristics of the resulting radiation to classify the lit-
ter objects according to their materials.9 Thermal
imaging has been previously shown to be a promising
solution for distinguishing different waste materials in

the context of recycling plants, but these solutions
require separate heating chambers to induce thermal
radiation.12 In contrast, we rely on sun-induced ther-
mal radiation, which allows us to identify litter materi-
als in situ without needing to wait for them to be
collected first. Sunlight is a clean and continuous
source of energy and using it for sensing purposes can
aid AGVs while reducing their computing overhead.
Thanks to the increasing adoption of ground AGVs,
e.g., for the delivery of goods and services, our envi-
sioned solution can be easily adopted and replicated
at a large scale. AGVs also offer new opportunities to
collect information rapidly about city-scale litter
behaviors of citizens to proactively counteract them,
e.g., through targeted campaigns and extra cleaning
procedures.

We demonstrate the feasibility and potential ben-
efits of the envisioned approach through extensive
controlled experiments that address key challenges
in making the vision a reality. First, we demonstrate
that sunlight is sufficient for creating thermal finger-
prints that can be recognized and analyzed using
thermal cameras. Second, we demonstrate the prac-
ticability of our solution by integrating an AGV with
litter recognition capabilities using our approach.
Third, we compare the benefits of our approach
against state-of-the-art computer vision techniques
for litter monitoring. Finally, we highlight practical
challenges emerging from our experiments, discuss
the implications of our results for the practical adop-
tion of our solution, and establish direction for future
research.

FIGURE 1. Concept of litter pollution monitoring using AGVs. The AGVs exploit shadow areas to analyze litter objects that were

exposed to sunlight.
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KEY REQUIREMENTS AND
CHALLENGES

Municipal waste management strategies increasingly
target the premise of circular economy, which priori-
tizes reduction and reuse of materials instead of dis-
posal.13 The envisioned city-scale litter monitoring
approach seeks to support the implementation of
such practices, and hence, it needs to target the entire
waste management cycle from identification of waste
to cleaning and reuse of the waste materials. In the
following, we briefly describe the key challenges,
reflect on the current state-of-the-art, and identify
future directions for the overall vision. In subsequent
sections, we focus specifically on litter identification
as that serves as a natural starting point for enabling
our vision.

Litter Identification
City-scale litter monitoring requires pipelines that can
detect litter robustly and operate in diverse environ-
ments. For example, recently disposed litter objects
can be more easily detected as they resemble the orig-
inal manufactured products. Litter that has resided in
the environment for a longer period of time, in turn,
can be difficult to recognize as the shape of the prod-
uct changes due to degradation and mixing with the
environment, e.g., mud, leaves, or sand. Optimally, the
materials of the litter objects should also be identified
to facilitate cleaning operations and to produce data
that can identify structural problems within the city.
Addressing these challenges requires continuous
novel sensing modalities that can operate robustly
against such diversity. There is also a need for model
training to account for the diversity of litter objects
and environments, and new types of litter. For exam-
ple, during the COVID-19 pandemic, urban environ-
ments have become littered with used face masks,
whereas prior to the pandemic, they were a rare sight.
The sensing pipelines also need to be able to operate
in different states of degradation, e.g., plastic objects
are not subject to decomposition but gradually break
down into smaller and smaller constituents.

Cleaning Mechanisms
While the main focus of our vision is on litter monitor-
ing, naturally, there should be mechanisms to remove
the litter from the environment. A minimum require-
ment is to inform litter collectors about the locations
where litter is found. A more advanced solution is to
integrate the AGVs with robotic parts, such as grab-
bers or vacuum litter pickers. While integrating these
components is technically feasible, there are practical

limitations that need to be overcome. First, AGVs
have a limited energy supply, which restricts the
potential of using robotics parts. Optimally, the energy
needed for cleaning could be harvested from sunlight,
motion, or a combination of modalities, but currently,
this is not yet feasible. Another challenge with robotic
parts is to ensure they can work as intended in differ-
ent terrain types and environments without damaging
or getting damaged by the environment. In practice,
we would expect to see a combination of different sol-
utions ranging from manual cleaning to partially
autonomous cleaning where AGVs are responsible for
removing some litter objects and informing collectors
about the ones left in the environment.

Litter Separation and Coordination
Removing litter from the environment is only the start-
ing point for mitigating the negative effects of the lit-
ter as the collected litter objects also need to be
stored (e.g., at landfills), recycled, or reused in a mean-
ingful way. New ways to reuse litter are steadily em-
erging, e.g., plastic litter has been used as a material
to build roads.14 Both recycling and reuse require sep-
arating the litter according to the material of the
objects and this requires coordination among the enti-
ties responsible for collecting the objects. In the sim-
plest case, litter collection schedules need to link with
waste sorting facilities that are responsible for sepa-
rating the different materials, whereas a more adva-
nced solution would be to have dedicated AGVs
responsible for certain types of litter, e.g., separate for
glass and plastic objects. Having dedicated AGVs
requires intercommunication and coordination among
the AGVs to ensure all of the potentially hazardous lit-
ter is removed.

Litter Tracking
Litter is rarely stationary but is transported in the
environment as a result of wind, human activity, and
other factors. For example, curbside collection of waste
bins can result in excess waste dropping on the ground
and then gradually being transported around the city.15

Covering every nook and cranny of the city is naturally
infeasible and, hence, there is a need to design move-
ment plans that attempt to predict themost likely trajec-
tories for waste transportation using weather, human
mobility, and other variables as input. Some of these
models could run on the AGVs and help coordinate their
movement patterns in response to changes in weather,
whereas large-scale coordination would require interact-
ing with designated coordination centers. Beyond the
algorithmic and system-related challenges, this also

2022 IEEE Pervasive Computing 3

FEATURE ARTICLE

Authorized licensed use limited to: Oulu University. Downloaded on March 29,2022 at 09:02:12 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

requires usable interfaces for human operators so that
they can interact with the AGVs remotely. Waste trans-
portation also means that there is a need to support
coordinated movement plans, e.g., litter removal opera-
tions in sensitive environments tend to follow predefined
transects, which help to maximize the coverage of the
region that ismonitored.

LITTER IDENTIFICATION USING
SUNLIGHT

Accurate and lightweight litter identification is the
starting point for enabling city-scale litter monitoring
and, thus, solving this challenge is the first step in
enabling our vision. The identification methods should
also be cost-effective and able to operate autono-
mously without human effort. Our solution achieves
these goals by integrating AGVs with sensing capabil-
ity that relies on thermal dissipation characteristics of
materials to identify and classify the materials of litter
objects. The basic premise is to piggyback the thermal
radiation that the sun induces on the litter objects.
We temporarily block the sunlight using a sun-shield
and monitor the dissipation of the thermal radiation
on the surface of the object to establish a fingerprint
that can then be used as input to machine learning
algorithms to determine the material of the object.9

The main benefit of harnessing sunlight is that it is
freely available, thus reducing the energy drain of the
AGV and even offering an opportunity to power—or at
least charge—some of the components used by the
AGV. Indeed, minimizing energy consumption is essen-
tial for ensuring the cost-effectiveness of the litter
monitoring and for helping the AGVs to cover as large
an area as possible. Note that the basic principle is
not limited to using sunlight as an artificial heat
source can similarly be used to create thermal radia-
tion close to the object (see the “Discussion” section).
Similarly, if the AGV cannot be integrated with a
sun-shield, the object can first be taken to a location
with a shade before the measurements are taken.

We have implemented a proof-of-concept pipeline
that has been integrated with a commercial-off-the-shelf

AGV. The processing pipeline of our implementation is
shown in Figure 2. Video footage is recorded from an
object until no temperature is visible in the thermal
image. Raw video is preprocessed and cleaned by remov-
ing artifacts from the video and by dropping all frames
that correspond to internal recalibration and heating up
of the camera. The video footage is then converted into
an ordered sequence of images, which are transformed
into gray-scale (0–255) for easymanipulation. The overall
dissipation time of an object’s thermal fingerprint is cal-
culated from the reduction in the (white) area of thermal
fingerprint until it disappears (turns black). After this, fea-
ture vectors are produced to train classification algo-
rithms. These vectors comprise the total dissipation
time, shade area temperature, and the temperature
under the sun area. As classification algorithms, we con-
sider lightweight classifiers, including support vector
machine (SVM), random forest (RF), and multilayer per-
ceptron (MLPC).

EXPERIMENTS
The feasibility of the vision is intrinsically linked with
the capability of using sunlight and thermal cameras
for identifying litter objects and the potential of inte-
grating the proposed technology into ground drones.
We next demonstrate the feasibility of these tasks by
conducting several experiments on the use of sunlight-
induced thermal radiation for classifying litter objects.
We also assess the practicability of our approach by
evaluating three different designs for integrating the
monitoring onto ground drones. Finally, we demon-
strate that our solution can operate in different envi-
ronments and support litter objects that have already
been degraded. We next describe our experiments.

Apparatus
Thermal dissipation measurements are collected using
a CAT S60 smartphone with an integrated FLIR thermal
camera. The device is mounted, pointing toward the
ground, on top of a DFRobot Romeo V2 drone. Card-
board designs parallel to the ground are installed on
top of the AGV to create a simple sun-shield for the
thermal camera and the vision area [see Figure 3(a)].

Sunlight Characterization
To evaluate whether thermal dissipation time serves to
recognize litter objects using sunlight, we first conduct
an experiment to demonstrate that (i) sunlight can heat
up litter objects enough to characterize them using the
thermal dissipation fingerprint and (ii) it is possible to
estimate thermal dissipation time in an open environ-
ment just by moving the object from an area of direct

FIGURE 2. Sensing pipeline used for litter identification.
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sunlight exposure (under sun) to a shadow area (under
shadow). To do this, we first exposed each litter object
to sunlight for about 15 min [see Figure 3(a), step 1].
Thermal dissipation time can be measured from quick
exposures to thermal radiation,9 however, we chose
15 min to ensure that thermal radiation was absorbed
by the object and emulate real situations in which litter
is disposed—in general for longer time periods. When
the exposure time was completed, we moved the litter
material to a shadowarea andmeasure the thermal dis-
sipation time using the thermal phone [see Figure 3(a),
step 2]. The sunlight intensity to which each object was
exposed was measured using the Lux Light Meter app
for Android. The experiments were conducted in a pub-
lic park between 12:00 a.m. and 15:00 p.m., twice per
day, during three separate days. Six litter objects repre-
sentative of different discarded solid waste were con-
sidered for the experiments, including A: Milk pack
(tetra pack, low-density polyethylene—LDPE), B: Hand
glove (Rubber), C: Face mask (polypropylene—PP),
D: Coffee cup (wax-coated paper), E: Takeaway box
(polystyrene–PS); and F: Plastic bottle (polyethylene
terephthalate—PET).

AGV Designs
As part of the experiments, we assess the sensitivity of
our solution to the design of the thermal dissipation
monitoring. Specifically, our approach requires having
the objects first exposed to sunlight and thenmeasuring
the objects in a shadow area and we assess the robust-
ness of our sensing pipeline for different designs for
achieving this. Indeed, AGVs can either create their own
shadow using integrated components or piggyback
existing shadow areas available in the environment, e.g.,
below a tree. To evaluate the most effective solution
for thermal dissipation monitoring, we consider three

different AGV designs that use different principles for
creating the shadows. The three AGV designs are shown
in Figure 1 and are referred to as Sunsweeper, Sunshield,
and Sunshovel. Sunsweeper is equipped with a sweeper
to move litter objects to a shadow area. Sunshield inte-
grates an umbrella or other cover that blocks the sun-
light to produce a temporal shadow over the litter
object. Sunshovel combines these designs by having an
umbrella to block sunlight but also integrating a shovel
to have a constant background for the shadow area.
Besides evaluating the different designs, the experiment
has also been designed to provide insights into the situa-
tions where different AGV designs are best-suited.
Indeed, it would be possible to allocate different AGV
designs to different areas of the city depending on their
characteristics.

Environments
The characteristics of the ground where litter resides
can also affect the thermal fingerprint, and conse-
quently the performance of the litter identification. To
demonstrate the robustness of our solution, we con-
duct a follow-up experiment where we evaluate our
solution in four different locations: pedestrian area
(concrete), park (grass), harbor (wood), and paved
road (stone). As part of this experiment, we also con-
sider litter objects that are realistic and representative
of those occurring in the wild. We achieve this using
three objects whose shape, color, and other charac-
teristics have changed as a result of degradation. The
objects are shown in Figure 3(b) and comprise (G) a
crumpled face mask, (H) a broken plastic bottle, and
(I) a piece of a coffee cup. Experiments were con-
ducted during a span of 10 days, three times per day
(morning, midday, and afternoon). This translates to
85 trials, of which 12 are analyzed separately as spon-
taneous cloud formation resulted in reduced thermal
fingerprints for the experiments. The former is used to
analyze the performance of our method under ideal
conditions, whereas the latter is used to analyze per-
formance during partial and intermittent sunlight
absorption. Ground truth temperature information is
collected using DR CHECK FC500 from the location in
which the litter is analyzed. In each location, we sepa-
rately measured the temperature in the sun, under a
shadow, and under the shadow produced by the AGV.

RESULTS
CharacterizationWith Sunlight
Figure 4 presents the results of using sunlight to char-
acterize litter objects. The average temperature during
the whole experiment was about 18 �C and objects

FIGURE 3. Experimental setup. (a) Characterization of litter

objects with sunlight. (b) Integration of thermal dissipation

fingerprinting into ground AGVs.

2022 IEEE Pervasive Computing 5

FEATURE ARTICLE

Authorized licensed use limited to: Oulu University. Downloaded on March 29,2022 at 09:02:12 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

were exposed to sufficient sunlight. As shown in
Figure 4(a), on average each object is exposed to an
environmental light of intensity 12000 lx (under the
sun). In the shadow, the light intensity reduces to an
average of 3500 lx (under shadow). Figure 4(b) shows
the thermal dissipation time for each litter object.
From the figure, we can observe that different objects
clearly have different fingerprints. Repeated-measures
ANOVA test using thermal dissipation time as experi-
mental conditions showed significant differences
between objects (F ð1:86; 9:28Þ ¼ 165:49, p < :05,
h2g ¼ 0:94), demonstrating that thermal radiation can
characterize different object materials. Pairwise post-
hoc comparisons using t-test (with Bonferroni correc-
tion for multiple comparisons) confirmed that the
differences in dissipation times are statistically signifi-
cant for all the object pairs (p < :01), except for milk
pack and plastic bottle (p > :01). Generally, the dissi-
pation characteristics depend on the material’s emis-
sivity and thermal conductance, with the former
referring to the fraction of thermal radiation that can
be captured by the thermal camera and the latter
referring to the speed at which heat is transferred to
the outside. Polyethylene (PE) products (both low-den-
sity LDPE and high-density HDPE), such as the milk
pack, have low emissivity but average thermal con-
ductivity, i.e., they transfer heat to the outside well but
only reflect a small amount of the transferred heat,
whereas PET products have high emissivity but low
conductivity, i.e., they insulate heat well but reflect
large proportions of the transferred heat. These fac-
tors combine to make the dissipation times of PET
and LDPE similar in the experiments. As shown in
Figure 4, the intensity values of the materials are
clearly different, and thus, a potential way to over-
come this issue would be to use the light intensity as
an additional feature when the dissipation times are

similar. From the results, we can also observe that the
relative differences in fingerprints are preserved for
the objects when data are collected across different
days. When considering the 12 trials where objects
were exposed to partial and intermittent sunlight due
to spontaneous cloud formation, repeated-measures
ANOVA test using thermal dissipation time as experi-
mental conditions showed no significant differences
between objects (F ð1:11; 12:16Þ ¼ 0:374, p > :05),
demonstrating that thermal radiation cannot charac-
terize different object materials when there is only
intermittent sunlight exposure. Note that it is possible
to extend our solution to operate also during cloudy
conditions by using an artificial source of sunlight; see
the “Discussion” section.

Effectiveness of AGV Designs
We next evaluate the performance of the three differ-
ent AGV designs (sun-sweeper, sun-shield, and sun-
shovel) for thermal dissipation fingerprinting. We first
quantify the difference in temperature between hav-
ing the litter exposed to sunlight or having it under a
shadow. The correlation coefficient (Kendall) indicates
a positive correlation between thermal dissipation
time and difference in temperature (t=0.419, p < :05).
Thus, the temperature difference is an important fea-
ture for obtaining a representative fingerprint of an
object and we can compare the designs by assessing
the temperature difference they produce.

Figure 5 presents the differences in temperatures
that can be obtained with the different AGV designs.
Generally, the higher the difference in temperature, the
higher the variance in thermal dissipation (s2=0.273 cf.
s2=0.454 for measurements below/above the median),
which suggests the thermal properties of the materials
are adequately captured. Indeed, the higher the thermal

FIGURE 4. Thermal dissipation fingerprint using sunlight. (a) Light (thermal) exposure. (b) Dissipation values.
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conductivity and emissivity of amaterial, themore varia-
tion we expect to see as a result of environmental varia-
tions. Of the different designs, sun-sweeper has the
largest difference in temperature as it also needs to
transport the objects to a shadow. The sunshield design,
in contrast, shows stable performance when the back-
ground is fixed, but the performance decreases as the
background changes. Specifically, when the litter is
located on grass, the performance is highest, whereas
stone andwood result in a drop in performance. Another
limitation of the sun-shield is that the background
where the litter resides starts to cool down also when
the object is covered, which further weakens the ther-
mal dissipation fingerprint. The sun-shovel overcomes
this limitation and generally has a similar performance
to the sun-sweeper. Specifically, the sun-shovel design
is able to provide a consistent background, which
improves the dissipation characterization.

Finally, we used the sun-shovel design to compare
the relative thermal dissipation characterization of
degraded litter objects in the park and in a controlled
laboratory testbed (i.e., objects G, H, and I in Figure 3).
Dissipation times in the park are 1.04 min for the crum-
pled face mask, 0.54 min for the broken bottle, and
1.02 min for the piece of a coffee cup, whereas the cor-
responding times in the laboratory are 1.27 min for the
crumpled face mask, 1.05 min for the broken bottle,
and 1.51 min for the piece of a coffee cup. Thus, the rel-
ative pattern between the different objects is pre-
served when the characterization is integrated with
the AGV. As these objects represent litter objects
found in real environments, the result also highlights
the robustness of our solution and suggests it can be
used for litter monitoring in the wild. Naturally, there
are cases where our solution may struggle, e.g.,
objects that contain a mixture of multiple different

materials or that are heavily contaminated by soil may
result in unstable thermal fingerprints.

Litter Classification Accuracy
We next consider the potential of using machine learn-
ing to classify the objects according to their material.
As described in the “Litter Identification Using Sun-
light” section, we consider three common machine
learning models: SVM, RF, and MLPC. When only dissi-
pation time is considered, the average estimation
accuracy is 59.1% across all the classifiers. This corre-
sponds to a generic model where no information
about the context is given. Once we include more
parameters about the environment, i.e., the tempera-
ture and humidity of the environment, the tempera-
ture under the sunlight, the temperature in the
shadow area, and period of the day, the accuracy is
significantly improved to an average of 90.1% (90, 9%
RF, 88.6% SVM, and 90.9% MLPC). Thus, simple fea-
tures and classifiers are sufficient for classifying the
materials of the objects, but measurements need to
be taken in two diverse environments (i.e., under the
sun and in the shadow) to ensure robust performance.
In terms of accuracy, our results are comparable to
those obtained using state-of-the-art object recogni-
tion.16 However, as discussed, object recognition is
sensitive to the state of the litter object. Indeed, the
performance of object recognition decreases signifi-
cantly when the litter objects are degraded or their
shape has changed9;10 as the model effectively learns
to distinguish specific kinds of objects instead of what
is litter. Our solution also requires less training data
and processing than the object recognition approach.

DISCUSSION
The vision proposed in this article strives to offer a new
way to monitor litter on a city scale that provides a
cost-effective solution that can significantly increase
the scale of monitoring, provide detailed insights into
the litter situation in the city, and pave the way toward
better environmental sustainability. Compared to state-
of-the-art solutions, our proposed approach is more
lightweight and flexible for identification of object litter
objects using AGVs. Naturally, there are further chal-
lenges and limitations that must be addressed before
our vision can fully be realized on a city scale. We discuss
few of these points in the following.

Stakeholders
The main stakeholders for our solution would be
municipalities and municipal waste collectors as our
solution aims at increasing the scale and coverage of

FIGURE 5. Temperature differences achieved by each ground

AGV design to estimate thermal dissipation time of litter

objects.
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litter monitoring. However, we expect there to be also
other beneficiaries and stakeholders. For example, as
the imaging capabilities improve, we could expect to
see the sensing pipeline being integrated into smart-
phones and wearables and offer people feedback on
their behavior and information about the correct recy-
cling practices. Similarly, recycling plants can inte-
grate thermal dissipation sensing as a mechanism to
support waste sorting. Indeed, the feasibility of ther-
mal sensing has already been demonstrated in recy-
cling context12 and our work further extends this to
using dissipation instead of measuring the objects in
constant heat. Manufacturing industries may also
become stakeholders as environmental regulations
increasingly aim at making the industries responsible
to contributing to waste management, and thus they
could indirectly support the uptake of solution
through payments to municipal actors. Finally, compa-
nies operating delivery services and goods could be
piggybacked to carry sensors and collect information
about the state of the environment.

Educating the User
Achieving long-term change in environmental sustain-
ability requires besides identifying and removing litter,
also educating and motivating the citizen to litter less
and to recycle better. Thermal dissipation monitoring
can be integrated into smartphones that are equipped
with thermal cameras to help educate individual citi-
zens or AGVs can be trained to recognize when some-
one drops litter and notify the person about the
environmental consequences of their littering.

Regulations and Other Challenges
Drone usage is increasingly becoming regulated, even
if currently it would seem that smaller ground AGVs
will face fewer restrictions than other types of autono-
mous vehicles. AGVs are also generally more energy-
efficient than other types of autonomous vehicles.17 As
such, we expect that in the near future, it would be pos-
sible to piggyback AGV operations for litter monitoring
needs also. For example, delivery drones already oper-
ate in certain limited areas, e.g., university campuses,
and there are autonomous street sweepers being
deployed. Any upcoming regulations are likely to be
influenced also by the size of the vehicles and, hence,
there are design challenges in making the design as
small and non-intrusive as possible. For example, hav-
ing large sun-shields may be infeasible for public use
and instead, there may be a need for retractable bar-
riers that do not significantly increase the size of the
vehicles.

Sunlight Intensity
Our experiments demonstrated that sunlight can be
used as the source of thermal radiation to recognize
material using thermal dissipation fingerprints. We
conducted experiments in the morning and afternoon
where adequate sunlight was available. We expect our
solution to work also when sunlight intensity is lower,
e.g., during the early morning or evening times, or
when there is partial cloud cover. Winter conditions
are another potential challenge as ice and snow may
encapsulate the litter and cause the AGV issues to
navigate. In case, when there is no sunlight, an artifi-
cial source of thermal radiation can be used to induce
the thermal radiation. Alternatively, it may be possible
to link the radiation with other environmental sensors.
For example, air quality monitoring often uses metal-
oxide sensors for capturing gas concentrations. These
sensors need to be heated up prior to sampling the air
and the resulting heat could potentially be channeled
onto the objects being tested.

Micro- andMacrolitter
Off-the-shelf thermal cameras tend to have limited res-
olution, which means that our solution is better at rec-
ognizing larger litter objects (macrolitter) rather than
smaller pieces or particles that also blend with the
ground (microlitter). Comprehensively addressing litter
thus requires combining our approach with other tech-
nologies that can also identify smaller particles. For
instance, a combination of light reflectivity and thermal
imaging12 could potentially improve the extent of litter
that can be recognized. Light reflectivity similarly has
low energy footprint and, thus, it is well-suited for
AGVs and the main research challenge is to ensure
robust recognition performance.

Power Consumption
Operating litter monitoring in cities requires suffi-
ciently small power consumption. AGVs generally
have a longer-lasting operational time than other
vehicular modalities,17 yet the time is typically in the
order of few hours. Our solution can operate using a
smartphone or similar IoT-device that is integrated
with the AGV and contains its own battery or another
power source. Thus, the main impact on an AGV is a
minor increase in payload, which does not significantly
affect the operational time of the AGV. Even if an arti-
ficial source of light or heat is needed, this can be
accomplished by piggybacking on other components,
e.g., metal-oxide sensors used for air quality monitor-
ing require heating and could be used to induce ther-
mal fingerprints. As our solution relies on sunlight, it
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can also take advantage of energy harvesting, e.g.,
a solar panel could be integrated with the sun-
shield to provide energy for the sensing as well as
the AGV.

SUMMARY AND CONCLUSIONS
We presented a research vision of large-scale litter
monitoring using ground AGVs that are equipped with
thermal cameras and sun-shields. We presented
proof-of-concept implementation and three different
design prototypes, which were tested in controlled
real-world experiments. Our vision seeks to increase
the scale of litter monitoring by developing a solution
that can operate at a larger scale than what is cur-
rently possible and overcome the need for human
effort. The key to our solution is the idea of harnessing
sunlight as a sensing modality and taking advantage
of the fact that litter objects have different thermal
properties that sunlight can expose. We identified key
requirements and challenges for our vision and dem-
onstrated the feasibility of the vision. Our results
showed that over 90% litter classification perfor-
mance can be achieved and that our solution can
operate robustly against environmental variations.
Our research paves the way toward new city-scale
monitoring solutions that can address environmental
issues and ultimately help improve the quality of life
for citizens.
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