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Abstract—The capability to monitor natural phenomena using create a higher-accuracy localization system.
mobile sensing is a benefit to the Earth science community For efficient traversal to the designated location, each
given the potentially large impact that we, as humans, can (ohotic node must plan a safe and efficient path through the

have on naturally occurring processes. Observable phenoma . . .
that fall into this category of interest range from static to terrain. While the algorithms employed by global path pizisn

dynamic in both time and space (i.e. temperature, humidity, differ significantly, from the dynamic programming methods
and elevation). Such phenomena can be readily monitored usy of Dijkstra’s algorithm [6] to the random sampling methods
networks of mobile sensor nodes that are tasked to regions of of rapidly-exploring random trees [7], all planning stgits
interest by scientists. In our work, we hone in on a very spefic require a map on which to plan. Coarse scale maps are gener-

domain, elevation changes in glacial surfaces, to demonste a I ilable f t . technologi Howege
concept applicable to any spatially distributed phenomenaOur ally available from remote sensing technologies. Howeser,

work leverages the sensing of a vision-based SLAM odometry typical resolutions greater thatD0 meters [8], these maps
system and the design of robotic surveying navigation ruleso are unable to capture rover-scale terrain structures, hwhic
reconstruct scientific areas of interest, with the goal of moitoring  could impede travel or affect the accuracy of derived sdient
elevation changes in glacn_al regions. We validate the outpdrom measurements. Additionally, glacial terrain is often dyim
our methodology and provide results that show the reconstrated . ¢ ith d h . h d locati
terrain error complies with acceptable mapping standards éund 'n nature, with snow uneg ¢ .anglng. Shape and localion over
in the scientific community. time and new cracks forming in the ice surface. In order for
B ~the planned paths to be useful, the course-scale terrain map
T HE ability to understand the causes and effects of climafgust be augmented with local-scale features encountered by
change is one of the foremost questions under consigle robotic platform during the traverse. Ideally, the d@rr

eration in the scientific community today. Since the 1970should be sensed or predicted before the platform encaunter
scientists have gathered weather-related measuremems ffhese obstacles, a”owing new paths to be p|anned as far in

around the globe to study this phenomenon and begin d8vance as possible.

model the major contributing factors as well as predict the | addition to improving navigational performance, the
global ramifications. It has been discovered that the wsrlderrain reconstruction itself can be a key scientific dataipct.
glacial regions are particularly sensitive to changes i@ thror example, climate researchers have been studying the ice
climate; the dwindling ice caps are but one sign of this re§i0 mass balance of glacial systems. By monitoring the relative
increasing temperatures [1], [2]. Due to the sensitivity qflevation changes of the glacier surface, they can estimate
these regions, scientists have focused data gatheringseffghe change in ice volume. Currently, scientists instalatibh
towards the poles, setting up networks of automatic weathgfres at key points in the glacier surface or use relative
stations in Greenland and Antarctica [3], [4]. These stetio elevation readings from automatic weather stations. Hewev
are expensive to install and maintain, yet provide only sparthese single-point measurement strategies must inteepola
Spatial resolution in these critical areas. To augment Hita dover |a|’ge areas to estimate ice mass balance values [9] A
collection mechanisms available to climate scientistsairsh, much more accurate assessment of ice mass balance could
glacial terrain, a multi-agent robotic sensor network hesrb phe obtained if the glacial surface were periodically suecy
proposed [5]. The network would consist of multiple aumn such a scenario, the robotic agents could be tasked to
tonomous robotic rovers equipped with a customizable sens@rvey the glacial surface with the goal of creating a terrai
payload. The scientists would define the region of interet areconstruction meeting certain error criteria. Howevethe
desired spacial resolution, then task the network to excibiet main purpose of rover mission is to perform a g|acier survey,
data-gathering mission. a different set of path planning strategies are required.

The multi-agent nature of the proposed system poses certaitn the following sections, a vision-based simultaneous lo-
design constraints. Most notably, because the system valllization and mapping (SLAM) algorithm is described that
consist of many robotic nodes, each node must be minimallias tailored to meet the challenges of using vision systems
expensive. This pushes the design away from centimeterlow-contrast, glacial environments. As a by-product of
accuracy GPS units and military-grade IMUs and towardslculating the robot’s pose estimate, the SLAM system also
consumer-grade sensing equipment. Consumer-grade gensstimates the positions of a large number of terrain landmar
however, generally does not have the localization accurgogints. An adaptive terrain reconstruction methodology is
necessary for the positioning of the robotic nodes into thpoposed that creates a topographic terrain map using these
requested sampling topology. Consumer-grade sensors musibn-based terrain measurements as input. Additionadlgr
therefore be augmented with other real-time measurementgdrrain knowledge, such as course-scale satellite et@vati



measurements, can be incorporated into the terrain modekirfficient contrast alone. A contrast-limited adaptiveddsam
a natural way, further improving the reconstruction qyalitequalization preprocessing stage has been shown to dibstic
This is originally motivated by the need for forward-loogin improve both the detection rate and matching consistency of
maps for path planning algorithms. However, once the focstandard feature detectors when applied to low-contrkstiad
changes to “maps as the end product,” different plannirsgenes [18]. This allows standard visual SLAM techniques to
mechanisms are needed. Several surveying strategiessare ltf applied in the domain of glacial robotics.
cussed, as well as methods for selecting the surveying patiHowever, SLAM systems are incremental, with the current
parameters based on prior knowledge of the terrain and duigesition estimate updated based on a change in observations
by common mapping standards. We also introduce the conc€pte of the fundamental issues when using any incremental
of science-centric coverage to better evaluate the measfingocalization system is drift. As the system runs, small exro
collected science information as it relates to the sungyimccumulate, resulting in significant localization erroreov
strategies. Both the vision-based terrain sampling metlaod time. The final localization system thus uses a particlerfitte
the described surveying path planners are validated wahirfuse the low-quality GPS measurements with the incremental
simulation environment created to mimic a glacier field tesbcalization of visual SLAM, producing a system capable of
site. both consistent local-scale localization and drift-frdebgl-
scale positioning. Using this fused approach, typical eacies
|. ROBOTIC SENSORNETWORK of less thanl.0m were possible on field trial data collected

Previous arctic robotics projects, such as Nomad out gf Mendenhall Glacier near Juneau, Alaska [19].

CMU [10], [11] and MARVIN from the University of Kansas
[12], [13], showcase the ability of the mechanics of a robd. Robotic Platform
to survive the inhospitable climate of glacial environngent Additionally, high terrain mobility is required for testin
However, each of these prOjeCtS involves the constructfon &d proper execution of science missions. While much of
a single, expensive robotic agent. Such an approach is g rover's time will be spent in the flat, central regions of
practical for the development of multi-agent systems, whefhe glacier, the project goal is to construct a system capabl
potentially dozens of robotic agents will be utilized. of traversing the widest range of expected terrain possible
Instead, each agent must cope with low-cost, commoditypically the areas of most interest to scientists occuhat t
sensors. However, consumer-grade GPS receivers and IMigremes of the environment. Collecting data about a fogmin
do not have the localization accuracy necessary for the pagiacial lake requires descending into the surroundingrbasi
tioning of the robotic nodes into the request sampling t0@@l  shown in Figure 1, while investigating the glacier-mountai
These sensors must be augmented with additional informat'@bundary requires ascending steep slopes.
to produce a viable system. In particular, vision is an etiva  For these reasons a snowmobile chassis was selected as the
option. It is the sensing modality relied upon most by humangase for the SnoMote prototype robotic mobile sensor [20].
and it has been shown effective for both the Mars rovers [1#he chassis, based on an RC snowmobile chassis, was heavily
and DARPA Grand Challenge vehicles [15]. Compared witlodified to incorporate a dual-track design. The modifiett pla
laser scanners, even high resolution cameras are light, I@%m has been equipped with an on-board embedded computer,

power, and inexpensive. consumer-grade GPS unit for global localization, and a wide
angle monocular camera for real-time image processingy Onl
A. Vision System a minimal amount of sensing was incorporated into the rover

To augment the GPS localization system, a vision-basg'aSign to te_st the extents to which the vi.sion system could
simultaneous localization and mapping (SLAM) algorithn§upply the situational awareness and terrain assessmets$ ne

has been implemented. Vision-based SLAM systems seekof(Qr_he mobile rover. - :
0 simulate the science objectives, a weather-oriented sen

estimate the 3D pose of the camera by tracking the coordinate _ . .
of visually distinct features in the environment. As thetiras sor suite was added to the_rover. Ultimately, the science
move in image space, the relative motion is used to update H?eckage will include an extensive set of weather-relatenpeq
position of the camera, as well as estimate the 3D location Hent Sl.JCh as an anemometer or solar radiation sensor. For
the features themselves. This requires that images fealgre prototyping, a set of_sohd-state Sensors were selecte‘d_ tha
reliably extracted and matched within the image stream. Oﬁgmd measure meaningful weather related data and still fit

of a number of common keypoint detectors are generally us\é(&h'n the confines of the rover’s chassis. The final instrome

to meet the feature detection needs, such as Harris [16]s&1te includes sensors to measure temperature, barometric

SIFT [17]. These detectors rely on finding pixels with Strong:essure, and reIatl_ve humidity. Figure 2 shows a diagram of
directional gradients. However, glacial environmentsegaty e prototype robotic platform.
lack these types of distinctive features.

Since standard feature detectors search for pixels ekiybit Il. VISION-BASED TERRAIN RECONSTRUCTION
strong directional gradients, the foreground image gradie In order for each robotic agent to achieve its goal location
must be boosted for these detectors to perform propemithin the sensor network, a path plan must be generated that
Ideally, the image enhancement should be non-uniform,-ad&eeps the rover on safe, traversable terrain. Howeverréefo
tively enhancing the foreground regions while leaving arefa such a plan can be generated, an appropriate map is required
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Fig. 1. The SnoMote Mk2 prototype rover descending into aigldake
basin.

¢ Wireless camera for
real-time imaging

s NiCad
rechargeable
battery

o Weather-related sensor
package including
temperature, barometric
pressure, and humidity

(b) Gazebo Simulation

+ Connex 400XM ARM . . . . . .
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Fig. 2. A diagram of the major components of the SnoMote Mi&qiype

robotic weather station network node. . . . e .
which are shown in Figure 3), it is impossible for these types

of maps to capture all the hazards a rover might encounter

that captures the types of terrain obstacles present inengi#uring a mission.
environment at a scale similar to that of the rover. Spedifica A second source of available mapping information comes
the major obstacles in glacial environments are slope badg@m the augmented localization system. The SLAM algorithm
[21], [22], making knowledge of the rover’s orientation irproduces a set of 3D landmarks on the terrain surface as a
the environment important when determining traversapilitoyproduct of estimating the rover's pose. However, theatarr
Hence, a topographic map is a natural choice, allowing tis#ope is an important aspect in the planning strategy, duimgt
planning algorithm to predict the rover orientation ovee thnot immediately available from a set of sparse 3D points.
entire path. However, an up to date topographic map with &glditionally, SLAM landmarks are localized incrementaly
appropriate scale is difficult to obtain. viewing the landmark with increasing amounts of parallax.
Recently satellite missions such as the Shuttle Radar Tdiis means that the most accurate landmark positions will
pography Mission (SRTM) [23] and NASAs Ice, Cloud,be obtained as the rover passes by the landmark position, and
and land Elevation (ICESat) satellite [24] have mapped th@ndmarks that are directly in front of the rover will retdamge
globe with increasing accuracy. However, even the best @&mounts of uncertainty. This has detrimental implicatitors
these satellite-generated digital elevation models (DEh&s Use in path planning, where the terrain structure in front of
a minimum resolution far greater than the scale of the rabothe rover is of far more interest than the terrain behind.
platform. When combined with the dynamic nature of glacial A terrain reconstruction method is presented that uses
environments (snow dunes change shape and location oWer sparse landmark position estimates from the locatinati
time and new cracks form in the ice surface, examples system as input to a statistical interpolation system known



as a Gaussian process (GP). A GP intrinsically handles mea-

surement uncertainty, allowing the calculation of both the _ Sy
maximally likely terrain surface and the terrain uncem@in p(y;,y,) ~ N ([m , [ ot ”1) = p(yi) ~ N (i, Sii)
Additionally, the GP uses information about observed terra wi| o | i Gy

to predict unobserved terrain, albeit with increasing leve )

of uncertainty. This obviates the issues with using SLAM A GP can also be conditioned on a set of known mea-
landmarks directly. Additionally, the GP can incorporate Surements [25]. The resulting GP posterior describes dray t

priori knowledge of the terrain structure through the us¥Psetof sample functions that pass through the measuremen
of a mean function. The predicted terrain is then pullgePints. This allows the GP to be used as a regression or
away from the mean in response to measurements of {RErpolation technique, in which samples may be queried at
real terrain. This allows the course satellite data to beaps an arbitrarily small resolution. However, unlike convental
the reconstruction system while providing a mechanism f§pgression or interpolation techniques, no data modetdtin

correcting and augmenting this information due to condiio guadratic, etc.) is required. For interpolation, a set of un
on the ground. known output valuesy™ = {y![j =1,...,Q}, is desired,

corresponding to a set of known inputs valugs; = {z;}.
) The output values are to be conditioned on a set of known
A. Gaussian Processes measurementsy = {y;|i =1,..., P}, corresponding to a

A Gaussian process (GP) is a collection of an infinitéecond set of known input values, = {Z;}. The GP posterior
number of random variables with a jointly Gaussian distrmean and covariance satisfying these conditions are shown i
bution [25]. This may be interpreted as a distribution ovdrquation (4) and (5) (with a full derivation available in [26
continuous functions, similar to how a Gaussian variable
defines a distribution over real values. Instead of sampding

value inR" from the Gaussian variable, a continuous function, . p(Y7IX, Y, )51) ~ N 3)
f(Z), is drawn from the GP that maps an input vecibg RY, pt=px 4 Syy - Epe e (Y — px) (4)
to an output valuey € R. A GP is defined by a mean S =Y%yy - Zyyr .2;17Y* 'ExTv,Y* (5)

function, u(Z), which describes the mean output value of

all possible sample functions evaluated at the inpistand Where us is a vector of values produced by evaluating the
a covariance functionk(f(z;), f(Z;)), which describes the mean functiony(-), over the setS, andXs, s, is a covariance
correlation between any pair of output values. The choice @fatrix constructed by evaluating the covariance function,
the mean and covariance functions allows prior knowledge bf', -), with each pair-wise combination of values from sets
the function’s behavior to be encoded in the GP frameworR: and S.

While many covariance functions are possible, a common

gnd natu_ral choice _is the squared exp_one_ntial fL_mctioadistB_ Visual Landmarks

in Equation (1). This covariance function is derived from a
Gaussian kernel, exhibits rotation and translation irarese to
the inputs, and is infinitely differentiable or infinitely sioth.

A Gaussian Process (GP) terrain model is capable of
combining multiple measurements of the terrain elevatida i

The exact spatial behavior of the covariance function can Besmgle, cohesive representation. The GP model also incor-

tuned with a function-dependent set of parameters, known R ales any measurement uncertainty into the reconsinjcti
hyperparameters in GP literature [25] if that uncertainty may be modeled by additive independent

Gaussian noise. In that case, the measurement covariance ma
trix, Xy,y, is simply augmented by the elevation uncertainty
k(f(&), f(&;)) = avexp (_% = :E}-)T (% — fj)> (1) of each measurement, as in Equation_(6). Ggostatist?caémod
often use GPS survey data collected in a uniform grid or other
sampling technique designed to capture the observedrerrai
variation. The positional errors associated with GPS surve
data tend to be small and relatively uncorrelated, makiig th

whereT is a diagonal matrix of eIemen&%, ..., anda

is a scaling factor. The variables in thé + 1 dimensional

seta,v1,..., N are known. as the hyperparameters for thg good fit for GP interpolation.
squared exponential Gaussian process.
To draw a sample, the GP must be evaluated at each input o2
value, . However, as stated previously, a GP is an infinite
dimensional object. Despite the infinite dimensional natofr gf,y =Yyy + (6)

GPs, sampling is still computationally tractable due to the
marginalization property. If a GP is defined over a s§f,

by GP(u, ), then the GP is also defined over any subsethereo? is the elevation variance of th&" measurement.

of S by the relevant submatrices of and 3, as shown in  The visual SLAM algorithm within the localization system
Equation (2). Thus, as long as the number points at whighoduces a set of 3D point estimates that lie on the terrain
f(&) is to be evaluated is finite, then sampling from the GBurface as a byproduct of the localization process, sulfic

is also finite. Equivalently, any finite set of variables fream analogous to GPS data. However, unlike GPS surveys, this
GP have a jointly Gaussian distribution [25]. data is collected opportunistically while the robot penfiera
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traverse, rather than with the explicit goal of capturinga® The valuesy; are often referred to as the length scales. The
variations. These visual landmarks also cover the terraip o distance between the input variables in each dimension is
sparsely, with landmarks near the rover's path occurring fdivided by the corresponding length scale value during the
more frequently than landmarks at significant distancesléNhcovariance calculation. This allows the GP to vary how glyick
this may be suboptimal from a terrain sampling standpoimt, the output can change in response to the inputs. In terrain
additional travel is incurred by the rover to collect thigala modeling, length scales in the tens to hundreds of meters are
Further, the uncertainty of each SLAM landmark is a jointlgommon. Thex parameter is a gain value placed on the entire
Gaussian distribution in both the dependent variablesy), covariance function. This allows the GP model to be more or
and the independent variable, Inclusion of uncertainty in less sensitive to the input values as a whole.
the dependent variables is known as the “error-in-vari&ble The hyperparameters for a GP model are ideally trained on
problem in statistics, and few solutions exist for the multia subset of data to maximize the posterior probability shown
variate case [27]. Rather than attempting to modify the GR Equation (8). However, if no prior probability informati
structure to incorporate “error-in-variables” uncertgjreach is known for the hyperparameter distributigng), then the
landmark covariance is converted into independent addittommon practice of maximizing the log marginal likelihood,
noise by marginalizing out the dependent variables,y), log(p(Y|X,#)), is equivalent. The log marginal likelihood for
from the joint distribution, as shown in Equation (7). Dua GP is shown in Equation (9) [29].
to the highly directional nature of visual SLAM landmark

estimates, removing the dependencyzofind y, even from p(Y|X,0) p(6)

covariances with even a small volume, results in a largeaeleV’ (01X,Y) = oYXy (8)
; : . : p(Y]X)

tion uncertainty. For this reason, only those landmarkresties 1og s 1 n
whose depth uncertainty have collapsed to a small region deg (p (Y'|X,0)) = Y Byy Y —glog |Zy,y| — 5 log2m
considered for inclusion in the GP terrain reconstruction. 9)

To train the hyperparameters, the locatiois, and ele-

p(z) = / /p(xvy,z) dz dy vations, Y, of a small segment of the terrain was provided
zJy to the GP. The values of the hyperparametersand ~

Lha os ATy Bozos (7) Wwere varied over a large range, and the correspondingnerrai
- ~/m UN [“y} y | aowoe oy aowes | | dudy reconstruction error was calculated from ground truthaien

Mz v
data. Since the orientation of the world coordinate system

Bo.ox yo.oy o’i

2
= N(“Zv"z) should not effect the GP results, the length scales in the two
) . dependent variables are set equal,= v, = . The values
C. Satellite Elevation Data associated with the lowest reconstruction error= 10.0 and

DEMs produced by satellite missions such as SRTM or= 315.0, were selected for use in the GP regression in all
ICESat average the terrain elevation over a large area cdiglfowing results.
pared with the size of the rover. While this information cann
capture the local-scale hazards faced by the robotic sengorsimulation Examples
node, it can serve as an indication of large-scale terrain
variations. Within the GP framework, a mean functip(yy), is
specified. This is typically set to a constant value, caleda
from the mean of all the observation values. The GP th
models the terrain deviation from the mean. However,

gebzt;;rl tei;rg(l)r; (ejlrz\;:go?n tzxgsgta(ggn ir';:;g'laltr)]le’ ;?tiiguf reconstruction problematic. In order to perform compreen
while it ?’S referlraed to as a mean function i'; neeI(DJI not SHUmericaI analysis of the vision system results, a 3D raboti
' imulation was developed. This simulation system, whigdsus

mz}ttﬁ]’;;g ?:r?\ng?cl,cfgg]ﬁglt asr']rgptlf)]/emuztr bﬁ)cz\gﬁg?ie Fcazebo [30] as its base, has been extended to provide a
u ! ' query ! *.visually faithful environment including realistic largeade

This can easily be accommodated using simpler imerpmaﬂf’errain, local scale hazards, and background imageryr&igu

methods on the satellite data_, or even from an online mappi ws a visual comparison of the simulated terrain and thie re
service such as U.S. Geological Survey [28] or Google Ear{ rrain from which it was developed. Additionally, an apgeb

o for evaluating the efficacy of the constructed simulatiostem

D. Hyperparameter Optimization has also been developed, which makes use of algorithm-

The GP framework is considered a model-free regressispecific performance metrics to compare the simulation to
technigue in that no functional model, such as a linear tre real environment [31]. As the simulation can providetru
logarithmic function, is used during the data fit. Howeverpbot pose information and operates with a known terrain
the behavior of the GP can be tuned to a specific problanpology, it is an ideal testing platform for localizatiomda
through the use of the covariance function hyperparametdesrain reconstruction algorithms.
In Equation (1), the terms,~,...,yn are known as the To testthe terrain reconstruction system, one of the Menden
hyperparameters for the squared exponential Gaussiapgwochall Glacier field trial sites was reconstructed within the

The prototype robotic network has been fielded at several
test sites on Mendenhall Glacier near Juneau, AK. However,
erforming numerical evaluation of the vision system ididif
%ﬂlt from the field trial data. An accurate terrain map of thgt t
Site locations is unavailable, making assessment of thmaiter
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To compare the performance of the terrain reconstructisints is indicated by a dashed line.
system, three different methods have been tested. The first
uses a simple linear triangular mesh interpolation metibéd.
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The second reconstruction incorporates the sparse vis@%‘&me;he ground truth terrain elevation from the simudatgacial
SLAM landmark data into a Gaussian Process model. Unlike
the triangular mesh interpolation scheme, the GP model is
valid over all of R2. The mean function used within this
reconstruction is a constant derived from the mean elavatio Perhaps the most striking aspect of the three reconstnsctio
of all landmarks used within the reconstruction. The fina the limited data provided by the triangular mesh. Only
reconstruction is based on a GP model using the sparse SLAM3% of the terrain could be reconstructed after the traverse
landmarks as measurements, but also incorporates a meas completed. In contrast, both GP reconstructions were
constant mean function. Raw elevations were extracted frahle to predict the elevation of the entire terrain based on
the best available SRTM data products for the simulated tése local observations, even terrain sections that weratédalc
site. These elevation values were used to generate a tf&ngbehind the rover over the entire traverse. The landmark-onl
mesh terrain model capable of interpolating the elevation @P reconstruction is able to capture the basic structure of
any point within the test environment. While the simulatethe terrain from the limited data provided, though significa
environment is derived from ov&00, 000 unique elevations, reconstruction errors exist at the terrain boundaries.|@ahé-
the raw DEM contained onlg4 values. The resulting terrain mark plus satellite data GP reconstruction is able to make
reconstructions of the simulation environment after thenco use of the provided large-scale terrain structure, dralbfic
pletion of the pre-planned path are shown in Figure 5, wiéh tlieducing reconstruction errors at large distances while st
ground truth elevation map shown in Figure 6 for referenceadapting locally to the measured environment.



[1l. ROBOTIC SURVEYING —— Sample path of Piecewise Continuous navigation

In the previous section, a method for generating a ter
rain reconstruction was presented, motivated by the need 1
provide an accurate map for path planning algorithms whel A
traveling in unknown or dynamic environments. However,E,, y
the terrain reconstruction itself may be viewed as a vakiabl$ 5/
scientific data product. Estimating the annual glacial nrelt . ‘
the Arctic, for example, is one such motivation for accu- & 5
rate terrain reconstruction (other motivations includeenal 103\ , Y % /120
prospecting or chemical concentration monitoring in s8d][ 80 ;
[34]). Currently, remote sensing methods lack the sensin
instrumentation necessary to collect important spatitditis
the shape and recession of portions of the glaciers of siteve Moty %
Earth scientists. Traditionally, scientists relyiarsitu methods 00
Tor collecting this detail. The dravv_bac_ks of current memOdFig 7. Example terrain exhibiting slowly-varying, conius elevation
include lack of Safety for human scientists, dearth of matéer treﬁds.superimposed with a sample Piecewise Continuodgaﬁ'@n path.
coverage, and high cost [35].

To ensure the reconstructed terrain model results in a valid
scientific product, we need to ensure that the terrain caaplipiecewise-continuous [43] in which the sampling path dega
with topographic mapping standards. While the method G#ound a linear reference swath based on sensed phenomena
reconstruction method discussed previously showed pirelinwithin the terrain. The specific heuristic applied in thisrwo
nary results based on terrain points gathered opportoailsti is a policy defined by a switching mechanism, alternating be-
in order to ensure compliance with mapping requirementsyeen gradient-ascent and gradient-descent rules forgatgn
we require that survey paths are planned based on a desttgdction based on sensed features within the terrain (fifqua
maximum reconstruction error. In traditional robot survey(10)).
ing projects, typical navigation patterns follow a lawnnssw .
structure [36], [37]. On the other hand, in the scientific ) min(Vfs(q) if flag=0
realm, samples are extracted based on investigation of the Torn(a) = maz(V fs(q)) if flag=1
features needed to properly estimate change of envirorahent i .
phenomena [38]. As such, we need to employ a methodology" Equation (10), the functionys.(q) represents the next
that defines a robot navigation pattern based on a samplitigte of the navigating agenf..(q) represents the agent's
methodology that properly covers the space of changes%”em state;s is an mcrem_e_ntal tra_cker of the number of
environmental characteristics. In addition, our methodsstm Samples, and; is the specific location of the agent. The
be validated based on actual mapping requirements set fotfiching feature, mentioned earlier, is representedf tay,

0y,
0

Elevat

60

Easting [m]

(10)

by the photogrammetric and cartographic professions. which is randomly toggled during navigation for the purpose
of influencing spatial diversity in the path achieved by the

i . . agent.
A. Robot Navigation and Science-centric Coverage We have shown that this type of methodology correlates

In robotics, the coverage problem is typically defined by thedosely to processes found in the sampling and surveying
requirement to maximize the total area covered by a robotiterature [38] and outperforms traditional lawnmower for
system [39]. On the other hand, in the scientific communitgpntinuous, slowly-varying, terrains of interest (Figitdg43].
coverage is defined based on properly measuring the space diith respect to the second objective, we must define metrics
environmental phenomena [38]. In robotics, many succéssfat correlate robot traverse to information most usefuht
surveying techniques [37], [40], [41] focus on performingcientist. Typical navigation work in the robotics commntyni
a raster scanife., lawnmower) by designating evenly dis-defines coverage as the ratio of some total measure of Eu-
tributed, linear traverses across an area of interest iardal clidean distance traveled by a robotic agebs, to some
address the coverage problem. By designating swatch widthaximum distanceDr. It is generally accepted that d3s
this type of navigation pattern enables the system to wetrieapproached)r, the goal of achieving complete coverage of
an even distribution of samples. Unfortunately, this statan area is inferred. Measuring coverage in this way places
approach is usually implemented for the purposes of seamttention on the agent and its performance rather than the
[42] and thus does not adapt to environmental phenomesearch space and the quality of samples collected during
measured in-situ during the traverse. As such, our objstivnavigation. If, instead, the search space is discretized to
are to both define a navigation pattern that sufficiently damp quantify the total number of samples that can be collected
the space of environmental phenomena but also define metkigthin the area of interest, a more useful definition of cawger
as it relates to collecting information most useful to théor science sampling can be defined.
scientist. We define a type of coverage relative to the cummulative

To achieve the first objective, we employ an augmentati@am of distances from all possible sample locations to the
to the lawnmower navigation pattern using a method callegnter of the area of interest. Percent science-centrierage



X Centerof AUT We identify « and 5 as the complimentary tools to accom-
pany our assessment of coverage. Harepresents a measure
of the “centeredness” of a set of samples of siZe while
8 represents the “distributedness” of samples between each
reference swath.

To calculate«, we determine the planimetric center of
mass (CoM) of a particular sample set, found in (12), where
(m,ym) is the location of each sample ard is the total

Fig. 8. Difference in percent coverage definition of an aréanterest: number of samples collected.
robot-centric (left), science-centric (right). M
k=1 (Tmy Ym)

@ Sampled locations

% Coverage: I"(d,)/Dyax % C: ge: (EVd.(E du ples)

Xcom, Yoom] = 12
.o ® o o o.. C R 'o ® e 0% o [ oM o ] M ) ( )
@ . .
P T R — . Using CoM, we definex (13).
= ° .. ® ® ® ® .. -Unsampledarea - e
i ° H(XCOM7YCOM) - (Xref;}/Tef)”
e o = ) (13)
° DMa;E
‘9 e In (13), Dy, is the maximum possible distance between
P im® e ™ 4§ the sample set's center of mass atll,.r,Y;.r), While
neven distribution of samples: Uneven distribution of samples: . . .
e B to onar From canisr 10 BOroer (Xref, Yrep) is the reference location from which the actual

sample set’s center of mass is measured. To effectivelsasse
how well our samples, resulting from our navigation, are
distributed within the search space, we must emphasize the
costly nature of diverting from a linear path. For a series of
samples, if we consider a particular sample at location

Fig. 9. Examples of misleading sample distributions acessarea of interest.

(SCQ) is the ratio of’,, the sum of relative distances betwee
actual samplesx.,., ¥ ), and a reference location within the(xm,ym), a subsequent sample at 10cation, s 1, ym 1), and

search spacéX;cs, Yres), 10T, the sum of relative distances, o rarence swath around which these samples are collected,
between all possible samplds,, y,), and that same reference .

) : Yswath, then we can defing (16).
location (Equation (11)).

M
Zm:l |ym - yswath|

ﬂa: M

(14)

M
9% scoe M _ Zmet [1@m:ym) = (Xreg, Yres)|

S
Ts 2521 H(x&%) - (Xrefv Yref)”
For each level of desired coverage designated by a scientist 3, =

(11)

M-—1
S — |

, for [ym — ym41| =1 (15)

we assess a measure of percent SCC, attaching with it the (M—-1)
success of the sample set (measured in the form of root mean Ba

S . . - : g="2 (16)
squared error). Defining distances relative to a specifiatpoi Be

i-e. (Xref, Yres), prioritizes the importarjce of the sample; We defines as a ratio of the average distance away from the
collected over that of the agent and provides each sampite wit -
) ) . reference swath to the average change in distance away from
a relative meaning (Figure 8). . .
T this definiti . £ SCC | d that same reference. Whilg, provides a measure of how
0 ensure this detinition ot percen IS use apprOpHi’spersed around its referenag,,..n, @a sample set is, this
ately to evaluate future navigation schemes, spatiallgveat

h teristics of th | lected should also baeatbfi dispersion value is penalized based on how distant sugeessi
charactenstics of the samples cofiected should also be Isamples are from one another, a measurement designated

SpetC|f|c§IIy, dtf:jgr?_bneiegs 0 be a WTy Oft _ev;iuatlnr? htoﬁ/i Bp- Using 3, allows us to quantify the importance of
centered and distributed a given sample set IS througheu hieving sequential samples concurrent with the placemen

area of interest. of those samples reaching areas of the search space beyond
the designated reference. Given these metrics, we now have
B. Centeredness and Distribution additional ways of evaluating the quality of coverage pded

Symmetry and distribution of samples collected by a navig?\y a particular navigation patter.

tion scheme are valuable to an Earth scientist when an gecura )

representation of changes in measured phenomena areddesfre Mapping Accuracy Standards

Following a science-related survey, the projected stedigif Lastly, we must ensure that the map regeneration we
the samples collected may be reported as 50 percent, while finoduce meets a predefined error maximum set forth by
sample distribution is actually asymmetrically placedoasr those most interested in the science product. Althoughetbsi
the area of interest. Similarly, the center of mass (CoM) ofraap accuracies can vary, we refer to the accepted accuracy
collected set of samples may be placed close to the centest#ndards employed by professionals in the cartographdc an
the testing area, but only truly reflect a clustering at thelbo photogrammetry fields [44]. In the case of map elevation,
and/or very center of the area of interest (Figure 9). the american society for photogrammetry and remote sensing



TABLE | A
ASPRS QASS1MAP ACCURACY STANDARDS(VERTICAL). I

[——Lm |
PW-Cont |

ASPRS CLASS 1

Horizontal Vertical 3£ﬂ1 Contour Separation
Contour Interval [m] || ASPRS-RMS error [m] 05f 5.24 [em] Accuracy
0.3048 (1 [ft]) 0.0508 _ ASPRS CLASS 1
06096 (2 [1) 01016 Z o4l 21 ot Sepraten |
0.9144 (3 [f) 0.1524 2
= ASPRS CLASS 1
03y 1[ft] Contour Separation ]
5.08 [cm] Accuracy
TABLE I 02 |

ASPRS QASS2 MAP ACCURACY STANDARDS(VERTICAL).

Horizontal Vertical 8 ; i ’ : : "
Contour Interval [m] || ASPRS-RMS error [m] 0 2 4 6 8 10 12 14

0.6096 (2 [f)) 0.1016 HSCL

1.2192 (4 [ft]) 0.2032 . .
Fig. 10. ASPRS standard annotation of average RMS errordbase

1.8288 (6 [ft]) 0.3048 by L
data collected by specific navigation patterns across 16@oraly generated
DEMs.

(ASPRS) standard quantifies vertical root mean squared erro

specifications that dictate how a mapping product may be BB e s s s s entpes 2 a2

classified (Tables I-11l). \ R
One motivation behind the ASPRS standard was set to B S el el

clarify the accuracy of map data when represented as a 2D &

contour plot, with each contour line representing a specific §

elevation. The tables presented earlier clarify the level o &

vertical elevation accuracy based on specific horizontp} se

aration between successive contour lines. When seeking a

map product in the form of a 2D contour map with contour 102

separation equal to K [m], the average map error estimated

must be no greater than K/6 [m] or one-sixth the contour 0 05 1 15 2 25 3

separation. Thus, a desired contour separation of 3 [[1d4 %sce

[m]) requires an average error no greater than 0.1524 [nglg. 11,  Average reconstruction error annotated with maximerror

According to ASPRS, there exist three distinct classes gf meequirement for Class 3 map for each navigation pattern.

accuracies based on contour line separations ranging from 1

[ft] to 9 [ft]. The specific maximum allowable error varies

depending on the needs of the scientist, but once a valudhsTable lll. The area to be surveyed is a simulation of a

agreed upon, it provides a benchmark for validating ourltesu 600[m] X 600[m] field test site on Mendenhall Glacier. Using

Figure 10 shows the evaluation of these navigation pattersp%tellite elevation data, the maximum terrain variatiorerov

against typical terrains, such as the one shown in Figurethis area is found to be approximated§[m]. However, this
relative to accepted mapping standards. is merely an estimate of the terrain variation, as eachlgatel

measurement is actually an average elevation over a lagge ar
Using this maximum terrain variation estimate, a set of cand
terrains were simulated numerically, using the procedutte o

We evaluate the performance of our vision system am@ed in Section Ill. Figure 11 shows the average reconssnc
surveying methods based on the successful reconstrudtionegror of the random environments when surveyed by different
our environment. As a test, the system has been taskedph planning approaches. The maximum error requirement
create a Class 3 elevation map. In this context, a recormistnuc for the Class 3 map is Superimposed on the results. From
is considered successful if the final elevation model meéws this graph, the minimum number of surveying swaths for
minimum criteria for the map type selected. This implies @ach algorithm may be extracted (four swaths for traditiona
maximum terrain reconstruction error @f6m], as described jawnmower and two swaths for piecewise continuous).

The simulation system described in Section Il has again

IV. RESULTS

TABLE Il been employed to validate the surveying path predictiohs. T
ASPRS @ASS 3 MAP ACCURACY STANDARDS(VERTICAL). simulated rover is placed at a starting point within the simu
lation, which is assumed to be a known location. The rover
Horizontal Vertical is then tasked to drive through a series waypoints calalilate
Contour Interval [m] || ASPRS-RMS error [m] from the selected surveying pattern. During these tragerse
g'gégg Eg Eg gégig the vision-augmented localization system maps the logatio
2.7432 (9 [ 04575 of any visually distinct texture points encountered. ThgBe

surface estimates are used as inputs to the Gaussian Process
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system as a sensor to generate useful science information
for terrain reconstruction despite its inherent errorrgranea-
surements. The information extracted from Figure 11 used to
dictate the minimum number of traverses to achieve maximum
error for each navigation strategy was obtained presuming
a perfect sensor. In accordance with this prediction from
‘ simulation, we are pleased with the RMS error obtained with
-200 — Roer et - -200 &, boverban visual SLAM sensing. Yielding a difference between pregstict
B o o0 o a0 %0 a6 1 oo and actual of 0.0358 [m] (12.43%) when navigating according
Fastings (m) Fastings (m) to the traditional Lawnmower pattern and 0.0733 [m] (22%)
@ (b) when adhering to the Piecewise Continuous navigation path,

Fig. 12. The executed rover paths and an indication of theialpdistribution  hoth absolute error values meet the desired Class 3 maximum
of the visual landmark for (a) the lawnmower surveying sggtand (b) the limi bl
piecewise continuous surveying strategy. error limit (Table I1).

The second noticeable item is the importance of the tegain’
spatial complexity when selecting one navigation stratar

300 25 15 another. The simple downward-slope feature of our testing
20 20 terrain reduces the need for spatially diverse paths, wheie
s ' test area more analogous to the one shown in Figure 7 tyypicall
o demands more flexibility in changing navigation directions
;ZZ . ;22 s given the increased presence of hills and valleys.
-300 0

—300 -200 -100 0 100 200 300 -300 -200 -100 O 100 200 300
Eastings (m) Eastings (m) V CONCLUS|ONS
(a) LM Reconstruction (b) LM Reconstruction Error

300 300

200 200

100 100

Northings (m)
o
Northings (m)
o

-100 -100

Rover Path

Northings (m)
Northings (m)

In this paper, we have discussed a methodology for terrain

~= % reconstruction of glacier environments based on observed
200' 20 phenomena during a robot traverse. The principle take-away
5 £ from our work highlights the significance of augmenting inte
_102 0 £ !igent navig_a_tion schemes wi_th envir_onmen_tally-_rele\gnfn;-
. s ing capabilities to comply with desired scientific objeesv

Although our focus in this paper was on terrain elevation as

Northings (m)
Northings (m)

-300
-300 -200 -100 O 100 200 300

Eastings (m) Eastings (m the measured phenomenon, the navigation strategies pedsen
(c) PW Reconstruction (d) PW Reconstructlon Error  herein remain valid even in the event that the environmental

-300
-300 -200 -100 O 100 200 300

Fig. 13. Terrain reconstructions and reconstruction ertaing data from Phenomena shift domainge. soil moisture versus elevation
(a-b) the lawnmower surveying strategy and (c-d) the piesewontinuous data. Future work will thus involve applying our approach to
surveying strategy. observing these alternative phenomena, as well as deployin
multiple agents in this field. These field campaigns rangefro
accurately monitoring chemical plumes to providing timely
(GP) terrain model. These surface points are analogoussisatial characterization of radiation distribution asrosn
GPS survey information, with the exception that the sampleglea. We believe that by coupling robotics with scienceetias
locations are controlled by the visual surface appearaatber opjectives such as these, major life-preserving oppdrami

than a planned sampling scheme. In the case of the Piecevdsgid continue to be addressed by the robotics community.
Linear survey algorithm, the path actually adapts in respda

the surface conditions. These decisions are based on tlee pos

estimate of the rover, as intermediate terrain reconstmst

are not available to the rover during the surveying process.This work was supported by the National Aeronautics and

Figure 12 shows the executed rover paths for each survey®gace Administration under the Earth Science and Techpolog

strategy, and an indication of the spacial distribution lué t Office, Applied Information Systems Technology Program.

visual landmarks. The authors would also like to express their gratitude to Dr.
Finally, a terrain reconstruction is performed for eachatt Heavner, Research Scientist, Los Alamos National Lab

surveying algorithm using the GP framework described ifiormerly Associate Professor of Physics, University ofigia

Section Il (Figure 13). Based upon our simulated predictiddoutheast), for providing logistical support and his ekper

of the number of swaths required to achieve the maximuim glacial field work.

ASPRS mapping standard error for a Class 3 map (0.4572

[m]), our system achieves RMS error of 0.2827 [m] and 0.3323

[m], when navigating according to the traditional Lawnmowe

pattern and Piecewise Continuous navigation respectively [1] J. Curry, J. Schramm, and E. Ebert, “Sea ice-albedo ¢énfieedback
h f highliah l mechanism,Journal of Climate vol. 8, no. 2, pp. 240-247, 1995.
The outcome of our teStmg ighlights two salient aspectﬁ] M. Serreze and R. BarryThe Arctic climate system Cambridge Univ

of our work. The first point is the performance of our vision  Press, 2005.
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