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U
rban search and rescue missions raise special requirements on robotic
systems. Small aerial systems provide essential support to human task
forces in situation assessment and surveillance. As external infrastruc-
ture for navigation and communication is usually not available, robotic
systems must be able to operate autonomously. A limited payload of

small aerial systems poses a great challenge to the system design. The optimal trade-
off between flight performance, sensors, and computing resources has to be found.
Communication to external computers cannot be guaranteed; therefore, all
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processing and decision making has to be done on board.
In this article, we present an unmanned aircraft system
design fulfilling these requirements. The components of
our system are structured into groups to encapsulate their
functionality and interfaces. We use both laser and stereo
vision odometry to enable seamless indoor and outdoor
navigation. The odometry is fused with an inertial
measurement unit in an extended Kalman filter. Naviga-
tion is supported by a module that recognizes known
objects in the environment. A distributed computation
approach is adopted to address the computational require-
ments of the used algorithms. The capabilities of the sys-
tem are validated in flight experiments, using a quadrotor.

Civil and commercially oriented unmanned aerial vehi-
cle (UAV) missions range from rather modestly structured
tasks, such as remote sensing (e.g., wild-fire detection), to
highly complex problems including common security jobs
or search and rescue (SAR) missions. Disaster search and
urban rescue-related missions are still a fairly demanding
challenge because of their exceedingly variable nature. The
mission planning has to take a multitude of scenarios into
account, considering arbitrary, unknown environments
and weather conditions. It becomes apparent that it is also
not feasible to preconceive the large number of unforesee-
able events possibly occurring during the mission. In
research, certain types of SAR, in particular, wilderness
SAR [1], [2], have already been successfully mastered using
UAV systems. However, to date, the persistent perform-
ance of robotic systems operating in an urban environment
is very challenging, even with a low degree of human inter-
vention [3]. A stable broadband radio link cannot be guar-
anteed in such environments because it requires a high
level of autonomy of the systems. The limited availability
of computing resources and low-weight sensors operating
in harsh environments for mobile systems pose a great
challenge in achieving autonomy.

Our research goal is to develop robotic systems capable
of accomplishing a variety of mixed-initiative missions fully
autonomously. Completely autonomous execution of urban
SAR (USAR) missions poses requirements on the robotic
systems operating therein. Various such missions require
the robots to be modular and flexible in terms of sensor and
planning capabilities. The robots have to operate in unstruc-
tured indoor and outdoor environments, such as collapsed
buildings or gorges. Navigation systems therefore have to
work without external aids, such as global positioning sys-
tems (GPS), since their availability cannot be guaranteed.
Flying systems additionally have to provide robust flight
capabilities because of the changing local wind conditions
in such environments. A key feature to achieving full
autonomy in urban disaster areas is on-board processing
and decision making. Search assignments also require mis-
sion-specific recognition capabilities on the robots.

As a first step, we have developed a modular and extensi-
ble software framework for autonomous UAVs operating in
USAR missions. The framework enables a parallel and

independent development of modules that address individ-
ual challenges of such missions. It features reliable flight and
navigational behavior in outdoor and indoor environments,
and permits execution of higher level functions such as the
perception of objects and persons, failsafe operation, and
online mission planning. The framework is implemented
and tested on a commercial quadrotor platform. A quadro-
tor has been chosen because of its favorable rotor size and
safety when compared to a conventional small-size helicop-
ter. The platform has been extended in terms of sensor,
computer, and communication hardware (Figure 1).

Similar platforms have already been developed by other
researchers. The platforms are tailored to solve a simulta-
neous localization and mapping (SLAM) problem. This
problem requires a lot of computational power, which is
not readily available on flying systems. Therefore, the
authors in [4] and [5] chose to send laser scanner data to a
ground station for processing. Pose estimation and high-
level tasks are done on the ground station, whereas control
and stabilization of the platform are done on the quadro-
tor. More recently, through the optimization of algorithms
and faster processors, pose estimation and planning have
been done onboard. Notable implementations are laser
based [6] for indoor environments and monocular visual
SLAM [7] for both indoor and outdoor environments. The
pose estimate of the SLAM solution is commonly fused
with inertial measurement unit (IMU) measurements in
an extended Kalman filter (EKF) to obtain a full-state esti-
mate, which is then used for control.

Our approach differs from the previous work in three
major ways. First, instead of one sensor, we rely on two
complementary exteroceptive sensors. This enables flight in
both indoor and outdoor environments. As in state-of-the-
art systems, the respective odometry is fused with the IMU
using an EKF. Second, no geometric map is built. Instead, we
correct for drift errors by recognizing known landmarks in
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Figure 1. An experimental platform based on the Ascending
Technologies Pelican quadrotor, showing 1) laser scanner, 2)
mirrors, 3) stereo cameras, 4) a modular computation stack, 5)
wired Ethernet connection, 6) XBee modem, and 7) WLAN stick.
One of the propellers is pointing downward to improve the view
of a front-facing camera (not depicted).
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the environment. This lends itself to navigation in larger
environments, as memory requirements are smaller when
compared to SLAM. To guarantee our robots’ autonomy, all
processing is done onboard, akin to most recent systems.
There are many computationally intensive tasks, which need
to run simultaneously—stereo processing, visual odometry,
laser odometry, and computer vision. In contrast to the state-
of-the-art approaches, we adopt a distributed computation
platform consisting of several onboard boards instead of one.

The components of our framework are inspired by the
international micro air vehicle (IMAV) [8] indoor explora-
tion challenge. The objective of the challenge is to fly into a
house of known shape and dimensions, detect objects, and
return outside to land on a defined pattern. Several prob-
lems found in USAR missions have to be addressed. The
UAV system must first find the house, as it starts behind a
wall without direct sight of the house. Once found, precise
detection of and navigation through the door, window, or
chimney of the house is required. Pattern recognition is
used for object detection and landing zone identification.
External aids, such as GPS or a motion tracking system,
are not available. Adding artificial features to the environ-
ment is penalized. Although not all difficulties of a USAR
mission are addressed, the navigation, autonomous deci-
sion making, and object recognition challenges are present.
The size of our 70-cm-wide platform in relation to the 1-
m-wide passages into the house poses an additional chal-
lenge. Our system’s architecture is explained in terms of
the aforementioned mission.

Current approaches, which try to tackle this kind of chal-
lenge, use a laser scanner [5] or monocular vision [9]. The

processing in these approaches was done offboard. For the
vision system, artificial features had to be added to the indoor
environment. Our system will use the best odometry sensor
in a given situation. Systems have autonomously flown into
the house through the window and doors; however, no sys-
tem has yet flown the complete mission autonomously.

Software Framework
Our modular framework consists of intercommunicating
components, enabling the easy exchange of task-related
functionality and exchangeability of components. To
further define their scope, the system components are sub-
divided considering their degree of autonomy and cogni-
tive functionality, as depicted in Figure 2.

Concerning the level of autonomy, the system is structured
into low- and high-level components. The low-level compo-
nents are responsible for the data fusion and flight control of
the quadrotor. They allow for reliable autonomous flight and
navigation, shared through an abstract and unified interface
between humans and high-level components. As the stability
of the system depends on these components, a hard real-time
system with a high execution rate is required. The high-level
components provide situational awareness and mission plan-
ning functionality with a representation of the environment.
The status of the system, the mission, and the environment
are monitored, and commands are issued accordingly. They
take over tasks usually done by a human operator.

Furthermore, the components are grouped into percep-
tion, cognition, and action layers [10], [11] as depicted in
Figure 2. The perception layer includes all tasks concerning
acquisition and processing of sensor data. Therein, the data
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Figure 2. System architecture and software deployment of components. In addition to being organized into cognitive layers, the
system components are partitioned according to their autonomy level as well as cognitive functionality.

48 • IEEE ROBOTICS & AUTOMATION MAGAZINE • SEPTEMBER 2012



fusion component fuses the proprioceptive and exterocep-
tive sensor data. Mission-dependent recognition of world
features, such as persons or interesting objects, is done in
the recognition module. World representation, as well as
planning and decision-making functionalities, is realized in
the cognition layer. Lastly, the action layer is involved in sta-
bilizing and moving the UAV in the desired manner. Such
categorization allows for a clear definition of the interfaces
between components and the minimum required set of
component functionalities. The realization of this structure
in our experimental system can be presented more clearly
when grouped by the layer subdivision.

Perception
The UAV should be able to fly in structured indoor environ-
ments as well as outdoors. The indoor environments consist
of clearly defined vertical structures (walls) that can be
detected by a laser scanner. However, poor lighting conditions
and a low number of environment features make indoor envi-
ronments unsuitable for a camera-based odometry system.
Conversely, the outdoor environments lack clear structures.
Sunlit environments contain light in the part of the spectrum
that coincides with that used by infrared laser scanners, dis-
turbing the measurements. This makes low-powered light-
weight laser scanners, which are commonly employed on
flying systems, unsuitable for such environments. Outdoor
environments have many natural features and good lighting
conditions, which makes them well suited for visual odometry
systems. In such environments, previous camera images can be
easily recognized, so the camera can be used for loop closure.

In our approach, we use both laser and stereo odometry
for pose estimation. The combination of two odometry
approaches allows compensating drawbacks of a single sen-
sor. Moreover, the estimation of all six degrees of freedom
(6 DoF) states can be done using only one filter. This differs
from other approaches, where either laser odometry [6] or
monocular visual odometry [7] is used for pose estimation.

The stereo camera in our system points downward not
only to ensure that the odometry is available in outdoor areas
but also to enable detection of a target from above. Drift
errors can be compensated by using key frames in the visual
odometry system, as well as recognition of known landmarks
in a topological map. For the indoor exploration mission, the
map is fixed and predefined, as known landmarks include the
window, door, and chimney. Their exact position is known
with respect to the house, so they can be used to correct drift
errors. These are detected and tracked using front-facing and
upward-facing cameras (not shown in Figure 1), respectively.
Two separate cameras provide more stable tracking than a
pan-tilt unit with one camera of the same weight.

Odometry

Laser Odometry
The laser odometry system is based on Censi’s canonical
scan matcher [12]. The laser scan is projected to the ground

plane in the laser transform component, using attitude infor-
mation from the data fusion component (Figure 2). The pro-
jected data are only valid for scan matching if the scanned
environment objects contain vertical planes. This assump-
tion is valid for most indoor environments. The algorithm
uses an iterative closest point (ICP) variant to compute
three-dimensional (3-D) delta movement information
[change in (x, y) position and yaw angle] between two points
in time and the corresponding measurement covariance.

Visual Odometry
A correlation-based algorithm [13], [14] is used to obtain a
disparity image from two time-synchronized camera
images in the stereo-processing component. Based on this
3-D information, the six-dimensional delta position and
orientation between two points in time as well as the corre-
sponding measurement covariance are calculated [15]. The
algorithm supports a key frame buffer so that the delta
measurement refers not just to the last acquired image but
also to the image in the buffer that gives the delta measure-
ment with the smallest absolute covariance.

As shown in the “Experimental Results” section, the
estimated variances for laser and camera odometry are a
good indicator to classify the environment into indoor and
outdoor. In the variance calculation for each sensor, it is
assumed that there are no outliers in the measurement.
During the experiments, we have found that, under bad
sensor conditions, outliers in the measurements occurred.
These could not be detected by an outlier rejection mecha-
nism using Mahalanobis distance. Therefore, the measure-
ment variance is invalid. Fusing these measurements
would lead to unpredictable behavior of the filter. Because
of this, we switch to the sensor that works well in a specific
environment. We assume that the sensor with the smallest
measurement variance is best suited in the current envi-
ronment and is therefore used for fusion.

Data Fusion
The proprioceptive sensor information from the IMU and
the exteroceptive odometry information have to be fused
to get the current system state estimate. There are two
main challenges.

First, the odometry data give only relative position and
orientation information. Second, the odometry data are time
delayed because of measurement and data processing time.
Precise times of measurement are obtained through hard-
ware synchronization triggers. The total delay of the laser
odometry in the experimental system is about 100 ms with
an update frequency of 10 Hz, and for the visual odometry,
the delay is more than 300 ms, with a frequency of 3 Hz.
Therefore, the measurement refers to a state in the past. As
the estimate is used to control the UAV, and the quadrotor
dynamics are fast compared to the measurement delays, the
latter have to be considered in the data fusion algorithm.
This is realized using an indirect feedback Kalman filter with
state augmentation [16] using two state vectors.
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The direct state vector includes position, velocity, and
attitude (as quaternion) in the world frame and the biases
of the acceleration and gyro sensors in the body frame
2 R16. Quaternions are used to circumvent the gimbal lock
problem that might occur when using minimal attitude
representations. The direct state is calculated by the strap-
down algorithm.

The main filter state vector includes the errors in posi-
tion, velocity, and orientation in the world frame and the
IMU acceleration and gyro bias errors in the system body
frame 2 R15. Since we assume small errors in the filter, the
small angle approximation is employed to efficiently repre-
sent the attitude. Hence, the scalar part of the quaternion
can be omitted, as it is implicitly defined to one. This also
simplifies modeling of the attitude sensor noise. A hard-
ware synchronization signal of the laser and the camera
system signaling the start of a data acquisition sequence is
directly registered by the real-time system running the fil-
ter algorithm. At every synchronization trigger, a substate
including position and orientation of the current direct
state is saved and augmented to the main filter state. The
delayed delta measurement includes two time stamps for
each measurement. These time stamps are used to find the
corresponding states within the state vector and construct a
suitable measurement matrix referencing the selected states.

The absolute position and orientation of the system are
unobservable with only delta measurements, which are
reflected in an unbounded covariance for these states.
Therefore, further absolute measurements are included:
l The height to ground is measured by laser beams

reflected to the ground. Height jumps caused by objects
lying on the ground are detected and compensated.

l Measurement of the gravity vector is used as pseudoab-
solute measurement for roll and pitch.

l Measurements with respect to known landmarks, if
available, are used to correct position drift errors.

If absolute position measurements arrive only in the range
of minutes, there might be small jumps in the position esti-
mate. Nevertheless, these jumps do not cause jumps in the
velocity estimate as its covariance is bounded by the regular
delta position measurements. This is an important feature
for the underlying UAV controller, as jumps in the velocity
prediction can significantly degrade flight performance.

Recognition
Identifying and locating persons, animals, or objects (e.g.,
landmarks, signs, or a landing zone) is a central issue in
USAR missions. The conceptual idea behind the recogni-
tion module is to offer related object detection and recog-
nition services. The module acts as an interface between
the mission planner, environment (cognition), and the
sensors. Triggered by the mission planner, it interprets
sensory information and returns semantic and location
information, respectively. The recognition module sup-
ports absolute localization in the sense that it detects
known objects and estimates their relative positions and

heading with respect to the UAV frame. It leverages typical
object recognition techniques in computer vision and 3-D
point-cloud processing. Three demonstrator recognizers
are currently implemented: a pattern recognizer for two-
dimensional images, a house detector based on stereo
vision, and a laser object detector.

The pattern recognizer is typically used when searching
a marked landing zone. The pattern is a gray-value image
or drawing of the landing zone. Together with a descrip-
tion of its size, the pattern matcher checks for similar
occurrences in camera images in a more efficient way than
a common template matching approach. The first steps try
to reduce the problem size by segmenting the image data.
A corner detector is applied to the template image to
obtain interesting points. Small patches are then generated
around these points and stored in a database. A simple
operation to calculate a descriptor of the patches based on
orientation histograms is used [17]. Subsequently, the
descriptors are compared pairwise using normalized cross-
correlation, sorted in an arbitrary number of classes, and a
Bayes classifier is learned. This results in a sequence of
descriptors, which in turn define the pattern.

Specifically for the IMAV challenge, we have developed
a house detector and laser object detector. The house
detector uses disparity images. It is used to detect the house
from above, since the cameras are pointing downward. A
combination of principal component analysis and an algo-
rithm similar to the ICP algorithm is used to fit the shape
of a model of the house into the point cloud. In addition,
parts of the house (e.g., chimney) are identified in a
monocular image of the stereo pair and fused with results
of the point cloud fitting. The laser object detector is able
to detect corners in a room, walls, and windows.

Action
The controller component implements a position control-
ler running at 100 Hz on the real-time system. Control
inputs are attitude commands that are sent to the autopi-
lot, which implements a PD attitude controller in a 1-kHz
control loop. The purpose of the position controller is to
follow a reference position, velocity, and acceleration,
using the data fusion’s pose estimate. The position control-
ler is a full-state feedback controller that uses a combina-
tion of integral sliding mode [18] and time-delay
disturbance estimation [19]. The integral action provides a
zero steady-state error, whereas the disturbance estimator
uses accelerometer measurements and previous control
inputs to respond to disturbances faster. This combination
provides sufficient robustness to fly in indoor and outdoor
environments and through narrow passages.

In-flight switching and configuration of position con-
troller implementations simplify their testing. The position
between two waypoints is interpolated as a straight line in
Cartesian space using a constant velocity. This interpolated
position is run through a linear filter that represents the
quadrotor’s translational dynamics to generate smooth
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reference trajectories. Using this
method, it is easy to configure the
transient behavior of the vehicle’s
position by setting the interpolation
velocity and filter parameters. Such
configurations are stored as flight
modes (e.g., fast, careful, accurate by
decreasing velocity). A unified inter-
face allows flight modes to be set
for each path segment individually.
High-level components can set the
flight mode according to the current
mission task.

A state machine in the low-level
system is implemented in the con-
troller as depicted in Figure 3 and
defines the activation of compo-
nents based on the readiness level of
the system, as summarized in Table 1.
It signals the availability of low-level
abilities to high-level components.
The system starts in the preparation
state, during which data fusion and position control are
disabled, so the quadrotor can be moved freely to a starting
position. This is useful for initialization of the system
before a mission, as the movement will not affect the state
estimate. It is assumed that the quadrotor is stationary in
the powered off state, so the data fusion is initialized and
state estimation starts. Upon engaging the motors, the sys-
tem is in the powered on state and the sensor data fusion
assumes that the quadrotor is moving. The initial state
therein is landed, which assumes that the quadrotor is
still on the ground. The take-off command activates the
position control feedback loop, while commanding
the quadrotor to hover at a predefined height above the
starting location. During the ascend, the system is in the
transitional taking off state, which can be canceled with the
land command. Once the hover point is reached with
defined accuracy, the system is automatically transitioned
into the nominal fault-free flying state, and paths can only
be flown in this state. Landing occurs through the transi-
tional landing state analogously to taking off. The transi-
tional states ensure that corresponding physical changes
have been safely completed before allowing any other
actions to be taken. This abstraction greatly simplifies
experiments, since components are activated and initial-
ized as needed.

To ensure a fall-back strategy in case of fatal errors during
flight, a fail-safe state is implemented in which the system
performs an emergency landing routine. For example, the
system enters this state automatically if a data fusion diver-
gence has been detected. This shall protect the system and
minimize the possibility of harm to humans or to the plat-
form itself. In such an event, fused data are not used for posi-
tion control—instead, only the raw altitude measurement
from the laser scanner is used for descending, while the

vertical velocity is obtained by using an a–b filter of the
measured altitude. Altitude stabilization is active through the
autopilot and does not depend on the fusion information. In
this state, the quadrotor’s horizontal position will drift, but
more importantly, the quadrotor will not crash to the ground,
and it is easier for a safety pilot to take over. This method of
descent is safer than simply reducing the thrust or turning
the motors off. It has proven to be useful during experiments
and when testing new components.

Cognition
Completely autonomous execution of USAR missions
requires interpretation of the robot’s environment and the
performing of actions accordingly. To achieve that, the
robot requires a representation of the world, as well as path-
planning and decision-making capability. In our frame-
work, these are implemented in the cognition layer. Its
modularity allows for implementation of different algo-
rithms through the use of the available interfaces and choos-
ing the combination best suited for a particular mission.

Preparation Powered Off

Landing

LandedEmergency Landing

Taking Off

Flying

Powered On

Entry Point Done
Prepare

Engage Motors

Take Off
Land

Finished

Land

Finished

Finished Disengage Motors

Exception

Exception

Exception

Figure 3. Low-level state machine implemented in the controller component.

•
Table 1. Activation of system components
depending on low-level system state.

System State Fusion Control Waypoints

Preparation — — —

Powered off � — —

Landed � — —

Taking off � � —

Flying � � �
Landing � � —

Emergency landing — � —
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For the exploration challenge, the current implementa-
tion of the environment component contains a world
model and objects therein as a topological map. If a known
object is detected with a high confidence by the recognition
component, drift errors can be corrected by sending the
relative location of the object to the data fusion. The mis-
sion control component provides autonomous mission
execution through a hierarchical state machine composed
of tasks. The abilities are atomic states of each task, and
they represent basic functionalities or actions provided by
other system components and can be invoked with
parameters.

For example, the FlyTo ability invokes the path plan-
ning component, which uses environment information to
find a list of waypoints from the current position to the
desired topological pose while avoiding obstacles and
dangerous zones. Together with the specified flight mode,
the determined path is then sent to the controller for exe-
cution, i.e., the plan is static while the ability is active. Once
the last waypoint is reached with sufficient accuracy, a
transition is triggered.

We will illustrate this by the leave
house by window task, depicted in
Figure 4. The quadrotor first flies to
a window position that is stored in a
map. Once this position is reached, a
window detector tries to determine
the window position more precisely
using vision and thereafter slowly
approaches it. If successful, the UAV
flies to the determined position.

At this point, the visual servoing
starts. The position determined by
the window tracker is continuously
sent to the controller. The UAV
slowly flies through the window
midpoint while the window is visi-
ble. Once the other side of the win-
dow is reached, the task is finished.
Window detection and tracking
services are provided by the recogni-
tion module. If the window cannot
be detected precisely, the FindPosi-
tionIndoor fall-back task is invoked.
This determines the quadrotor posi-
tion in relation to the house. In the
case of too many detection or track-
ing failures, the task exits to a fall-
back task, like leaving the house
through the door.

Hardware and Infrastructure
Because of high payload capacity,
the Ascending Technologies Pelican
quadrotor was chosen as the flight
platform, which is shown in Figure 1.

With a total weight of 2.05 kg, our system hovers at
approximately 70% of the quadrotor’s maximum thrust,
leaving a control reserve that is only sufficient for relatively
slow maneuvers. Maximum flight time is approximately 10
min with one accumulator. The used hardware compo-
nents are listed in Table 2. The most notable difference to
similar systems is the time-synchronized modular compu-
tation stack, connected through Ethernet.

A Hokuyo UTM-30LX laser scanner and PointGrey
Firefly cameras are used as exteroceptive sensors via USB,
connected to different computers to parallelize the data
acquisition process.

The onboard computational hardware consists of one
CoreExpress Atom board, three Gumstix Overo Tide
boards, and an Ethernet switch, as shown in Figure 5. The
atom board is used for stereo processing because of
high computational requirements. Image processing and
cognition tasks are executed on dedicated Gumstix boards.
If more computational power is required, computers
can be added to the system without changes in the
system architecture.

environment = indoor,
position = known

entry point

FlyTo: windowExitPosition, accurate

Detect: window

FlyTo: windowExitPosition, accurate

Track: window

FlyTo: windowTrackingPosition, careful

FindPositionIndoor
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Figure 4. Example of a mission control task–leave house by window. The task is a state
machine composed of atomic states called abilities. Tasks are fixed and mission specific.
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The time-critical strapdown, data fusion, and control
tasks run on the real-time system. It is an Ubuntu Linux
with an RT-patched kernel and is connected to the autopi-
lot, which also provides the IMU. A high IMU poll rate is
required for the strapdown algorithm; therefore, I2C com-
munication with the autopilot runs at 400 kHz. The result-
ing bandwidth allows IMU data polling at 200 Hz and
attitude command sending from the position controller at
100 Hz. All remaining Gumstix computers are running
latency-tolerant high-level tasks such as image processing
andmission control on an Ubuntu Linux operating system.

An eight-port fast-Ethernet switch is used for high-
bandwidth onboard communication between the comput-
ing hardware, shown in Figure 6. Ethernet has been chosen
because of well-established standard protocols, low-latency
communication, and readily available middleware.
Screwable GIGCON connectors provide vibration-resist-
ant connections of the Ethernet cables. An external data
connection to the system is possible through wired Ether-
net, WLAN, XBee modem, and USB. WLAN is made
possible through a tiny USB stick connected to the Atom
computer with a maximum bandwidth of 150 Mb/s. The
Ubuntu Linux on the Atom processor runs a software
bridge where incoming connections from WLAN are
routed to the internal onboard network. A slower and
more reliable connection is provided by the XBee modem
connected to a serial port of the Atom computer.
Lastly, each of the Gumstix computers provides a serial
terminal interface over USB, used only when the system is
not flying.

The distributed approach of splitting tasks amongmulti-
ple computers requires a suitable middleware to enable
communication between them. Our software framework
poses the following requirements: scalability and support
for distributed nodes; clock synchronization; flexible data
formats and API; small footprint (usable for embedded sys-
tems); suitability for robotic applications and software. As a
result of the evaluation of different
frameworks and middleware, robot
operating system (ROS) was chosen
as most suitable, although it lacks
clock synchronization and real-time
communication because of its design.

All real-time critical tasks run as
threads in a single process (nodelet),
so they communicate through
shared memory. A good example is
the data flow from IMU to data
fusion to controller to autopilot as
can be seen in Figure 2. This zero
copy transport approach is also used
to reduce communication overhead
where large amounts of sensor data
are shared among software modules.

An open-source implementation
of PTPd2 (precision time protocol

daemon) is used for time synchronization between the
computers. Low data bandwidth and a synchronization
rate of 4 Hz are sufficient to maintain an average deviation
of system clocks well below 500 ls. The Atom board serves
as master clock, and all other computers are configured as
slave clocks. On all computers the PTPd daemon runs with
a high real-time priority to keep operating system schedul-
ing latency as short as possible.

Deployment of compiled nodes and configuration files
is done from external development computers using an
enhanced ROS build workflow, which invokes rsync
program for fast data synchronization to the research plat-
form over Ethernet or WLAN. ROS launch files are used to
run and configure nodes across all computers with only
one command.

Atom

Gumstix RTLinux

Gumstix Linux 1

Gumstix Linux 2

Laser

Cam L

Cam R

Autopilot

Cam Up

Cam Front

Switch

WLAN XBee

eth

eth

eth

eth

USB UART

sync

I 2C

USB

USB

USB

USB

USB

Figure 5. Onboard distributed computation architecture and sensor communication.
sync: synchronization; eth: Ethernet.

•
Table 2. Hardware components of the
experimental system.

Component Hardware

Quadrotor AscTec Pelican

Atom board 1.6 GHz Intel Atom, 1 GB
DDR2

Gumstix boards ARM Cortex-A8, 720 MHz,
512 MB RAM

IMU, accelerometer Memsic MXR9500M

IMU, gyroscope Analog Devices ADXRS610

Laser Hokuyo UTM-30LX, 30m,
270� scanning range

Cameras PointGrey Firefly FMVU-
03MTM/C-CS

XBee XBee 2.4GHz radio modem

WLAN Lightweight USB module,
max 150 Mb/s

Switch 100 Mb, eight port switch
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Experimental Results
A flight experiment was conducted to show the effectiveness
of using two sensing paradigms. Figure 7 shows the esti-
mated path flown inside and outside the experimental facil-
ity (depicted in Figure 8). Figure 9 shows the reference and
estimated system states as well as absolute covariances of
the two odometries. Time instants when the system switches
between visual and laser odometry are marked on the time
axis. Because of practical difficulties in outdoor measure-
ments, no ground truth is provided. A rectangular path
around the house was chosen because it was clear of ground
obstacles. The quadrotor has been yawing during the flight
so that the laser scan points toward the house.

The quadrotor starts inside the house using laser
odometry. Visual odometry is not available because
the cameras are too close to the ground, and so there is
not enough overlapping in the images. At 7.5 s, during
autonomous take-off, when the quadrotor is at 68 cm
altitude, the depth image becomes available, and
the covariance of the visual odometry becomes smaller

than that of laser odometry. There-
fore, the system switches to visual
odometry.

Shortly afterward, the system is
commanded to fly outside. At 21 s,
visual odometry becomes unavailable
as indicated on the out-of-axis covari-
ance in Figure 9. This is caused at first
by motion blur when the quadrotor
starts moving in the weak lighting con-
ditions in the house. The system auto-
matically switches to laser odometry.
During flight through the 1-m-wide
window, a jump in the raw laser height

measurement can be seen due to flying above the 20-cm-wide
wall. The jump is detected by the data fusion and a constant alti-
tude is kept. The vertical velocity is also unaffected, so the vehicle
passes smoothly through the window. The visual odometry is
still unavailable as the window pane is too close to the cameras.

When the quadrotor is outside, the cameras need to
adjust their exposure time, so visual odometry is again
available at approximately 1 m behind the window. It is
clearly visible that the covariance of the laser odometry
outdoors is very large compared to indoors, due to less
valid laser measurements. Therefore, only visual odometry
is used for the outdoor flight.

During autonomous landing, the disparity image
becomes unavailable under 60 cm of altitude. This is indi-
cated by the high covariance of the visual odometry, and
the system switches to laser odometry.

The reference velocity and position are tracked accord-
ing to the estimated values. The position control error with
respect to the estimated states is under 20 cm in both
indoor and outdoor environments.

(a) (b)

Figure 6. Details of avionics hardware components. (a) Modular computation stack.
(b) An eight-port fast Ethernet switch.
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Figure 7. Flown path estimated in the experiment. The dashed red line shows the reference trajectory, while the solid line shows the
estimated path. The house outline is shown in gray. Locations where switching between visual and laser odometry occurs are also
indicated. (a) Estimated flown path in the horizontal (x, y) plane. (b) Three-dimensional view of the desired and estimated position
(x, y, z) of the quadrotor during the experiment.
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Conclusion and Future Work
We introduced a modular and extensible software and hard-
ware framework for the autonomous execution of USAR
missions using aerial robots. An implementation of the
framework on an experimental quadrotor system has been
presented. The implemented computation and communica-
tion hardware enables the simultaneous execution of several
computationally demanding tasks, including navigation and
computer vision. Furthermore, the hardware can be easily
expanded to provide more on-board computation power if
required. Our data fusion enables the seamless use of differ-
ent sensing paradigms with delayed information on a highly
dynamic quadrotor vehicle. Its effectiveness is shown by an
autonomous flight from an indoor to an outdoor environ-
ment through a 1-m-wide window, motivated by an explo-
ration mission to enter and leave a building.

Currently, the system cannot automatically avoid
obstacles. Therefore, reactive collision avoidance schemes
will be implemented on the low-level system. This requires
further development of object recognition and scene inter-
pretation on resource-limited systems. As resources are
limited, merely a subset of tasks can be fulfilled; therefore,
we will focus on the elaboration of these tasks.

Our future work also includes miniaturization of the
system, mainly through weight reduction of the sensing
equipment. For this reason, using other sensors such as
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Figure 9. Flight from inside the house out through the window, located at x ¼ �2 m. (a) The reference position (xd ; yd ; zd),
estimated position (x̂; ŷ; ẑ), and raw laser height measurement (zm). (b) The reference velocity _xd ; _yd ; _zd and estimated velocity ( _̂x; _̂y; _̂z).
(c) The magnitude of laser and visual odometry covariances. Also shown on the time axis are indicators when the system has switched
to visual (V) or laser (L) odometry. The covariance plot goes out of scope when a particular odometry is unavailable or too imprecise.

Figure 8. The house used for the experiments, located the DLR
outdoor testbed for mobile robots. It corresponds in shape and
dimensions to the house used for the IMAV exploration
challenge. Provided are both an indoor environment, suitable for
navigation using a laser scanner, and an outdoor environment,
which is suitable for vision-based navigation.
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omnidirectional cameras and sonar will be investigated.
Instead of stereo cameras, the Microsoft Kinect is also a
viable sensor for obtaining depth images. However,
because it uses artificial infrared lighting, it is only suitable
for indoor applications.

In USAR missions, it might be necessary to fly to globally
defined positions. This capability will be achieved by inte-
grating GPS into the data fusion. We will also address the
cooperation with multiple mobile and ground robots, as well
as human interfaces to a team of robots. Currently, our
fusion system is based on local navigation, yet the navigation
will be improved by having higher level position informa-
tion, e.g., by using a topological map. In this way, the system
is enabled to navigate through large environments on a
strongly hardware-limited system. Supplementary informa-
tion about the DLRmulticopters can be found online [20].
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