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Advances in Probabilistic Modeling: 
Applications of Stochastic Geometry

By Martin Adams, Ba-Ngu Vo, and Ronald Mahler

Stochastic geometry is an 
established branch of 
mathematics that studies 
uncertainty in geometric 

structures [1], [2] and is, there-
fore, a befitting framework for 
autonomous robotic mapping 
and the well-known simultane-
ous localization and mapping 
(SLAM) problem, where the fun-
damental concern is succinctly 
captured in the title of the 1988 
seminal paper by Hugh Durrant-
Whyte, “Uncertain Geometry in 
Robotics” [3]. The theory of ran-
dom sets has long been used by statisti-
cians in many diverse applications, 
including agriculture, geology, and epi-
demiology [1], [2], [4]–[6]. In addition, 
there has been substantial work by 
probabilists and statisticians in point 
process filtering, such as those by Singh 
et al. [7] and Caron et al. [8]. Applica-
tions of this are random point pattern 
methods for multiple object recognition 
in image analysis [9], [10], and recent 
work based on random set analysis by 
Vo et al. [11], which laid the founda-
tions for set-based multiobject visual 
tracking by Hoseinnezhad et al. [12], 
[13]. The application of random sets in 
multitarget tracking has led to the de-
velopment of finite set statistics (FISST), 
which provides the basis for novel fil-
ters, such as the probability hypothesis 
density (PHD) filter [14]–[16] and the 
cardinalized (C)-PHD filter [17], which 
recently attracted considerable research 

interest as well as deployment in com-
mercial applications.

As noted in the field of multitarget 
filtering by Mahler [17, p. 571]:

Having a good estimate of target 
number is half the battle in multi-
target tracking. If one has 1,000 
measurements but we know that 
roughly 900 of them are false 
alarms, then the problem of de-
tecting the actual targets has been 
greatly simplified.
The articles in this special issue advo-

cate that the same principle applies to 
feature detection and autonomous map-
ping in robotics, where, instead of refer-
ring to the problem of target estimation, 
the problem of map feature or environ-
mental object estimation are of concern. 
From here on, map features, targets, and 
environmental objects of interest will 
simply be referred to as “features.” In the 
case of robotic mapping and SLAM, re-
alistic feature detection algorithms pro-
duce false alarms and missed detections, 
and estimating the true number of map 

features is, therefore, central to 
these problems.

A philosophy often encoun-
tered within the SLAM commu-
nity is that the number of 
estimated map features is not im-
portant in SLAM, provided that 
enough are estimated to provide 
successful robot location esti-
mates. In response to this, the 
reader is referred to Figure 1, in 
which a human driver has clearly 
not estimated the correct num-
ber of objects within his/her  
environment. Unfortunate acci-

dents aside, failing to correctly esti-
mate the true number of objects or 
features that have passed through the 
field(s) of view of a vehicle’s sensor(s) 
can only be detrimental to the location 
estimation performance of any SLAM 
algorithm. This special issue, therefore, 
addresses the concept of Bayes opti-
mality for estimation with an un-
known feature number by formulating 
autonomous mapping, SLAM, and 
general tracking algorithms as random 
finite set (RFS) estimation problems.

An RFS is simply a finite-set-valued 
random variable. Similar to random 
vectors, the probability density (if it ex-
ists) is a very useful descriptor of an 
RFS, especially in filtering and estima-
tion. However, the space of finite sets 
does not inherit the usual Euclidean no-
tion of integration and density. Hence, 
the standard tools for random vectors 
are not appropriate for random finite 
sets. Mahler’s FISSTs provide practical 
mathematical tools and principled ap-
proximations for dealing with RFSs 
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Figure 1. The importance of object number estimation 
in navigation tasks.
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[14], [18] based on a notion of integra-
tion and density that is consistent with 
point process theory [19]. Therefore, 
what are the advances in the applica-
tions of stochastic geometry advocated 
in this special issue? In contrast to the 
state-of-the-art vector- based imple-
mentations of Bayesian filters, which re-
quire separate filters/routines to manage 
and associate measurements to features, 
the use of RFSs unifies the independent 
filters adopted by previous solutions 
through the recursive propagation of a 
distribution of an RFS of features. This 
allows the joint propagation of the esti-
mated feature density to take place and, 
in the case of SLAM, leads to optimal 
map estimates in the presence of un-
known map size, spurious measure-
ments, feature detection, and data 
association uncertainty. The proposed 
framework further allows for the joint 
treatment of error in feature number 
and location estimates as it jointly prop-
agates both the estimate of the number 
of features and their corresponding 
states and, consequently, eliminates the 
need for feature management and asso-
ciation algorithms.

Summary of Random Set-Based 
Implementations in Robotics
Mullane et al. [14] first applied the ran-
dom set concept to the SLAM problem, 
in which a first-order random set statis-
tic—the PHD—was used, from which 
the joint vehicle and feature-based map 
estimates could be extracted. Referred to 
as a brute force approach, it demonstrat-
ed a viable RFS-based SLAM solution. 
For environments with a significant 
number of features, it is, however, com-
putationally intractable. Therefore, a 
more elegant and computationally trac-
table RFS solution, based on Rao–Black-
wellization, was published in 2010 and 
further elaborated on in 2011, in which 
the CPHD and multitarget multi-Ber-
noulli SLAM filtering concepts were 
presented [21]–[23]. A simplified ver-
sion of these publications comprises the 
first article of this special issue.

Lee et al. [24] addressed the SLAM 
problem with a single cluster (SC) PHD 
filter, which also utilized Rao–Black-
wellization but generated a measure-

ment likelihood function for trajectory 
weighting in a different manner. An ex-
tension of this article, applied to under-
water SLAM, is the focus of the second 
article in this special issue. Also in 2012, 
Moratuwage et al. [25] extended the 
RFS concept to multivehicle SLAM, 
providing demonstrations with two ve-
hicles that collaborate to estimate a 
global map based on PHD filtering 
along with their own trajectories. An 
extension of this work comprises the 
fourth article in this special issue. Final-
ly, also in 2012, Adams et al. [26] dem-
onstrated constant false alarm rate and 
scan integration feature detection tech-
niques to provide principled detection 
statistics for a short-range radar in a 
Rao–Blackwellized PHD filter SLAM 
framework. To complement the multi-
ple publications on the applications of 
FISST to robotic-based problems, the 
first international workshop on stochas-
tic geometry in SLAM was held at the 
2012 IEEE International Conference on 
Robotics and Automation (ICRA 2012), 
in Minneapolis St. Paul, Minnesota. 
This full-day workshop was opened by 
the founder of FISST, Ronald Mahler, 
who presented the foundations behind 
many of the FISST-based filtering con-
cepts. It also provided a forum for vari-
ous FISST-based robotic mapping, 
navigation, and control presentations, 
some of which are extended in this spe-
cial issue. During this workshop, many 
of the presenters and members of the 
audience indicated the importance of 
publicizing the recent advances in the 
application of stochastic geometry to 
robotic problems, which has instantiat-
ed this special issue.

Overview of the Special Issue
The first of the six articles in this special 
issue, “SLAM Gets a PHD,” focuses on a 
SLAM implementation that uses the 
most basic Bayesian set-based estima-
tor—the PHD filter. The article first 
demonstrates the random nature of de-
tections in sensing modalities as diverse 
as radar, laser range finders, and vision. 
The information, referred to as features, 
provided by any feature detection algo-
rithm and based on any sensing type, is 
prone to randomness both in the quan-

tity of the detected features and their at-
tributes, such as range and bearing, or 
image-based quantities, such as contrast 
levels. It shows that realistic measure-
ment uncertainty comprises detection 
uncertainty in the form of false alarms 
and missed features as well as the usual-
ly considered spatial (e.g., range and 
bearing) uncertainty. The ability to ac-
count for all of these in a joint manner 
provides the motivation for remodeling 
the SLAM problem as a set- rather than 
a vector-based framework. The con-
cepts of RFSs are introduced, and the 
implementation of the PHD filter, in the 
form of manipulating sums of Gauss-
ians, is demonstrated through the use of 
simple block diagrams. A marine envi-
ronment, in which an autonomous 
kayak estimates the number and loca-
tion of objects on the sea surface as well 
as its own trajectory, provides the com-
plex setting for SLAM trials. These are 
based on the presented sum of the 
Gaussians PHD SLAM algorithm, with 
performance comparisons being made 
with state-of-the-art multiple-hypothe-
sis (MH) FastSLAM.

The SLAM problem is treated as an 
SC process in the second article titled 
“SLAM with SC-PHD Filters.” Here, 
SLAM is defined as a particular type of 
cluster process in which the configura-
tion of the map features is a daughter 
process conditioned on the state of the 
vehicle, which is represented as a single 
parent process. The SC-PHD filter ap-
proach can be separated into a parent 
and a conditional daughter term, allow-
ing a hybrid particle filter and Gaussian 
mixture approach to be used for SLAM 
in a manner similar to that proposed in 
the first article. However, in contrast to 
the first article, an SC process, rather than 
a Poisson process, is assumed on the 
prior map feature cardinality distribu-
tion. An implementation of the concept 
is demonstrated on an underwater robot-
ic vehicle, the Girona 500, which utilizes 
stereo imagery and a speeded-up robust 
feature (SURF) detector to detect key 
points in images for underwater SLAM.

The third article, “Playing Fetch with 
Your Robot,” is based on a Segway ro-
botic platform and again uses vision for 
the detection of an unknown number of 
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objects, this time based on shape and 
color matching. These are scattered 
about an environment for the robot to 
locate, collect, and return to the user. 
This work uses a grid with cells contain-
ing occupancy probability values. An 
RFS is used to represent a set of labels of 
occupied cells together with a further 
set, which contains every combination 
of the RFSs from zero to the maximum 
number of objects that can be tracked. 
In contrast to the first two articles, a 
Bayesian filter iterates over the distribu-
tion of the RFSs to estimate the varying 
number of object locations. This infor-
mation is then used to automatically in-
struct the robot to move to maximize its 
immediate information gain—a tech-
nique referred to as information surfing. 
The robot is controlled to move in the 
maximum gradient of mutual informa-
tion between the sensor readings and 
the cell-based object position estimates 
based on a quantity known as the Rényi 

divergence. This moves the robot and 
the camera’s field of view into the direc-
tion of objects to be fetched.

The focus of the fourth article, “RFS 
Collaborative Multivehicle SLAM,” is 
collaborative multivehicle (CM) SLAM 
under an RFS framework. Formulated 
for two vehicles, which collaborate to 
build a single global map and estimates 
of both trajectories, this article intro-
duces the concept of the general multi-
sensor PHD update. This update 
requires the union of the set-based 
measurements from each vehicle to be 
partitioned into binary subsets. The ar-
ticle highlights the computational prob-
lem that results in the case of many 
robots, since all possible combinations 
of these subsets would be necessary to 
form the Bayes optimal CM-SLAM 
measurement update. To test the con-
cepts with two robots, simulations 
demonstrate the robustness of the RFS-
based solution under varying degrees 

of clutter (false alarms). In a real exper-
iment, a parking lot with moving peo-
ple provides the scene for the dynamic 
environment where the proposed RFS 
based multivehicle SLAM solution is 
compared against a state-of-the-art 
CM-SLAM solution that depends on 
external feature association and man-
agement routines.

The fifth article titled “Group Map-
ping,” again addresses multirobot ap-
plications and focuses on grid-based 
map fusion. Occupancy grid maps 
from multiple vehicles are merged 
without prior knowledge of their rela-
tive transformations. This is achieved 
through graph matching, in which the 
graph is a topological representation 
of the map, and is based on a general-
ized Voronoi diagram (GVD). Re-
ferred to as map fusion, the approach 
demonstrated in this article exploits 
the uniqueness of GVDs to combine 
large maps. The confidence values  
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associated with certain areas of each 
robot’s map is further encoded into 
the topological structure by building a 
probabilistic (P)GVD. Map matching 
takes place via a two-dimensional cor-
relation to match laser range finder-
based edges. The probabilistic nature 
of the PGVDs allows areas of the maps 
with higher certainty to be preferen-
tially matched. This technique is veri-
fied through four experiments: the 
first is based on a publicly available 
data set; the second is based on two 
real indoor vehicles communicating 
map information between them; the 
third is based on three vehicles operat-
ing in a larger indoor environment; 
and the fourth is based on a simulated, 
highly cluttered environment.

The estimation of the location and 
number of objects/features that can 
each generate multiple sensor detec-
tions due to their large size and/or oc-
clusions is the subject of the final article 
“Random Set Methods.” This article 
demonstrates how the assumptions of 
the earlier articles, in which single ob-
jects are assumed to yield single detec-
tions, can be relaxed, allowing for 
multiple detections per object. This 
scenario naturally lends itself to the 
RFS concept since a subset of all of the 
detections can now result from each 
object. This, in turn, requires a parti-
tioning of the full set of detections into 
subsets, the union of which comprises 
the full detection set. During the PHD 
filter measurement update, each parti-
tion requires a likelihood correspond-
ing to how probable that group of 
measurements stems from a single ob-
ject. There are many ways in which 
such partitions can be formed, all of 
which should be theoretically consid-
ered for Bayes optimality. This article 
provides algorithms for limiting the 
number of partitions to computational-
ly manageable levels without sacrificing 
estimation performance. By consider-
ing different alternatives for the mea-
surement model, based, for example, 
on assumed geometric extended object 
shapes, a multiobject tracking PHD fil-
ter implementation is demonstrated. 
The experimental results demonstrate 
the ability of the filter to estimate the 

quantity and location of an unknown 
number of pedestrians based on laser 
range finder data, even when pedestri-
ans occlude each other. This article 
models the probability of detection as 
nonhomogeneous in the sensor sur-
veillance region based on object loca-
tion estimates, yielding good estimates 
of pedestrian numbers even when they 
are completely occluded.

Looking Forward
Stochastic geometry has been applied 
in diverse engineering fields for many 
decades, but only in the last decade 
have the tools of FISST become avail-
able for set-based estimation applica-
tions. This special issue is largely a 
collection of robotic applications based 
on these recently formulated tools. 
Within the field of robotics, many ave-
nues exist for further research based on 
FISST. These include improved sensor 
models that take into account object 
occlusions; generalized mapping con-
cepts, such as semantic maps; and ac-
tive navigation, in which vehicles are 
autonomously commanded to maxi-
mize their information gain. We hope 
that this special issue provides motiva-
tion for further advances in the use of 
stochastic geometry in SLAM and gen-
eral robotics applications.
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