
JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 1

Model-driven Software Engineering in Robotics
Davide Brugali∗ ∗School of Engineering, Universita’ Degli Studi di Bergamo, Dalmine, 24044 Italy

I. INTRODUCTION

A model is an abstract representation of a real system or
phenomenon [1]. The idea of a model is to capture important
properties of reality and to neglect irrelevant details. Which
properties are relevant and which can be neglected depends
on the purpose of creating a model. A model can make a par-
ticular system or phenomenon easier to understand, quantify,
visualize, simulate, or predict.

Models and modeling are an essential part of every engi-
neering endeavor. Using models to design complex systems
(an edifice, an airplaine, a production plant) reduces the risk
of making costly errors before undertaking the effort of its
realization: models help us understand the various aspects of
a complex problem and evaluate alternative solutions.

Two models of the same system or phenomenon may be
essentially different depending on the properties they aim to
capture. Specialized models are needed to visualize a bridge’s
structure or to evaluate an aircraft aerodynamic. Models might
have different forms: graphical (i.e. the architecture of a
building) or textual (i.e. the differential equations describing
the effects of an earthquake on buildings)

Models are created by using modeling languages, i.e. ar-
tificial languages that defines symbols, keywords, and their
semantic and syntactic rules. Mathematics, statistics, and logic
are typical scientific and engineering modeling languages.
Domain-specific languages (DSL), have been defined for a
variety of technological domains, such as electrical circuits
(i.e. the topological description language) [2], physical dy-
namic systems (i.e. the bond graph representation) [3], and
manufacturing control (i.e. function blocks diagram) [4].

Software systems, which are often among the most complex
engineering systems, can benefit greatly from using models
and modeling techniques [5]. This is because a software
model and the software system of which the model is an
abstraction have the same nature. The transition from design
to implementation is a sequence of refinement steps without
semantic gaps. Backtracking is simple since there is no metal
to bend and there are no circuits to solder.

The term Model-Driven Engineering (MDE) [6] is typically
used to describe software development approaches in which
abstract models of software systems are created and systemat-
ically transformed to concrete implementations. A key premise
behind MDE is that software models do not serve merely the
purpose of documentation but that they enable (a) automatic
assessment of system-level quality aspects, such as safety,
correctness, and performance, way before any implementation,
and (b) automatic generation of source code and system
configuration parameters.

Manuscript received December 1, 2012; revised December 27, 2012.
Corresponding author: D. Brugali (email: brugali@unibg.it).

During recent years, several approaches have been proposed
in the literature that exploit MDE technologies in robotic
software development. Most of these approaches use standard
and general-purpose software modeling languages (e.g. UML
[7]). Other approaches are based on robotic-specific languages.
The aim of this tutorial is not to survey all of them, but
to analyze the role and use of MDE technologies in robotic
software engineering.

This tutorial is structured around three major phases of the
software development process, namely architecture design and
analysis (Section II), system implementation and integration
(Section III), and system configuration (Section IV). Section
V draws the relevant conclusions. The following subsection
illustrates peculiar characteristics of software systems for
autonomous robots.

A. Software Control Systems for Autonomous Robots
Autonomous robots are versatile machines equipped with

a rich set of software functionalities, typically deployed on
a distributed computing infrastructure with stringent resource
constraints, for interacting purposefully and in real-time with
an open-ended environment through sensors and actuators.

The use of models and modeling languages can have a high
impact on the product life cycle of robotic software systems,
mostly because they can embed the knowledge of experts in
multiple scientific and technological domains (e.g. mechanics,
control, cognitive sciences) and support the automatic transi-
tion from the problem space (the robotic requirements) to the
solution space (the software implementation).

1) Real-Time Embedded Software Systems: A robot control
application is an embedded software system that is specialized
for the particular hardware it runs on and has time and
memory constraints. Generally, for an embedded system, we
are interested in modeling the interaction of the system with
the surrounding environment. This interaction is characterized
by the real-time execution of control activities that should
react timely to sensory stimuli and produce commands to
the actuators. Typically, in any large-scale embedded system,
several control activities are executed concurrently on the
same computational unit or on a distributed networked system.
Concurrency implies communication among control activities,
which exchange data and events, and requires careful design
of their interleaving and synchronization in order to avoid
anomalous behaviors.

2) Distributed Software Systems: The computational hard-
ware of an autonomous robot is interfaced to a multitude of
sensors and actuators, and has severe constraints on compu-
tational resources, storage, and power. Computational perfor-
mance is a major requirement since autonomous robots process
large volumes of sensory information and have to react in a
timely fashion to events occurring in the human environment.



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 2

In order to meet these highly demanding requirements,
the computing infrastructures of advanced autonomous robots
have evolved from single processor systems to networks of
general purpose computers, microcontrollers, smart networked
sensors and actuators, introducing great flexibility in robot ca-
pabilities construction but, at the same time, making software
development more challenging.

Contextually, a variety of software frameworks have been
specifically designed for simplifying the implementation of
robot control systems (see [8] for a survey). They offer mech-
anisms for real-time execution, synchronous and asynchronous
communication, data flow and control flow management.
These frameworks are supported by MDE toolchains that
enables the sami-automatic transition from high-level design
of the system functionalities to their actual implementation
and deployment on top of specific runtime infrastructures.

3) Rich functionalities: Differently from other embedded
systems (e.g. cars, medical devices, etc.), the control system
of an autonomous robot is characterized by a large variety
of functionalities (e.g. motion planning and control, percep-
tion, task planning, etc.) that together realize complex robot
capabilities, such as navigation and manipulation.

Robot functionalities are conveniently implemented as soft-
ware components that can be assembled in many different
ways, like reusable building blocks, according to specific
application requirements. A robot control system is composed
of tens of components (e.g. see the ROS repositories [9]). For
each component, tens of different implementations may be
available (e.g. different algorithms for obstacle avoidance).

For these systems, a critical development phase is the design
of the software architecture, which represents the partitioning
of the control system into parts, with specific relationships
among the parts, and makes the set of parts work together as
a coherent and successful whole [10]. As such, the software
architectures defines the rules and constraints that determine
the overall behavior of the control system and that guarantee
system dependability and safety.

MDE approaches support architecture design by automating
some complex and error-prone tasks, such as editing diagrams,
reverse-engineering legacy systems and, more importantly,
validating assumptions made by system engineers and con-
trol engineers about system properties such as schedulability,
performance, responsiveness, and fail-safe behavior.

4) Versatile machines: Robots are versatile machines that
are increasingly been used not only to perform dirty, dan-
gerous, and dull tasks in manufacturing industries, but also
to achieve societal objectives, such as enhancing safety in
transportation and reducing the use of pesticide in agriculture.

In this scenario, the cost of creating new robotics products is
significantly related to the complexity of developing software
control systems that are flexible enough to easily accommodate
frequently changing requirements: more advanced tasks in
highly dynamic environments, in collaboration with unskilled
users, and in compliance with changing regulations.

Recent initiatives aim at developing MDE approaches that
simplify the static and dynamic re-configuration of a robot
control system according to specific application requirements
and operational conditions.

Fig. 1. The UML Component model of the Navigation architecture

II. SYSTEM ARCHITECTURE MODELING AND ANALYSIS

Software architecture design is a multi-dimensional
decision-making process and different software models are
needed to describe the system from multiple perspective, such
as structure, behavior, and non-functional properties.

The Object Management Group (OMG) [11], a not-for-
profit technology standards consortium founded in 1989, de-
fines and maintains the specification of the Unified Modeling
Language (UML) [7], a semi-formal general-purpose graph-
ical language for modeling software systems. UML 2.5 is
composed of fourteen standard diagram types, which are clas-
sified as structure diagrams or behavior diagrams. Structure
diagrams show the static structure of a system in terms of parts
and relationships among the parts on different abstraction and
implementation levels. Behavior diagrams show the dynamic
behavior of a system, i.e. how it changes over time.

In particular, the UML 2.5 Component Diagram defines
a standard graphical notation for documenting architectural
representations that emphasize the run-time computational
elements (aka components) of a software systems and their
communication channels (aka connectors). In [10] these rep-
resentations are referred to as the “component and connector”
architectural viewtype.

For example, Figure 1 depicts a simplified version of
a software architecture for mobile robot navigation. It is
composed of elemental components and composite com-
ponents. Elemental components (e.g GlobalPlanner,
BaseController) are graphically represented by boxes
marked with the <<component>> stereotype. Similarly,
composite components (e.g Equipment) are marked with the
<<subsystem>> stereotype.

Each component is characterized by a set of ports, which
represent distinct interaction points with other components.



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 3

Each port can be associated with a number of interfaces. A
provided interface describes the features that constitute a co-
herent service provided by a component. Similarl y, a required
interface describes the dependency of a component to a type
of service that should be provided by another component.
A connector represents a communication link between two
or more components. Different types of connectors can be
distinguished by labeling the association link with a stereotype.
For example, in Figure 1, the stereotype <<C/P>> refers to
the Caller/Provider communication paradigm (i.e. components
interact through synchronous invocation of services), while
the <<P/S>> refers to the Publisher/Subscriber communica-
tion paradigm (i.e. components interact through asynchronous
messages). Guidelines to document the “component and con-
nector” architectural viewtype in UML can be found in [12].

The main purpose of this kind of diagram is to document
the software architecture from a functional point of view and
serves as a vessel for communication between the varied
worlds of often non-software-technical stakeholders on one
hand, and software engineers on the other hand. Such a
documentation promotes software reuse by exhibiting stable
structures recurrent in many systems and facilitates mainte-
nance by clarifying the impact of changes [13]. A large variety
of UML-compliant software tools support diagram editing,
differencing, merging for system design and documentation
(see [14] for a survey).

Unfortunately, UML diagrams are not effective in captur-
ing and representing non-functional properties of embedded,
concurrent, and real-time software system, such as the tim-
ing constraints of system functionalities, the capabilities of
the (often distributed) communication infrastructure, and the
allocation of threads and processes to different processors.

Researchers have faced the limitations of the semi-formal
notation of UML by defining specific extensions of the UML
standard (called profiles) or specialized architectural modeling
languages. These approaches are exemplified in the next two
sections. A comparison of several modeling languages for
embedded and real time systems can be found in [15].

A. UML profile for Embedded and Real-Time Systems

UML Profiles are an extension mechanism provided to allow
adaptation and customization of the UML notation by adding
ad-hoc semantic and constraints and introducing terminology
that are specific to a particular domain, platform, or method.

In particular, OMG has developed the Modeling and Anal-
ysis of Real-Time Embedded Systems (MARTE) [16] profile,
which focuses on performance and schedulability analysis and
provides stereotypes for annotating architectural model and
map them into corresponding analysis domain concepts.

The HLAM (High-Level Application Modeling) sub-profile
defines a set of stereotypes to annotate the functional model
with real-time features. For example, Figure 2 denotes a use
of the <<rtUnit>> stereotype to annotate two computing
units (i.e. ObstacleAvoider and TrajectoryFollower) of the Lo-
calNavigator component, which perform concurrent activities,
i.e. adapting the rover trajectory when an obstacle is detected
and computing the twist to let the rover follow the trajectory.

Fig. 2. Example of using MARTE stereotypes for schedulability analysis

An annotation specifies that the former activity is aperiodic
and that its relative deadline is equal to 10 milliseconds.

The SRM (Software Resource Modeling) sub-profile pro-
vides modeling artifacts to describe software multi-tasking
application programming interfaces (API). For example, Fig-
ure 2 denotes a use of the <<schedulableResource>>
stereotype to annotate two concurrent tasks (i.e. FollowerTask
and ObstacleTask) with the specification of their priority.
The stereotype <<entryPoint>> indicates the routine (i.e
operation) executed in the context of each task.

The SAM (Schedulability Analysis Modeling) sub-profile
defines the stereotypes to annotate the elements of the platform
model (e.g. a CPU or other device, which executes functional
steps) with non-functional properties, such as schedulabil-
ity metrics, interrupt overheads and utilization of schedul-
ing processing. In particular, in Figure 2 the stereotype
<<SaExecutionHost>> represents any kind of process-
ing resource (e.g. POSIX threads) and contains a property
ISRswitchTime which can be used to represent the worst
context switching time.

Once the application model has been annotated with
MARTE stereotypes for real-time features, it needs to be
converted in a software model that can be processed by
tools for schedulability and performance analysis. In [17]
the author proposes an automatic translation technique from
MARTE models into input for MAST (Modeling and Analysis
Suite for Real-Time Applications), which is a state-of-the-art
schedulability analysis tool used in the academia. A list of
tools related to MARTE can be found in [18].

A robotic example of using MARTE for schedulability and
performance analysis can be found in [19].



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 4

Listing 1. Flow specification for the LocalNavigator
device laser_scanner
features
point_cloud: out data port;

flows
on_flow_src:flow source point_cloud

{latency => 5 ms .. 5 ms;};
end laser_scanner;

process adapt_trajectory
features
point_cloud: in data port;
trajectory: out data port;

flows
on_flow_path:flow path point_cloud->twist

{latency => 40 ms .. 60 ms;};
properties
Period => 100 ms;

end obstacle_avoider;

process compute_twist
features
odometry: in data port;
trajectory: in data port;
twist: out data port;

flows
on_flow_path:flow path trajectory->twist

{latency => 20 ms .. 30 ms;};
properties
Period => 50 ms;

end obstacle_avoider;

device rover
features
twist: in data port;

flows
on_flow_snk:flow sink twist

{latency => 10 ms .. 10 ms;};
end rover;

B. Architecture Analysis and Design Language

For cyberphysical systems and, in particular, for robotic
systems, response time analysis is of paramount importance.
The response time of an embedded system depends on the
latency between receiving an input from the sensors and
producing an output to the actuators. For example, safety
depends on the latency of responding to the detection of an
obstacle along the robot path.

Such analysis requires to model an application in terms
of both the computational units and of the communication
channels. In particular, in a distributed embedded real-time
(DERT) system, communication may be periodic or aperiodic,
event-triggered or based on data sampling. Representing all
these kinds of communications in MARTE is challenging.

In several application domains, the Architecture Analysis
and Design Language (AADL) [20] has proven a good candi-
date as a modeling language for DERT systems.

AADL is a textual and graphical language with precise ex-
ecution semantics for modeling the architecture of embedded
software systems and their target platforms.

AADL provides modeling concepts to describe the runtime
architecture of DERT systems in terms of components, con-
nectors, concurrent tasks, their interactions, and their mapping
onto an execution platform. Recently, OMG has provided the
MARTE specification with guidelines to map its modeling
entities to AADL concepts [21].

AADL is supported by the Open Source AADL Tool
Environment (OSATE) [22], which comes with a suite of
automated analysis tools. In particular, OSATE includes a
flow latency analysis tool that automatically calculate end-to-
end latency, i.e. the time required for a signal to travel from
the source to the sink, and verify if latency requirements are
satisfied.

Listing 1 exemplify the specification of a flow for the
LocalNavigator component depicted in Figure 2.

Component interactions consists in directional flows from
an event or data source (the laser scanner), through a com-
munication and processing path (adapt trajectory and com-
pute twist), to a command sink (the rover). For each modeling
element, the tag features specifies the component interface in
terms of input and output ports.

The model specifies the latency time related to the acquisi-
tion of a point cloud, the adaptation of the current trajectory in
order to avoid an obstacle, the generation of a twist command,
and the transmission of the command to the rover actuators.

In [23] the authors use AADL to model the control system
architecture for a safety-monitoring motorised wheelchair.
End-to-end latency analysis is performed to determine such
factors as the latency in responding to the appearance of an
obstacle, the response time to a failure, and the suitability of
the chosen micro-controller hardware.

C. Behavior Interaction Priority Framework

Expensive robot missions, like Mars exploration, and safety
critical systems, like driverless cars, demand for formal proofs
of their correct behavior, i.e. guarantees that the robot will
not perform actions that lead to catastrophic consequences.
Informally, a safety property stipulates that ”bad things” do
not happen during execution of a program [24].

Usually, in the context of software engineering, discrete
state approaches are applied to explain the behavior of a
system with respect to safety. Examples are Statecharts, Petri
Nets, and Labelled Transition Systems (LTS). In this context,
a safety property asserts that the program does not exhibit bad
behaviors, e.g. it never enters an undesirable state.

A relevant issue is the compositionality of the property
”safety” in concurrent and distributed systems. State-of-the art
approaches are based on defining LTS models of concurrent
processes, which are synchronized through actions sharing the
same labels. For example, let drop represent the action in
which a robot manipulator places an object in a bin transported
by a mobile robot. The software process that controls the robot
manipulator should issue the command to open the gripper
only when both the arm and the rover are in the drop position.
In terms of LTS, drop is modelled as a possible action in the
standalone behavior of both the process that controls the robot
manipulator and the process that controls the mobile robot. Its



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 5

execution then requires simultaneous participation from both
processes.

The BIP (Behavior Interaction Priority) [25] framework is a
architecture definition language for component-based systems,
which uses LTS for modeling the behaviour (B) of elemental
components and the interaction among components. The tran-
sitions between the discrete states of the component behaviour
are triggered by events received through the component ports
(action names). Atomic components can be assembled to
form compound components by means of connectors, which
specify possible interaction policy (I) between ports of atomic
components. The behavior of a compound component is
formally described as the composition of the behaviors of its
atomic components. At the level of compound components a
set of priority rules (P) describe scheduling policies for the
interactions among atomic components.

The BIP framework is supported by a set of tools for offline
analysis (e.g. the D-Finder tool [26]) and an engine for online
monitoring of safety properties of a component-based system.

In [27] the authors present an approach to develop correct-
by-construction component-based software controllers for au-
tonomous robots by integrating the BIP framework with the
LAAS architecture. The proposed approach consists in (i)
developing the functional components of a robot control
systems using the tools of the LAAS architecture, (ii) defining
a corresponding BIP model for the functional components, (iii)
adding safety constraints into the BIP model.

Safety constraints can be encoded as BIP connectors. As an
example, let’s consider a mobile robot that guides the patients
of a hospital towards a medical office on demand. We want
to express the constraint that the robot can execute only one
guidance service at a time, i.e. it does not leave the patient in
the middle of a corridor to serve an incoming request.

This can be done by defining a constraint on the values of
the input and output ports of the TrajectoryPlanner component
and the LocalNavigator component. The former receives GoTo
requests and generates NewTrajectories. The latter notifies the
Status of the current trajectory execution.

To enforce this constraint, if the LocalNavigator has not
completed the current trajectory when a new request is re-
ceived, the new GoTo request is rejected with a specific error
message (e.g. NOT-IDLE). Listing 2 illustrates a simplified
version of the BIP syntax for this constraint.

Listing 2. A BIP connector
connector RejectNavigationRequest

on TrajectoryPlanner.GoTo,
TrajectoryPlanner.NewTrajectory,
LocalNavigator.Status

provided LocalNavigator.Status.done

do {TrajectoryPlanner.GoTo = NOT-IDLE}

At run-time, the BIP engine acts as controller of the
functional components. It prevents the robot from reaching
unsafe states, even if bugs exist at the decisional level of the
control architecture, and reports faults to the decisional level.

III. SYSTEM IMPLEMENTATION AND INTEGRATION

MDE has become popular in many engineering domains be-
cause of its promise to bring benefits in software development,
such as increased productivity and quality, thanks to automatic
code generation from abstract models of an application. The
idea behind is that the model is much simpler and thus easier
to write and assess than the resulting code. This idea is valid
in principle, but in practice it remains challenging to develop
MDE environments, which fully automate the generation of
code from models, as illustrated in [28].

Many state-of-the art MDE approaches (see [29] for a clas-
sification) consist in using domain-specific code generators for
transforming abstract models into executable code. Typically, a
code generator is specific for a modeling language and embeds
the knowledge of a specific technological platform (e.g. a
programming language, a middleware framework, a runtime
infrastructure, a simulation environment).

Implementing code generators is hardly a core competence
for most academic and industrial organizations that develop
software technologies for specific application domains, such as
robotics. Moreover, robotics is a highly change-centric domain
and new technological platforms (software and hardware)
are continuously developed. This means that code generator
becomes quickly obsolete.

The Model Driven Architecture (MDA) [30] and other as-
sociated standards from the OMG are an attempt to reduce the
impact of changes in technological platforms on the life cycle
of software systems. The MDA enforces a clear separation
of the functional architecture, called the Platform Independent
Model (PIM) of a software system, from the technological
details of the specific platform used to implement it. This is
achieved using model transformation techniques that convert
the PIM into one or more platform-specific models (PSM),
which specify the details of how the functionality of the system
use the capabilities of the software or hardware platforms to
provide their operations.

Over the last few years, the software development industry
has developed a significant variety of tools that automate
model-to-model and model-to-code transformations. They use
standard transformation languages, which provide constructs
and mechanisms for expressing, composing, and applying
transformations [31].

The subsequent transformation of the PSM into executable
code requires to map the architectural model concepts to
certain fixed code fragments (templates) provided by a domain
framework and component library that represent the interface
to the underlying platform (e.g. a distributed computing mid-
dleware).

Code templates need software developer to fill in details, i.e.
the implementation of data structures and algorithms providing
specific robotic functionalities. In some cases, this code can
be generated automatically from behavioral models defined
with general purpose modeling languages such as state charts
and petri nets, or domain-specific modeling languages such as
block diagrams and bond graphs.

The following sections exemplify three approaches to code
generation, which are primarily concerned with reducing the



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 6

gap between the problem domain and the software imple-
mentation domain, by capturing different aspects of robotics
systems.

A. SmartSoft

The SmartSoft project [32] has developed a software com-
ponent framework, which aims at simplifying the development
of real-time and distributed control systems by standardizing
the component structure and connectors.

The framework provides mechanisms for:

• implementing software components according to the prin-
ciples of Service Oriented Computing [33],

• interconnecting components by means of connectors that
implement a limited set of communication patterns typi-
cally found in robotic control applications,

• dynamically reconfiguring the components behavior and
interconnections according to the application task.

Each SmartSoft component can encapsulate one or several
threads, which are executed in the context of a single process.
Components provide services to and require services from
other components. Component services exchange typed data
called communication objects.

Two reference implementations of the SmartSoft component
framework are currently available, one for real-time control
systems based on Linux with the RTAI extension [34] and
the other for distributed systems based on CORBA [35].
The SmartSoft framework is accompanied by a rich library
of components, which implement the most common robot
functionalities.

The SmartSoft MDE toolchain provides graphical editors
for designing individual components, services, and intercon-
nections and for specifying non-functional properties such as
task execution time, period, and resource usage. The graphical
editors are based on the UML profile for SmartSoft, which
defines stereotypes for designing the PIM and PSM models.

Figure 3 shows a schematic representation of the model
transformation supported by the SmartSoft MDE toolchain.
The upper part of the figure depicts the LocalNavigator
component as defined in the PIM. Here the software developer
specifies the component interface in terms of communication
objects and the component structure in terms of concurrent
tasks. For each task (identified by the stereotype ¡¡Smart-
Task¿¿) the non-functional properties (e.g. period and wcet)
indicate the admissible values as specified by the application
requirements (e.g. the wcet should not exceed 50 ms).

The trasformation of the PIM into the PSM (the central
part of Figure 3) requires the specification of the software and
hardware target platform. Here, the abstract tasks are mapped
to Linux RTAI threads, as indicated by the stereotype ¡¡RTAI-
Task¿¿. The non-functional properties indicate actual values,
such as the measured wcet.

Finally, the source code of the LocalNavigator is gener-
ated by customizing the template of the generic SmartSoft
component with the information modeled in the PIM. The
software developer needs to finalize the implementation of the
component by hand coding the provided functionality.

Fig. 3. Model transformations in the SmartSoft MDE Toolchain

In the simplest case, the generated code can be used as a
wrapper of an existing software library.

The components interconnections are specified at design-
time in the PIM, but can be modified at run-time in order to
adapt the robot behavior to the actual operational conditions.

For example, the ObstacleAvoider task requires sensory
information (e.g. a point cloud) to detect obstacles. At run-
time different sensors can provide the point cloud based on
environment illumination (e.g. a laser scanner or an RGB
stereo camera).

The SmartSoft MDE includes the Task Coordination Lan-
guage (SmartTCL) for specifying the high-level application
tasks (e.g. fetch coffee to visitors) that the robot is able to
carry out and how these tasks are refined during task execu-
tion in terms of services provided by individual components
(e.g. “navigate towards the coffe machine”). The SmartSoft
framework provides the SmartTCL engine that is in charge
of orchestrating the control system by activating, deactivating,
and interconnecting components according to the action plan.



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 7

Fig. 4. The RobotML profile for robot sensors

B. Proteus

The Proteus [36] project (Platform for RObotic Modelling
and Transformation for End-Users and Scientific communities)
is an initiative of the French robotic community (GDR Robo-
tique) that has developed a MDE toolkit for robotic system
design and implementation.

The distinctive feature of the Proteus Toolkit is the use of a
set of ontologies [37] for representing knowledge about robotic
systems, operational environments, and applications.

The Proteus ontologies are an attempt to formalize the
vocabulary of robotic system engineers, in order to allow
them to model robot control architectures directly in terms of
domain concepts (e.g. sensor, motion planner, rover, etc.) and
not only in terms of software concepts (e.g. component, port,
algorithm, etc.) Similar initiatives are sponsored by the IEEE
Standard Association, which have established the Ontologies
for Robotics and Automation working group.

The Proteus ontologies are the basis of the Proteus Domain
Specific Language (RobotML) [38], which includes modeling
entities for specific architectural elements (e.g. Robot, Sen-
sorSystem, ActuatorSystem, LocalizationSystem) and architec-
tural styles (e.g. reactive, deliberative, hybrid).

Similarly to SmartSoft (see Section III-A), the Proteus
toolchain is based on a UML profile for defining the PIM
of the robot functional architecture. As an example, Figure 4
shows an excerpt of the RobotML profile for robot sensors,
where the modeling entities CameraSystem and LidarSystem
are defined as stereotypes that can be used to annotate the
components of the robot control architecture.

For code generation, the elements of the PIM model need
to be allocated to an execution platform, such as a middle-
ware and a simulator. For examples, the element representing
robot functionality and control activities are allocated to a
component-based middleware, while the element representing
the robotic equipment are allocated to a simulator.

C. Modeling the components behaviour
Code generation from behavior models is a growing area of

interest due to its benefits of verifying models by simulation
and reducing error-prone hand-coding efforts. Several tools
generate source code form UML specifications to mainstream
languages, such as C, C+, Java and to simulation languages
such as SystemC. Typically, MDE environments supporting
component-based architectural modeling (see Section II) also
provides languages for modeling the discrete behavior of
individual components, such as UML Statecharts and Petri
Nets.

When developing embedded control software, control sys-
tems engineers model both the control algorithm and the
system to be controlled, the so-called plant, together to ensure
optimal performance of processes with continuous dynamics.
[39]. Typically, the robot control functionalities are conve-
niently modeled as Hybrid systems, since they can specify
continuous change of the system state as well as discrete
transition of states. Continuous behavior can be specified using
differential as well as algebraic equations.

Code generation from hybrid-systems models eventually
involves simulating continuous change of a variable by step-
wise update of the variable based on numerical methods. This
requires the model designer to assign a rate by which the
continuous state evolves.

Several modeling and simulation environments for embed-
ded systems (e.g. Matlab/Simulink [40] and 20-sim [41])
support code generation from continuous and hybrid models,
defined with domain-specific languages, such as Bond Graphs,
Block Diagrams, and Modelica. These tools allow to define
custom templates for code generation in order to simplify the
integration of behavioral code with component frameworks.

In [42] the authors exemplify the modeling, code generation,
and integration process for the motion control system of the
KUKA youBot mobile manipulator [43]. The algorithm design
requires a model of the system that will be controlled. They
used the 20-sim toolchain to model the youBot kinematic chain
as a bond graph and the BRIDE model-based toolchain [44]
to model the component-based control system.

The control algorithm design is performed in parallel with
the design of the component architecture. These two design
phases have mutual dependencies and require an iterative
approach.

The algorithm is partitioned in blocks of elemental func-
tionalities with well-defined interfaces, in such a way that
they can be modified independently (e.g. for improving their
performance) without affecting the design and implementation
of the rest of the system.

On the other side, message passing between components
can introduce message losses and time delays in updates and
communication between sensors, controller, and actuators that
need to be explicitly represented in the model of the control
algorithm. Unreasonable communication requirements (such
extreme band-with or unachievable small latency) can lead to
restructuring the component architecture.

In [45] a criterion for faithful implementation of hybrid-
systems models in a concurrent and distributed system is
presented.



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 8

IV. SYSTEM CONFIGURATION

Current practice in software engineering for robotics con-
sists in developing fine-grain software components, which
implement single robotic functionalities. This approach is
embodied by a repeated mantra among ROS developers [9]:
“We don’t wrap your main”. The strength of this approach is
the possibility to develop a large variety of different control
systems by composing in multiple ways reusable software
building blocks. Its weakness is the lack of support to the
reuse of effective solutions to recurrent architectural design
problems.

Consequently, application developers and system integrators
have to solve architectural design problems always from
scratch. The difficult challenge consists in selecting, integrat-
ing, and configuring a coherent set of components that provide
the required functionality taking into account their mutual
dependencies and architectural mismatches.

This challenge is exacerbated by the peculiarity of the
robotics domain: robots can have many purposes, many forms,
and many functions. Consequently, each robotic systems has
to be configured with a specific mix of functionalities and
that strongly depends on the robot mechanical structure (a
rover with zero or multiple arms), the task to be performed
(cleaning a floor, rescuing people after a disaster), and the
environmental conditions (indoor, outdoor, underground).

In various application domains, software product line (SPL)
development has proven to be the most effective approach to
face this kind of challenges. A SPL is a family of applica-
tions (products) that share many (structural, behavioral, etc.)
commonalities and together address a particular domain [46].

Typically, a SPL is a strategic investment for an engineering
company that wants to achieve customer value through large
commercial diversity of its products (e.g. different control
systems for warehouse logistics) with a minimum of technical
diversity at minimal cost.

The core of an SPL is a stable software architecture that
clearly separates common features from the variations reflected
in the products and prescribes how software components
can be assembled to derive individual products. Each new
application is built by configuring the SPL, i.e. by selecting
the variants (e.g. functionalities, software resources) that meet
specific application requirements.

MDE environments simplify system configuration by pro-
viding domain specific languages to model robot variability
and model-to-model transformations to resolve the variability
in the software control system.

The following sections illustrate two MDE approaches for
robotic systems configuration. The former focuses on model-
ing variability in robot functionality, the latter on modeling
variability in robot resources.

A. Software Product Lines for Robotics

The HyperFlex [47] toolchain is a MDE environment for
the development and configuration of Software Product Lines
(SPL) for Robotics.

It provides domain-specific languages and graphical editors
for the definition of three types of models.

Fig. 5. The HyperFlex Feature Model of the Navigation system

The Template Architectural Model represents the software
architecture (as discussed in Section II) of a family of similar
software systems. As such, it explicitly represents all the
possible components (variants) that implement a given func-
tionality (variation point). For example, the obstacle avoidance
functionality might be provided by two alternative components
implementing the Vector Histogram approach or the Dynamic
Window approach.

The Feature Model [48] symbolically represents the variant
features of a control system; symbols may indicate individual
robot functionality (e.g. marker-based localization) or concepts
that are relevant in the application domain, such as the type of
items that the robot has to transport (e.g. liquid, fragile, etc.),
which affect the configuration of the control system.

The Resolution Model define model-to-model transforma-
tions, which allow to automatically configure the architecture
and functionality of a control system based on required
features. In this context, architecture configuration means to
resolve the functional variability of a system by selecting one
variant for each variation point.

A model-to-text transformation generates the configuration
file (launch file) corresponding to the architecture of the
configured control system Currently HypeFlex supports the
configuration of component-based systems based on the ROS
and OROCOS frameworks.

Let’s consider an example of SPL related to the simple
system depicted in Figure 1. The LocalNavigator compound
component encapsulates the TrajectoryFollower component
(see Figurefig:UML-MARTE), which implements the algo-
rithm for generating twist commands to the BaseController
component in order to follow a given trajectory.

Let us now consider a different application in which the
robot has to follow a moving target (e.g. another robot). The
TrajectoryFollower component is replaced with the LeaderFol-
lower component that periodically generates twist commands
for the robot according to the position of the target estimated
by the sensors.

HyperFlex allows to represent the navigation strategy as a
variation point that can be resolved by selecting at deployment
time either the LeaderFollower component or the Trajectory-
Follower component. Figure 5 shows the Feature Model of
the Navigation system. Green boxes represent the selected
features. The triangles below the boxes indicate the cardinality
of the variation point. In particular, it indicates that for each
variation point only one variant can be selected. Black circles



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 9

indicate that the child feature is mandatory.
The selection of desired features triggers model-to-model

transformations that configure the template architecture. Sev-
eral types of transformations can be defined, such as removing
a component, changing the properties of a component, and
changing the connections between components.

For example, the selection of the feature LeaderFollower
triggers a transformation that replaces the TrajectoryFollower
component with the LeaderFollower component and config-
ures the connectors.

The HyperFlex toolchain offers the possibility to compose
hierarchically Feature Models in such a way that higher-level
Feature Models abstract the subsystems functional features.
Here the idea is to model features at different levels of
abstractions for different types of users.

Typically, the expert in robotic functionalities is interested
in a representation of the functional features that highlights the
different algorithms implemented in the robot control system.

On the contrary, the application domain expert is interested
in a representation of the control system capabilities that
highlights the application requirements. For example, the robot
is able to navigate in an environment, which might be static
or populated by moving obstacles (e.g. people). It might be
an open space with wide passages or a small room crowded
with tiny obstacles.

The selection of a feature corresponding to an application
requirement triggers the automatic selection of features corre-
sponding to robot capabilities. For example, if the environment
is a static and crowded space, the robot should be configured
with a complete (and likely slow) motion planner; instead, in
dynamic environments, a fast and approximate motion planner
is more effective.

B. Modeling robotic resources
A model of the robot embodiment (the kinematic structure,

the device characteristics, etc.) and a model of the operational
environment (the objects to recognize, avoid, grasp, etc.) are
crucial for object manipulation and navigation. They act as
shared resources among multiple robot functionalities, such
as perception, planning, and control. Most algorithms that
implement these functionalities are parametric with respect
to the embodiment and world models. This means that the
robot control system can be configured at deployment time
according to the specific application requirements and can be
reused without modification for different tasks and different
robotic systems.

In [49] the authors present a textual domain specific model-
ing language for modeling the structural aspects of the robot
embodiment and environment as a Scene Graph, i.e. a descrip-
tion of relevant objects and the relations among them. These
relations are organized in a Direct Acyclic Graph (DAG). The
Scene Graph can express prior semantic knowledge about a
scene, such as the morphology and appearance of an object
(e.g. a table) that the robot should recognize and locate in the
environment.

Another example of textual modeling language is presented
in [50]. It allows the description of differential constraints typ-
ically found in motion planning problems for mobile robots.

Listing 3 shows an example of differential constraints for a
differential drive rover, where ul and ur are the input angular
velocities of the left and right wheels respectively (the action
vector), x, y, and theta represent the robot configuration
(the state vector), r is the wheel radius, and L is the distance
between the two wheels.

Listing 3. The specification of a differential constraint
BEGIN DifferentialDrive

ACTION : ul, ur;
PARAM : L, r;
CONFIG : x, y, theta;

d(x) = r / 2 * (ul + ur) * cos(theta);
d(y) = r / 2 * (ul + ur) * sin(theta);
d(theta) = r / L * (ur - ul);

END;

These models are widely used in simulation algorithms
(that, given the starting configuration and the action vector,
compute the final configuration of the robot) and sampling-
based motion planning algorithms (that sample collision free
configurations that need to be compatible with the differential
constraints). In order to compute final configurations it is
necessary to solve the differential equations and this can be
done by means of solvers, which use numerical approximation
techniques.

V. CONCLUSIONS

MDE is often considered to be synonymous with code
generation and, frequently, research and development efforts
in MDE for Robotics are motivated by the objective of simpli-
fying application development by robotic experts with limited
software engineering skills. In particular, the availability of
open source tools (e.g. Eclipse), that greatly simplify the
development of speciaized MDE environments, stimulated the
definition of domain specific languages for a large variety of
robotics concerns. Two recent surveys can be found in [51]
and [52].

Interestingly, a study on the state of practice in MDE in
industry reports that productivity gains due to automatic code
generation are not considered significant enough to drive an
MDE adoption effort, due to increased training costs and
substantial organizational changes [6]. It turns out that the
main advantages are in the support that MDE provides in
defining the architecture of a software system.

For this reason, this tutorial focused on the architectural
model as the central artifact of almost all software devel-
opment activities (analysis, design, implementation, config-
uration, and documentation). Intentionally, this tutorial did
not illustrate MDE solutions for two other key activities in
software development for robotics, namely simulation and
model definition for run-time system configuration.

Simulation is such a wide field of research, that the analysis
of MDE techniques for simulation could be the topic of a new
tutorial.

Run-time configuration is a new trend in the development
of self adaptive systems. In this context, the software control



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 10

system is equipped with mechanisms for automatic interpre-
tation of architectural variability models and for dynamic
reconfiguration, based on context awareness, of its resources
and functionalities. MDE techniques (e.g. Dynamic Software
Product Lines [53]) have been developed for several software-
intensive application domains, but their applicability to the
development of self adaptive robot control system is still a
research issue.

REFERENCES

[1] H. Schichl, “Models and the history of modeling.” in Modeling Lan-
guages in Mathematical Optimization, J. Kallrath, Ed. Kluwer, 2004,
pp. 25–36.

[2] F. Cellier, “Principles of active electrical circuit modeling,” in Continu-
ous System Modeling. Springer New York, 1991, pp. 201–249.

[3] J. F. Broenink, “Bond-graph modeling in modelica,” in In Proceedings
of ESS97 - European Simulation Symposium, 1997.

[4] R. Lewis and I. of Electrical Engineers, Modelling Distributed
Control Systems Using IEC 61499: Applying Function Blocks
to Distributed Systems, ser. IEE control engineering series.
Institution of Engineering and Technology, 2001. [Online]. Available:
http://books.google.it/books?id=m3LaTv7VefwC

[5] B. Selic, “The pragmatics of model-driven development,” IEEE
Softw., vol. 20, no. 5, pp. 19–25, Sep. 2003. [Online]. Available:
http://dx.doi.org/10.1109/MS.2003.1231146

[6] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice in
model-driven engineering,” Software, IEEE, vol. 31, no. 3, pp. 79–85,
May 2014.

[7] OMG, “Unified modeling language (uml),”
http://www.omg.org/spec/UML/, 2015.

[8] D. Brugali and A. Shakhimardanov, “Component-based robotic engi-
neering (part ii)[tutorial],” Robotics & Automation Magazine, IEEE,
vol. 17, no. 1, pp. 100–112, 2010.

[9] S. Cousins, B. Gerkey, K. Conley, and W. Garage, “Sharing software
with ros [ros topics],” Robotics Automation Magazine, IEEE, vol. 17,
no. 2, pp. 12–14, 2010.

[10] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford, Documenting Software Architectures: Views
and Beyond. Boston, MA: Addison-Wesley, 2003.

[11] O. M. Group, http://www.omg.org/, 2015.
[12] J. Ivers, P. Clements, D. Garlan, R. Nord, B. Schmerl, and

O. Silva, “Documenting component and connector views with uml 2.0,”
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, Tech. Rep. CMU/SEI-2004-TR-008, 2004. [Online]. Available:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7095

[13] D. Garlan, “Formal modeling and analysis of software architecture:
Components, connectors, and events.” in SFM, ser. Lecture Notes
in Computer Science, M. Bernardo and P. Inverardi, Eds., vol.
2804. Springer, 2003, pp. 1–24. [Online]. Available: http://dblp.uni-
trier.de/db/conf/sfm/sfm2003.htmlGarlan03

[14] H. Eichelberger, Y. Eldogan, and K. Schmid, “A comprehensive
survey of uml compliance in current modelling tools.” in Software
Engineering, ser. LNI, P. Liggesmeyer, G. Engels, J. Mnch, J. Drr, and
N. Riegel, Eds., vol. 143. GI, 2009, pp. 39–50. [Online]. Available:
http://dblp.uni-trier.de/db/conf/se/se2009.htmlEichelbergerES09

[15] K. D. Evensen and K. A. Weiss, “A comparison and evaluation of real-
time software systems modeling languages,” in In Proceedings of AIAA
Infotech@Aerospace, Altanta, GA, 2010.

[16] OMG, “Modeling and analysis of real-time and embedded systems,”
http://www.omg.org/omgmarte/, 2015.

[17] J. Medina and A. Garcia Cuesta, “Model-based analysis and design of
real-time distributed systems with ada and the uml profile for marte,” in
Reliable Software Technologies - Ada-Europe 2011, ser. Lecture Notes
in Computer Science, A. Romanovsky and T. Vardanega, Eds. Springer
Berlin Heidelberg, 2011, vol. 6652, pp. 89–102.

[18] OMG, “Tools related to marte,” http://www.omgmarte.org/node/31,
2015.

[19] S. Demathieu, F. Thomas, C. Andr, S. Grard, and F. Terrier, “First
experiments using the uml profile for marte.” in 11th IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC 2008), 5-7 May 2008, Orlando, Florida, USA. IEEE Computer
Society, 2008, pp. 50–57.

[20] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language,
1st ed. Addison-Wesley Professional, 2012.

[21] M. Faugere, T. Bourbeau, R. De Simone, and S. Gerard, “Marte: Also
an uml profile for modeling aadl applications,” in Engineering Complex
Computer Systems, 2007. 12th IEEE International Conference on, July
2007, pp. 359–364.

[22] “Osate: Open source aadl tool environment,” http://www.aadl.info, 2015.
[23] G. Biggs, K. Fujiwara, and K. Anada, “Modelling and analysis of a re-

dundant mobile robot architecture using aadl,” in Simulation, Modeling,
and Programming for Autonomous Robots, ser. Lecture Notes in Com-
puter Science, D. Brugali, J. Broenink, T. Kroeger, and B. MacDonald,
Eds. Springer International Publishing, 2014, vol. 8810, pp. 146–157.

[24] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE
Trans. Softw. Eng., vol. 3, no. 2, pp. 125–143, mar 1977.

[25] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time
components in bip,” in Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal Methods, ser. SEFM
’06. Washington, DC, USA: IEEE Computer Society, 2006, pp. 3–12.
[Online]. Available: http://dx.doi.org/10.1109/SEFM.2006.27

[26] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis, “D-finder: A
tool for compositional deadlock detection and verification,” in Computer
Aided Verification, 21st International Conference, CAV 2009, Grenoble,
France, June 26 - July 2, 2009. Proceedings, ser. Lecture Notes in
Computer Science, vol. 5643. Springer, 2009, pp. 614–619.

[27] S. Bensalem, L. de Silva, F. Ingrand, and R. Yan, “A verifiable and
correct-by-construction controller for robot functional levels,” Journal
of Software Engineering for Robotics, vol. 2, no. 1, pp. 1–19, 2011.
[Online]. Available: http://dx.doi.org/10.4018/ijismd.2014070103

[28] R. France, B. Rumpe, and M. Schindler, “Why it is so hard to use
models in software development: observations,” Software Systems
Modeling, vol. 12, no. 4, pp. 665–668, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10270-013-0383-z

[29] Y. Zheng and R. N. Taylor, “A classification and rationalization
of model-based software development,” Softw. Syst. Model.,
vol. 12, no. 4, pp. 669–678, Oct. 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10270-013-0355-3

[30] OMG, “Model driven architecture,” http://www.omg.org/mda/, 2015.
[31] S. Sendall and W. Kozaczynski, “Model transformation: The heart

and soul of model-driven software development,” IEEE Softw.,
vol. 20, no. 5, pp. 42–45, Sep. 2003. [Online]. Available:
http://dx.doi.org/10.1109/MS.2003.1231150

[32] A. Lotz, J. F. Inglés-Romero, D. Stampfer, M. Lutz, C. Vicente-Chicote,
and C. Schlegel, “Towards a stepwise variability management process
for complex systems: A robotics perspective,” Int. J. Inf. Syst. Model.
Des., vol. 5, no. 3, pp. 55–74, Jul. 2014. [Online]. Available:
http://dx.doi.org/10.4018/ijismd.2014070103

[33] M. Huhns and M. Singh, “Service-oriented computing: key concepts
and principles,” Internet Computing, IEEE, vol. 9, no. 1, pp. 75–81, Jan
2005.

[34] “Rtai - the realtime application interface for linux,” https://www.rtai.org/,
2015.

[35] O. M. Group, “Common object request broker architecture,”
http://www.corba.org/, 2015.

[36] “Plateforme pour la robotique organisant les transferts entre utilisateurs
et scientifiques (proteus),” http://www.anr-proteus.fr, 2015.

[37] M. R. Genesereth and N. J. Nilsson, Logical Foundations of Artificial
Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1987.

[38] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “Robotml,
a domain-specific language to design, simulate and deploy robotic ap-
plications,” in Simulation, Modeling, and Programming for Autonomous
Robots, ser. Lecture Notes in Computer Science, I. Noda, N. Ando,
D. Brugali, and J. Kuffner, Eds. Springer Berlin Heidelberg, 2012, vol.
7628, pp. 149–160.

[39] J. Palczynski and S. Kowalewski, “Early behaviour modelling for control
systems,” in Computer Modeling and Simulation, 2009. EMS ’09. Third
UKSim European Symposium on, Nov 2009, pp. 148–153.

[40] “Simulink, simulation and model-based design,”
http://it.mathworks.com/products/simulink/, 2015.

[41] “20-sim,” http://www.20sim.com/, 2015.
[42] Y. Brodskiy, R. Wilterdink, S. Stramigioli, and J. Broenink, “Fault avoid-

ance in development of robot motion-control software by modeling the
computation,” in 4th International Conference on Simulation, Modeling,
and Programming for Autonomous Robots, SIMPAR 2014, ser. Lecture
notes in computer science, D. Brugali, J. Broenink, T. Kroeger, and



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 11

B. MacDonald, Eds., vol. 8810. Springer International Publishing,
October 2014, pp. 158–169.

[43] R. Bischoff, U. Huggenberger, and E. Prassler, “Kuka youbot - a mobile
manipulator for research and education,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on, May 2011, pp. 1–4.

[44] “Brics integrated developement environment,” http://www.best-of-
robotics.org/bride/, 2015.

[45] M. Anand, S. Fischmeister, Y. Hur, J. Kim, and I. Lee, “Generating
reliable code from hybrid-systems models,” IEEE Transactions on
Computers, vol. 59, p. 1281–1294, July 2010. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5453343

[46] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2001.

[47] L. Gherardi and D. Brugali, “Modeling and Reusing Robotic Software
Architectures: the HyperFlex toolchain,” in IEEE International Confer-
ence on Robotics and Automation (ICRA 2014). Hong Kong, China:
IEEE, May 31 - June 5 2014.

[48] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson,
“Feature-oriented domain analysis (foda) feasibility study,” Software
Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, Tech. Rep. CMU/SEI-90-TR-021, 1990. [Online]. Available:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231

[49] S. Blumenthal and H. Bruyninckx, “Towards a Domain Specific Lan-
guage for a Scene Graph based Robotic World Model,” in 4th Interna-
tional Workshop on Domain-Specific Languages and models for ROBotic
systems (DSLRob-13), Tokyo University, Japan, Nov. 2013.

[50] M. Guarnieri, E. Magri, D. Brugali, and L. Gherardi, “A Domain
Specific Language for Modeling Differential Constraints of Mobile
Robots,” in International Conference on Autonomous Robot Systems
and Competitions (Robotica 2012), Guimares, Portugal, 2012. [Online].
Available: http://hdl.handle.net/1822/18887

[51] A. Nordmann, N. Hochgeschwender, and S. Wrede, A Survey on
Domain-Specific Languages in Robotics, ser. Lecture Notes in Computer
Science. Springer International Publishing, 2014, vol. 8810, ch. 17, pp.
195–206.

[52] A. Ramaswamy, B. Monsuez, and A. Tapus, “Model-driven software
development approaches in robotics research,” in Proceedings of the
6th International Workshop on Modeling in Software Engineering, ser.
MiSE 2014. New York, NY, USA: ACM, 2014, pp. 43–48. [Online].
Available: http://doi.acm.org/10.1145/2593770.2593781

[53] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Corts, and M. Hinchey, “An
overview of dynamic software product line architectures and techniques:
Observations from research and industry,” Journal of Systems and
Software, vol. 91, no. 0, pp. 3 – 23, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121214000119


