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Abstract—This article discusses the scientifically and industri-
ally important problem of automating the process of unloading
goods from standard shipping containers. We outline some of
the challenges barring further adoption of robotic solutions to
this problem: ranging from handling a vast variety of shapes,
sizes, weights, appearance and packing arrangement of the
goods, through hard demands on unloading speed and reliability,
to ensuring fragile goods are not damaged. We propose a
modular and reconfigurable software framework in an attempt
at efficiently addressing some of these challenges. We outline the
general framework design, as well as the basic functionality of
the core modules developed and present two instantiations of the
software system on two different fully integrated demonstrators.
While one is coping with an industrial scenario, namely the
automated unloading of coffee sacks, with an already econom-
ically interesting performance, the other scenario is used to
demonstrate the capabilities of our scientific and technological
developments in the context of medium- to long-term prospects
of automation in logistics. We performed evaluations which allow
us to summarize several important lessons learned and to identify
future directions of research on autonomous robots for handling
of goods in logistics applications.

I. CHALLENGES IN AUTONOMOUS CONTAINER
UNLOADING

One of the seizable effects of globalization over the past
decades is the steady increase of the volume of transported
goods. Nowadays, most goods are shipped in containers and
then transferred onto trucks for further transportation. Once the
containers reach a target warehouse facility, they are typically
unloaded manually — a strenuous task, since goods are often
heavy and difficult to handle, resulting in significant health
risks to the human workers. The lack of manpower willing
to engage in such an exhausting and wearing labor, combined
with an aging population and the increasingly strict labor law
regulations make automated solutions for container unloading
desirable, if not necessary.

A robotic system designed for unloading goods from con-
tainers has to deal with several major scientific and technolog-
ical challenges. First and foremost, such a system needs to be
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(b)

Fig. 1. The two autonomous container unloading systems described in this
work: in (a) the Empticon II robot, designed for unloading of heavy sacks
of coffee beans, shown deployed in a storage warehouse owned by Vollers
GmbH; in (b) the Parcel Robot, targeted at unloading heterogeneous loose
goods. The target application scenarios are further pictured in Fig. 7

able to handle a wide variety of goods of different size, shape,
weight, texture and material. Individual goods need to be iden-
tified, grasped, transported to a drop-off location and finally
placed securely, while maintaining human-like picking success
rates and unloading times. Throughout all operations it is also
imperative that goods are not dropped or otherwise damaged,
as contents may be fragile. These constraints, coupled with
the possibly chaotic and cluttered arrangement of goods in
the container result in a set of difficult interleaved hardware
design, perception, grasp- and motion planning problems.
Efficient solutions to these challenges will have far-reaching
applications to a number of domains involving autonomus
manipulation in unstructured and uncontrolled environments.

This article delves deeper into the underlying challenges on
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Fig. 2.

Summary schematic of the software architecture applied to unloading of unstructured loose goods from containers. The modules of the system are

configured in a similar fashion for the second target application (unloading of coffee sacks). In the figure, the solid black arrows signify changes in the current
state of the robot’s state machine over an unloading cycle, while the dashed blue arrows depict the information flow between different components.

the road towards fully autonomous container unloading robots,
by examining two different sub-scenarios. The first is directly
motivated by the real-world industrial use-case of unloading
containers packed with 70 kg sacks of coffee. In contrast,
the second sub-scenario is embedded in the scientifically
more challenging domain of unloading containers packed with
heterogeneous loose goods. While the latter scenario does not
directly correspond to the current industrial practice of packag-
ing goods in cardboard boxes prior to loading in a container,
it serves as a scientific testbed for research on autonomous
manipulation in complex cluttered environments which are
very common in the context of logistics. Generalizing current
approaches to such scenarios is at the forefront of research,
and has direct applications to future robot aided logistics in,
for example, autonomous commissioning systems (focus of
the largely popular ICRA 2015 Amazon picking challenge').
We propose a common automation framework for handling
the unloading automation task, and present two different
instantiations deployed on two physically different robotic
platforms: the Empticon II robot (Fig. 1(a)) targeted at coffee
sack unloading; and the Parcel Robot (Fig. 1(b)) targeted
at unloading heterogeneous loosely packed goods, thereby
investigating the more general aspects of handling arbitrary
goods in logistics applications. By examining two conceptually
different scenarios, we evaluate both the readiness of the
proposed automation framework to answer current industrial

Uhttp://amazonpickingchallenge.org/

needs, as well as its suitability to addressing wider and more
challenging future application domains.

II. APPROACH, DESIGN AND IMPLEMENTATION

A. Cognitive Approach

In order to meet the varying requirements of the two
application domains, we opted for implementing two different
robots with significantly different kinematic structures and
gripping devices (see Fig. 1). However, as the chief objective
of this work is to produce generally applicable solutions
to the container unloading problem, we propose a modular
and re-configurable framework, allowing to re-use common
components and a unified approach to the two application
domains. All components were implemented as modules in
the Robot Operating System (ROS) [1].

The framework is designed around a classical sense-plan-
act loop, embedded in a finite state machine. This approach
allows for seamless transitioning between fully-autonomous
unloading and operator-assisted autonomy, as well as for
an easy means to substitute different module instances. At
different states of the unloading process, the system uses a
variety of processing paradigms: ranging from pipeline style
processing, through centralized information aggregation, to
high-level Al planning queries. A simplified illustration of our
software framework is shown in Fig. 2. In a typical unloading
scenario the system builds on several major components:



JOURNAL OF IEEE ROBOTICS AND AUTOMATION MAGAZINE, VOL. ??, NO. ??, JAN 2016 3

e A customized motion planning pipeline based on the
Movelt framework? is used to plan trajectories (see
Sec. II-H), which are subsequently executed by the in-
dustrial Programmable Logic Controllers (PLCs) of the
two robots.

o A single RGBD camera (the Asus Xtion Pro Live)
mounted close to the end effector is used as an input
to a perception pipeline (Sec. II-C). The pipeline uses an
offline-trained object database (Sec. II-D) to aid detec-
tion of known object instances, a shape-based approach
for detecting known object classes, and a model-based
approach tailored to coffee sack detection.

« Recognized objects and scene geometry models are fused
into a semantic environment model (Sec. II-F) which
serves as a centralized information repository of the
system.

e A hybrid reasoning system (Sec. II-G) is used to select
an appropriate target object for unloading.

o Two sets of candidate grasps for selected objects (pre-
planned and online-generated) are tested for feasibility in
the current scene and selected for execution (Sec. II-I).

B. Robot Hardware Design

1) Parcel Robot: To get the required flexibility to grasp
different goods in various arrangements within the workspace
of a standard shipping container, we used a robot previously
developed for the purpose of unloading parcels — the Parcel
Robot (Fig. 1(b)). The Parcel Robot features customized
kinematics, which were developed to better cover the desired
workspace. Typical industrial 6-axis articulated robot arms
have a spherical work envelope, which requires that the robot
has to be placed centrally in front of the container. This
placement however leads to complicated trajectories from the
grasping pose to a placing pose outside the container.

The design of the Parcel Robot kinematics — a five rotary
degree of freedom (DoF) manipulator mounted on an linear
portal axis, allows for shorter paths between grasping and
unloading poses. The combination of linear and rotary axes
describes a cylindrical work envelope that covers the full
space inside the container. Unloaded goods are placed on
an integrated conveyor belt and transported further along the
handling chain.

2) Empticon II Robot: Unloading coffee sacks implies the
handling of tightly packed and heavy, yet deformable goods,
which do not readily allow for stable top or side grasping.
Thus, we opted for a manipulation solution which ensures
that sacks are continuously supported from below during the
unloading process. As standard industrial robots are not well
suited for this task, we designed and implemented a special
purpose robot: the Empticon II (see Fig. 1(a)). The robot
design is optimized to minimize the amount of joint move-
ments under typical unloading sequences, while maintaining
sufficient freedom in the range of reachable target grasping
poses. The implemented machine consists of a single DoF
wheeled platform, on which a manipulator with five actuated
joint axes (two pairs passively coupled) is mounted, resulting

Zhttp://moveit.ros.org

in a 4-DoF system. A conveyor belt runs along the whole
manipulator chain, allowing for a smooth transition of sacks
from the container onto the robot body and further along the
material flow chain into the warehouse.

3) Velvet Gripper: In order to respond to the challenges of
robust grasp acquisition of heterogeneous goods, we designed
a new underactuated gripping device — the Velvet Fingers
gripper [2], [3], shown in Fig. 3(a). Our application scenario
demands a versatile device, which can reliably acquire grasps
on objects of varying shape, material, weight and deforma-
bility, and does so under moderate object pose uncertainties.
After analyzing the properties of typical goods in our scenario,
we opted for a grasping principle which would allow both for
embracing grasps with four contact areas for cylindrical and
deformable goods, as well as grasps involving two opposing
surfaces of parallelepipedic goods like boxes. To satisfy these
requirements, we decided to endow the gripper with two fin-
gers, each of which forms a planar rotary-rotary manipulator.
In this fashion, all the links are involved in enveloping grasps
of cylindrical and deformable goods, while for the grasping
of boxes the proximal links are involved to a lesser extent.
In order to keep the mechanical design conceptually simple,
to allow for simpler control schemes and to keep the weight
of the gripper low, we also opted for underactuation of the
joint between the two links of each finger. Finally, the motor
drives chosen for actuating the gripper were outfitted with
back-driveable gear boxes, in order to allow for compliant
behaviour via current control.

The design of the gripper is also affected by the environment
in which it operates. As the containers in our scenario can
feature a lot of clutter and closely packed goods, it is desirable
that grasps can be acquired with a minimal gripper footprint.
This requirement would however favor less stable fingertip
grasps, instead of firm enveloping grasps. To solve this prob-
lem, the Velvet Fingers gripper is also endowed with in-
hand manipulation capabilities through sliding surfaces (here
implemented with controlled conveyor belts) on the inner side
of the links. Analysis of the manipulability ellipsoids of the
gripper [2] has demonstrated a clear improvement in terms of
dexterity when using active sliding surfaces.

4) Needle Chain Gripper: A special-purpose gripping de-
vice — the Needle Chain gripper (Fig. 3(b)), was developed
to address the coffee sack unloading task. The gripper is
designed to grasp and pull a coffee sack from a pile onto
its frame and further transport it to the conveyor belt of the
Empticon II robot, thus facilitating a continuous material flow.
For this purpose, six chains equipped with needles running
synchronized and parallel along the transport direction of a
grasped sack are activated by a servo electrical motor. The tip
of the gripper constitutes the grasping zone where the needles
pierce into the sack for the first time. The activated chains
pull the sack on the gripper and subsequent pins support the
grasping by continuing to pierce into the sack fabric. Proximity
sensors on the gripper monitor the grasping process and stop
the chains after a successful grasp.
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Fig. 3.

5) Sensing Architecture: Both of the robots used were
fitted with a low-cost Asus Xtion Pro Live® structured light
camera, mounted close to the gripping system in an eye-in-
hand configuration. Based on a comparative evaluation of the
accuracy and quality of the sensor data [4], it was deemed
sufficient to outfit the systems solely with one mobile Asus
RGBD-camera each. The acquired range readings are fused
into a world model, using the forward kinematic models of
the robot-camera chain and the measured joint states. Extrinsic
calibration of the camera pose with respect to the kinematic
chain was performed using a combination of a grid-search
method on a sum of pairwise Lo distances between NDT
models [5] of collected point clouds and an open-source
calibration package®*. To avoid synchronization issues between
the camera and the joint state data, models are only updated
when the robot is stationary for a set time duration.

C. Perception Framework

A flow diagram depicting the different building blocks of the

perception pipeline is shown in Fig. 4. Some components of
the pipeline are initially run offline — these include populating
a database with models of objects to be recognized in the scene
at run-time. The offline object-model acquisition is described
in more detail in Sec. II-D. To provide an overview, the various
online processing steps are briefly described.
Pre-Processing: Given the cluttered nature of typical contain-
ers, it is essential to reduce the noise present in the RGBD
data. To do so, we use simple pixel-wise averaging of range
data for a certain time-window, during which the sensor is
kept at a stationary scene-observation pose.
Segmentation: The RGBD raster is divided into contiguous
clusters (segments), which are homogeneous with respect to
certain geometric and/or color-based criteria. We use two types
of segmentation algorithms:

o Type I: model-unaware approaches do not utilize prior

information about the known objects present in the
object-database. In this work, an extended Mean-Shift

3http://www.asus.com/Multimedia/Xtion_PRO_LIVE
“http://wiki.ros.org/ethzas]_extrinsic_calibration

(b)

CAD design of the gripping devices developed: (a) the Velvet Fingers gripper design; (b) the Needle Chain gripper design.

[6] approach is used. The algorithm over-segments the
scene and the resultant atomic-patches form the basis
for downstream segmenters and Object Recognition (OR)
modules.

o Type II: model-aware segmenters may combine neigh-
boring atomic patches from the type I segmenters ac-
cording to some application dependent heuristics, such
as convexity.

Finally, the atomic patches obtained during segmentation pass
through a rough filtering step, which eliminates segments that
cannot possibly be generated by unloadable objects (based on
size and PCA analysis).

Object Recognition (OR) Modules: These modules analyze
the resulting segments to recognize potentially unloadable ob-
jects and compute their 3D poses. Three recognition modules
(see Sec. II-E) were developed to handle different modalities
present in our target scenarios. The texture based recognition
module (Sec. II-El) is used to generate hypotheses about
objects from the database. Hence it serves as an object instance
recognizer and allows to use the additional information from
the database to perform better informed manipulation in the
later stages of the unloading cycle. Objects not present in the
database are handled by the shape-based object recognition
module (Sec. II-E2). In addition to segmenting object candi-
dates, it provides shape category information which is later
used for online grasp planning. The third recognition module
was designed to handle specific perception challenges present
in the coffee sack unloading scenario as described in more
detail in Sec. II-E3. Each of these modules can, depending on
the target application, be executed separately or in combination
with the other modules. The module configurations used in this
work are depicted in Fig. 4: the dedicated sack recognizer is
used for the sack unloading scenario (Fig. 4(a)); a combination
of the texture and shape based approaches is used in the
heterogeneous loose goods scenario (Fig. 4(b).

Hypotheses Fusion: Results coming from different recogni-
tion modules might overlap, have missing information and
more importantly contradict each other. The hypothesis fusion
module uses complementary information available from OR
modules to fuse candidate detections into consistent and more
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Fig. 4. The two instances of our perception pipeline, consisting of the respective processing steps from data acquisition to the hypotheses fusion. The pipeline
for coffee sack perception shown in (a) relies on a single, dedicated object recognition module. In contrast, the pipeline for heterogenous goods perception

in (b) fuses the results of a shape-based and a texture-based recognition module.

confident hypotheses. To this end, correspondences between
the estimated object locations are detected by considering the
overlap of the segmentation patches associated with individual
hypotheses. In case multiple hypotheses from different OR
modules correspond to a single object location, an adaptive
voting scheme is applied with respect to the object identity
classifications of the conflicting hypotheses. In this scheme,
hypotheses originating from OR modules that use a-priori
known 3D object model knowledge from the database (see
e.g. Sec. II-El) are prioritized over those produced by the
less informed sensor observation based OR modules (see e. g.
Sec. II-E2). Finally, hypotheses specifics are also considered
in case of the fusion of object pose information, where object
pose estimations based on database models are prioritized over
pose estimations based on partial object observations in the
scene.

D. Object Database

Shipping containers or mixed pallets often contain a limited
variety of types of goods. As each type of good has to
be recognized and unloaded hundreds of times, substantial
performance improvements can be achieved by maintaining
a database containing models and properties of the unloaded
objects. In addition, the recognition of known objects can
be used for quality control and for accounting purposes,
respectively it is of interest for logistics and mobile manipu-
lation applications in general. Therefore, our system builds on
an object database and provides tools allowing an untrained

person to model goods with a low-cost sensor and without
any costly infrastructure prior to automated unloading. Object
models are acquired using a hand-held Asus Xtion camera
and a set of Augmented Reality (AR) markers printed on
paper and distributed in the environment (as shown in Fig. 5).
The system tracks the pose of the markers and uses them
in a global graph-optimization scheme to achieve high-quality
sensor pose tracking. Individual RGBD views of the object are
used to reconstruct point cloud and mesh models (see [7] for
further details) and to automatically train the textured object
recognition module (Sec. II-E1). The acquired object models
are then also used as an input to an offline grasp planning stage
(see Sec. II-I) and finally saved and referenced along with
all relevant meta-information (e.g. visual features, planned
grasps, physical properties).

E. Object Recognition Modules

1) Texture-based Object Recognition: An extended version
of the texture-based object recognition system presented in [8]
was integrated in the perception pipeline (see Fig. 4(b)) and
employed as an object instance recognition module. For details
of the initial approach, the reader is referred to [8]; here we
only provide a short overview of the extended system. Our
approach consists of two phases, described below: an offline
training step, followed by an online recognition step.
Training: In this offline phase, we process all RGBD images
used to create object models in the object database (Sec. 1I-D).
We extract SIFT visual features on the object surface and store
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Fig. 5.
triangle mesh reconstructed models stored in the database.

Left: Database object acquisition setup. Right: Point-cloud and

the descriptors and their 3D positions relative to the object
coordinate frame. The resulting geometrically-referenced vi-
sual cues are then stored as meta-data for each object in the
database.

Recognition: The online recognition stage consists of bottom-
up and top-down perception steps and combines texture infor-
mation with geometric properties of the scene observed in an
RGBD image. As an input, we take the filtered atomic patches
obtained by the segmentation module, and use them to define
regions of interest in the color image for which we extract
visual features. Next, a RANSAC step is used to generate
hypotheses for the most likely positions of database objects,
while respecting 3D geometrical constraints between feature
keypoints in the observation and the model. The candidate
object poses computed by the matching algorithm are then
used to re-project the models of the database objects back into
the RGBD image plane. Patches from the over-segmentation,
color and range information are then used to test the hypothesis
for consistency and to filter out false positives. Objects with
high consistency scores are considered to be recognized and
their corresponding patches are removed from the input RGBD
image. Detection is then re-iterated on the remaining segments
to handle multiple object instances.

2) Shape-based Object Recognition: The shape-based
recognition module illustrated in Fig. 4(b) focuses on object
class learning using the hierarchical part-based shape catego-
rization method for RGB-augmented 3D point clouds proposed
in [9]. An unsupervised hierarchical learning procedure is
applied, which allows to symbolically classify shape parts by
different specificity levels of detail of their surface-structural
appearance. Further, a hierarchical graphical model is learned
that reflects the constellation of classified parts from the set
of specificity levels learned in the previous step. Finally an
energy minimization inference procedure is applied on the
hierarchical graphical model to obtain the corresponding shape
category of an object instance consisting of a set of shape
parts. As demonstrated in [9], the additional evidence on
different levels of shape detail contained in the proposed
hierarchical graph constellation models is a major factor that
leads to a more robust and accurate categorization compared
to a flat approach [10].

3) Shape-based Object Recognition for Sack Unloading:
Object recognition in the context of autonomous unloading
of coffee sacks faces several challenges. Cargo is loaded in
containers in a dense manner up to the container ceiling,
therefore most of the sacks have to be perceived from the
front with only a small part of the surface exposed to the
sensor. The target objects are deformable, with little texture
information and they are very tightly packed. Nonetheless,
boundaries between the sacks have to be accurately perceived
to facilitate reliable grasping and manipulation.

As described in [11], our perception strategy is based on
modeling sacks by fitting superquadrics, using a model-aware,
two step segmentation of an RGBD scan. The first step uses an
extended version of the Mean-Shift algorithm to achieve over-
segmentation of the scene with small, almost planar patches
as shown in the segmentation component of Fig. 4(a). After
the initial segmentation is complete, the results are passed to
the second level segmentation. This model aware approach is
based on the observation that transitions between patches are
generally convex if they belong to the same sack, or conversely
concave if they belong to different sacks. Therefore, a patch-
graph is built and the edges between vertices are classified
into convex and concave. The patch-graph is then analyzed
and new segments are formed by grouping the small patches
from the initial segmentation (see Fig. 4(a), segment merging
component). These segments form a set of candidate sack
objects on which further shape analysis is performed to filter
out false positives. Finally, view-point aware superquadric
fitting with a re-projection test is used to generate the final
set of hypotheses, along with a set of sack pose estimates
(see [11] for details).

F. Semantic Maps

To enable high-level autonomy, the system needs to main-
tain a consistent model of both the metric and the symbolic
state of the shipping container during unloading operations.
This functionality is provided by a semantic map — a central-
ized data structure which integrates the output from the object
perception pipeline and the 3D map of the container, while
providing interfaces for higher level modules. In addition to
simply storing the list of recognized objects, the semantic map
also models a temporal component of the scene by maintaining
a history of world states by tracking significant changes in the
map. The state of the scene is saved for further reference and
can be accessed by other system components by referencing
a time-stamp. Finally, to enable reasoning about spatially-
sensitive information, entities in the map (e.g. objects or
obstacles) also encode the sensor pose from which they were
observed.

To provide a consistent and time-synchronized world model
to all system modules, all components which require infor-
mation about the environment subscribe and obtain it from
the semantic map, instead of retrieving it directly through
sensors and/or other components. Thus, the Semantic Map
works as an abstraction layer which responds to all queries on
any information about the world, be it static attributes (e. g.
properties of database objects) or dynamic properties (object
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model, bounding box, grasp poses and gripper configurations,
etc.). This central information-repository role of the semantic
map is clearly visible in the framework illustration in Fig. 2:
all exchange of information (the dashed arrows in the figure)
goes through the semantic map. From an implementation per-
spective, this component provides interfaces to the underlying
data structures used for storage (e.g. the object database)
or modeling (e.g. the environment map) and encapsulates
the results of perception and motion planning modules in a
centralized and time-consistent manner.

G. High-level Planning

Once objects in the container have been recognized and
the scene geometry has been modeled, the next task in the
unloading cycle is the selection of an appropriate target good
for grasping. In both scenarios considered here, it is desirable
to select only objects which can be safely removed without
disturbing the equilibrium of the other goods in the container.
Planning safe unloading sequences can be accomplished using
a heuristic approach in some simplified scenarios — e.g.,
always selecting the top-most sack from the front layer in
the coffee unloading scenario; however, in the more com-
plicated object configurations typical for containers packed
with heterogeneous goods, a more structured and complex
approach is necessary. The according component takes a two-
step approach to this problem: first, we create models that
reflect how objects in the scene are physically interacting with
each other, in order to identify which objects are supporting
other objects; second, we use the created models to make
an optimal decision regarding which object is the safest to
remove.

The high-level unloading sequence planner was incremen-
tally developed by progressively relaxing the assumptions
on the created world models. In [12], we consider solid
cuboid shape objects (i.e., carton boxes) with known poses
and models, and we propose a method based on geometrical
reasoning and static equilibrium analysis to extract the gravita-
tional support relations between objects and build a relational
representation that can be further used with a high level Al rea-
soning module to select the safest object. In [13], we assume
that only the shape and pose of a subset of objects composing
the environment are available, and we propose a probabilistic
decision making framework based on a principle of possible
worlds representation and a machine learning approach for
probabilistic estimation of the gravitational support relations.
In [14], we present an extension of our method to address the
problem of autonomously selecting the safest object from a
pile considering objects with rigid convex polyhedron shapes,
and examining the performance of different machine learning
models for estimating the support relation probabilities.

H. Motion Planning

For facilitated motion planning, collision avoidance and
manipulator control, we use a customized version of the
Movelt! motion planning framework. One of the main rea-
sons for modifying the Movelt framework is that it was
originally developed under the assumption that successfully

Fig. 6. Depicted is a sequence of intermediate grasp states where the belts
of the gripper are used to pull the object towards its palm which results in a
transition from a fingertip to an enveloping grasp.

planned trajectories are directly executed by the robot. This
assumption does not hold in our application scenarios, as we
need to plan both approach and escape trajectories prior to
execution, and may need to attempt a multitude of target grasp
poses per object. These requirements in turn necessitate a
consistent handling of the planning scene objects and a careful
managing of the process of attaching and detaching object
collision geometries to the kinematic chain. We handle this
problem by employing a pre-planning process which includes
a set of alternative approach/retrieve trajectories planned under
different start/end pose constraints.

1. Grasp Planning and Execution

Reliable grasp acquisition of heterogeneous goods from
unstructured scenes is a challenging problem. The central idea
of our approach, as presented in [15], [16], is to exploit the low
pre-grasp pose sensitivity and the active surfaces of the Velvet
Gripper in the grasping process. The experiments reported
in [15] showed that in cluttered scenes fingertip grasps are
more likely to be feasible than robust enveloping grasps,
because the latter necessitate large opening angles resulting in
bulky gripper silhouettes for which no collision free approach
trajectories can be found. We employ a simple “pull-in”
strategy (see Fig. 6), which exploits the underactuated nature
and the conveyor belts on the grasping device to embrace the
object in a firm envelope grasp by simultaneously squeez-
ing it while actuating the belts inwards. The corresponding
grasping controller was implemented by means of low-level
current control of the gripper’s actuators, allowing for a simple
compliant behavior. The grasping strategy is implemented in
three steps: first, the fingers are closed with a low current
setpoint until contact is detected; next the belts are actuated
inward, while the gripper closing DoF is kept in a compliant
low-current control mode, allowing the object to be pulled into
the gripper; and finally if the phalanges have wrapped around
the object a higher current setpoint is commanded to ensure a
firm grasp.

To autonomously achieve a grasp on an object, the grasp
planning problem (i. e., finding an appropriate grasp configu-
ration and corresponding joint trajectories) needs to be solved.
We employ a data-driven solution where, in order to deal with
the curse of dimensionality, the grasp synthesis problem (i. e.,
finding a suitable palm pose and gripper joint configuration) is
separated from the problem of planning collision free motions
for the gripper-manipulator chain. In an offline stage, the
database of known objects (Sec. II-D) is populated with a set of
fingertip grasps, synthesized by following an approach similar
to [17] — namely, by minimizing an energy function depend-
ing on the distance and the alignment of the object relative to
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pre-defined desired contact locations on the gripper’s fingers.
Additionally, grasping principles observed in humans (ap-
proach along an object surface normal and orientation of the
hand’s lateral axis normal to one of the object’s principal com-
ponents) are incorporated by imposing appropriate constraints
to the underlying optimization problem. The approach was
implemented in the Grasplt!® framework, and subsequently
used to plan a set of 400 fingertip grasps for each object in the
database. As we can not employ this procedure for objects that
are not in the database, we employ a two-step online approach
to synthesize grasps for deformable and shape-categorized
objects: (1) depending on the rough shape categorization of
the cluster of patches belonging to an object, an according
super-quadric model is fitted [11], (2) surface sampling with
a chosen density is used to compute grasping-configurations
(gripper pose and opening angle) around the super-quadric,
while respecting the geometric constraints imposed by the
shape model. In the online phase, grasps associated with
recognized objects in the container are ranked according to
their proximity to a desired template gripper orientation. The
template is chosen to point into the container and at an angle of
20° towards the floor. This choice prioritizes grasps that would
move the target object out and up, with the active surfaces
acting against gravity to minimize friction between the object
and its support. Finally, motion planning attempts are made
in a feasible-first manner for the highest scored grasps of
selected objects until a valid approach/escape trajectory of the
manipulator is generated and selected for execution. Once a
stable grasp has been achieved, the target good is transported
to a predefined zone positioned at a set height above the
conveyor belt and released. This strategy entails that goods are
dropped from a height of several centimeters which may be
sub-optimal. However, devising a safe grasp release procedure
in the absence of an adequate force control interface for the
manipulator is a difficult task. As force control is a critical
requirement for future refinements of our system, we anticipate
it would greatly simplify the design and implementation of a
better grasp release strategy.

A different strategy is used for the online generation of
grasps for unloading of coffee sacks with the needle chain
gripper. To achieve a robust grasp, the tip of the gripper has
to be aligned with the lower boundary of the target sack. To
this end, we first plan for a grasp at a fixed offset from the
estimated sack front boundary, and then refine the height of
the gripper based on the estimated location of the sack’s lower
boundary. Sacks loaded close to the container floor can only
be grasped with a tilted gripper. Therefore, as a final step,
the height is used to choose between the straight and tilted
gripper configurations. Once an appropriate grasping position
and tilting state are chosen, a multi-step grasp acquisition
procedure is initiated. First, the gripper is brought to the
selected pre-grasp pose. Next, a combined movement of the
two vertical rotary axes of the robot brings the gripper on a
hooking trajectory under the sack to be grasped. As the gripper
comes into contact with the sack, the chains are actuated in
a low velocity / high torque mode, while the axes of the arm

Shttp://www.cs.columbia.edu/~cmatei/graspit

continue to lift and push into the sack. Once the sack passes
over an infrared light proximity sensor on the gripper, the chain
motion is stopped, while the gripper is retracted and lifted.
Finally, the chains and conveyor are simultaneously activated,
completing the transfer of the sack.

III. PERFORMANCE AND EVALUATION

In this section, we focus on the overall system performance
evaluation since even extensive testing of the sub-components
in isolation, as it was previously reported in the respective
scientific publications, is not sufficient to judge the general
suitability of the presented approach for the task of automated
container unloading, respectively autonomous manipulation in
logistics applications in general. Our evaluation focused on
measuring three main performance indicators — unloading
cycle times per object, percentage of successfully unloaded
goods, and amount of damage to the goods. These criteria
stem directly from the requirements on a potential industrial
product: such a system should perform at runtimes, success
rates and damage rates close to those of human workers.

A. Unloading Coffee Sacks

The coffee sack unloading system was tested in real-
world conditions at a coffee storage warehouse owned by the
logistics services provider Vollers®. Containers were packed
with 70 kg coffee sacks (see Fig. 7(a)) in a manner consistent
with typical shipping conditions. A video of the system
performance can be found on the RobLog youtube channel’.
The average cycle time for unloading a single coffee sack
was 67 s(oc = 8.2 s, median58.7 s), with all coffee sacks
successfully unloaded in our tests (/N = 58 for this evaluation).
The damage to the goods in this scenario was judged by
examining the tear pattern of the coffee sacks at the output side
and marking the number of sacks that would not be re-usable
for transportation. Throughout all the tests of the platform,
seven percent of sacks were deemed unusable after unloading.

The current unloading practice at Vollers is to use four
employees: two workers using two hooks each for unloading,
a forklift driver and a weighing scale operator. A fully packed
twenty-foot container can transport up to 24 tons of coffee,
with roughly 300 to 400 sacks, and is usually unloaded in
about 30-45 minutes on average. Thus, human picking rates
are currently about 6 to 10 seconds per sack (with 4 workers),
which is an order of magnitude faster than the autonomous
system. According to our industrial partner, taking into con-
sideration that the autonomous solution can be employed over
longer shifts, the current system is already economically viable
in some use cases. Furthermore, the automation of unloading
is highly desirable to improve the working conditions in the
handling of coffee and similar goods like cacao. Especially,
labor regulations are worldwide becoming increasingly stricter
with respect to the maximum amount of lifting allowed during
the daily shift of a human worker. Coffee handling operations
in the EU for example, where most of the coffee roasting and

Shttp://www.vollers.com
https://youtu.be/U7_1xH-qB5I
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(b)

Fig. 7. Unloading of coffee sacks was evaluated on real-world scenarios at a warehouse owned by Vollers GmbH. A sample fully packed container is shown
in Fig. 7(a). Unloading of loose goods was evaluated over many sample scenes (one instance shown in Fig. 7(b)). A more challenging cluttered evaluation

scenario is shown in Fig. 7(c)
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Breakdown of the runtimes of the two technology demonstrators. Fig. 8(a) shows the time taken by each system component in the coffee sack

unloading scenario. Fig. 8(b) shows the corresponding component-wise time breakdown for the heterogeneous goods unloading scenario. Plots are shown as
box-plots, where each box is centered at the average time value and extends to cover the 25th and 75th percentile, the thick line denotes the median, and the
whiskers extend over the full range of inliers. Data samples distribution is shown as a scatter plot on the left of each box.

processing takes place, will be forced to switch to automation
as soon as the currently practiced operations are no longer
compatible with labor laws.

In order to identify how the system cycle times can be
improved, we examine a breakdown of the runtime per compo-
nent as shown in Fig. 8(a). Clearly, the system spends a large
portion of the cycle time in grasp acquisition. Two separate
clusters of grasp runtimes are also easily identifiable in this
plot, with the more time consuming cluster corresponding to
the more difficult grasps of sacks near the container floor.
The second most time consuming module is object recogni-
tion, followed by the motion execution related components.
Following these results, in order to achieve faster cycle times,
future improvements of the system would primarily focus on
optimizing the grasp acquisition procedure.

B. Unloading Loose Goods

As mentioned before, unloading of heterogeneous loose
goods was selected to evaluate the system performance on
scientifically more challenging problems. The relatively light
(up to 5 kg) and loosely packed goods in the container
would present little difficulty for a human worker, yet pose

significant challenges to an autonomous system due to the
complexity of the scenes. Therefore, in this scenario we do
not aim to match the speed of manual container unloading, but
rather concentrated on evaluating the robustness of the system
to various object stacking configurations. The system was
evaluated on a multitude of different container configurations,
one of which is shown in Fig. 7(b). A video of a sample system
run is available on the RobLog youtube channel®.

Test scenes for this scenario contained on average between
20 and 25 objects from 7 to 9 different object classes, 5 of
which were modeled in the object database, i.e., the scenes
also contained a substantial amount of unknown objects to be
unloaded. On average, the system was capable of successfully
unloading 80% of the target objects at a cycle time of 200.8
s(oc = 19.3 s, median, 198.9 s, N = 50), i.e., about 3.5
minutes. Most of the unloading failures were due to failures
to find collision-free grasping trajectories for objects placed in
difficult configurations — e. g., in proximity to the container
walls, or in a tight packing with other objects. Only a handful
of objects were not recognized by any of the modules in
the recognition pipeline, and in very few cases this problem

Shttps://youtu.be/34ZXK6L1ixY
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Fig. 9. Snapshots from an unloading sequence in a challenging cluttered scenario. Starting from a sensing pose, the robot approaches, grasps and extracts a
parcel (frames one to three). Grasps acquired on a deformable teddy bear and a five liter barrel are shown in the next two frames.

persisted in between successive cycles. Fig. 8(b) shows the
module-wise break down of runtimes in an unloading cycle.
Other than in object recognition, the system also expended a
lot of effort on motion planning, and subsequently on motion
execution. One of the reasons for the long execution times
is that, in the interest of safety, the robot was operated at
a reduced speed (10% of the maximum drive capacity). The
second, and often more prominent cause is linked to the poor
quality of the motion plans obtained for some of the trajecto-
ries (see Sec. IV for discussion). Overall, the system performed
within good time bounds and success rates for a research
prototype, and did so with virtually no damage to the unloaded
goods. To the best of our knowledge, no comprehensive results
of a complete autonomous manipulation system, encompassing
all steps from perception, through grasping and unloading, in
similarly complex settings have been reported previously.

To stress test the system and explore the boundaries of
the proposed approach, we also evaluated the performance
on a significantly more challenging cluttered configuration
of goods in the container as shown in Fig. 7(c). A se-
quence of still shots from various stages of unloading in this
challenging setup are shown in Fig. 9. Overall, the system
performance gracefully degrades, without suffering from a
significant failure. As there are many objects in the scene,
both recognition and grasp / motion planning take significantly
longer, increasing the average cycle time to 313 s (o = 63
s, median 300 s, N = 26). Complete unloading of all objects
in the container in this scenario is not always possible, as the
likelihood of objects stacking in unreachable or collision-risky
configurations increases significantly. As discussed in the next
section, this limitation is a strong argument in favor of using
compliant force-limited robots for unloading tasks in future
applications.

IV. LESSONS LEARNED

In this section we discuss some of the lessons learned over
the four years spent in designing, implementing and testing the
proposed automation framework and the two demonstrators.
From one perspective, the design decisions taken proved to be
sound, as evident by the performance on quite challenging
and realistic test scenarios. On the other hand, over the
course of development it was evident that some of the system
components could not fully cope with the hard requirements
posed by the container unloading problem.

Modular approach: Probably the main reason for the
success of the two technology demonstrators is the modular
system architecture. In addition to enabling easier integration
between components, this approach was critical in fast migra-
tion of code between the two hardware platforms, as well as
rapid deployment of new system components.

Perception and manipulation: Another main beneficial
system feature was the synergy between perception and grasp-
ing / manipulation. On one side, the large tolerance to object
pose uncertainty inherent in the Velvet Gripper eased the
requirement on the perception system. On the other hand, the
primitive shapes fit by the perception system greatly simplified
the difficult problem of online grasp generation for unknown
objects.

Compliance: A key to the successful grasping of goods
in the loose goods scenario was provided for by the inherent
compliance of the gripping device. While compliance in the
grasping device was beneficial, the lack of compliance in the
stiffly position controlled manipulator was one of the main
drawbacks of our system. The container unloading scenario
we explored in this project inherently requires that the robot
comes into contact with the environment (in particular with the
goods being unloaded). As the environment is unstructured and
modeled based on noisy range measurements and uncertain
object pose estimates, ensuring collision-free trajectories for
a position controlled robot was one of the main challenges
we had to address. Thus, we believe that a compliant control
approach which sacrifices some precision for the sake of better
interaction capabilities, would be preferable.

Grasp and motion planning: A somewhat related issue
we identified was the planning of collision-free trajectories for
the gripper-manipulator chain. Especially in the heterogeneous
goods scenario, motion planning accounted for roughly 25%
of the idle time of the robot. The motion planning problem
is per se difficult, as the configuration space of the robot is
high-dimensional and the distribution of valid collision-free
states is potentially complex. In addition, we are forced to plan
many possible trajectories until we find a valid grasp approach
and object extraction plan. The reasons for this are two-fold:
first, the high amount of clutter often causes grasp poses to
be in collision; and second, placing and extracting the gripper
through clutter causes a bottleneck in the configuration space,
which in turn reduces the probability of our sampling-based
planner to draw valid configurations. These issues, combined
with the well known problems of sampling-based planners
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(unnatural and sub-optimal trajectories, probabilistic complete-
ness, termination issues) and the particularities of handling the
Movelt scene collision models, resulted in major development
difficulties for the motion planning module. Therefore, one
of the main future research directions we identified is a
better integration of grasp- and trajectory planning — possibly
exploiting the large pose uncertainty tolerance of the gripper
and a compliant manipulator.

V. CONCLUSIONS AND OUTLOOK

In this article we presented research on the automation
of logistics processes in form of two autonomous container
unloading systems. One is targeted at an industrial scenario in
form of the automated unloading of coffee sacks and provides
an already economically interesting performance. The other
demonstrator deals with an advanced scenario, namely the
unloading of various objects from a shipping container, and it
is used to demonstrate the capabilities of our developments in
the context of medium- to long-term prospects of automation
in logistics. To meet the challenges posed by our application
domain, we developed and evaluated an integrated software
framework, with individual components contributing novel so-
lutions to problems in perception, modeling, grasp- and motion
planning, as well as high-level planning and autonomy. In
order to ensure robust handling of the unloaded goods, we de-
vised novel hardware solutions and endowed our autonomous
systems with two customized grippers. Although the main
focus of this work is the automation of container unloading,
most of the developed techniques are relevant for a much
broader set of robotics applications. In particular, the presented
framework and its building blocks can be further utilized
in a variety of other automated logistics problems: ranging
from de-palletizing, through commissioning, to bin picking.
It is our hope that the growing research community working
on robotics for logistics applications will find inspiration in
the presented system and in particular in the lessons learned
identified in this article, in order to develop ever better and
more capable robots.
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