
1

Flexible Automation Driven by Demonstration: Leveraging Strategies that Simplify

Robotics

Andrea Giusti1,2,5, Martijn J.A. Zeestraten3,5, Esra Icer2, Aaron Pereira2, Darwin G. Caldwell3, Sylvain

Calinon4,3, Matthias Althoff2

Fig. 1: Modular robot setup used in the experiment.

I. RECONFIGURABLE AND AUTOMATICALLY

PROGRAMMABLE ROBOTS

How do I automate this task? This is a crucial question for

production engineers. In classical industrial automation—think

of a car factory—robots perform a small set of tasks for long

periods of time. They were selected because their kinematic

structure and strength suited the task requirements, and their

motions were pre-programmed by a skilled programmer. In

flexible manufacturing environments, tasks may change daily

or hourly. The classical approach to automation is less suitable

here: Buying a dedicated robot for each set of tasks is

uneconomical and coding each task is too time consuming.

Further, qualified programmers with the requisite knowledge

The research leading to these results has received funding from the People
Programme (Marie Curie Actions) of the European Union’s 7th Framework
Programme FP7/2007-2013/ under REA grant agreement number 608022.

1Fraunhofer Italia Research s.c.a.r.l, Innovation Engineering Center (IEC),
39100 Bolzano, Italy. andrea.giusti@fraunhofer.it,

2Department of Informatics, Technische Universität München,
85748 Garching, Germany. {andrea.giusti, esra.icer,
aaron.pereira, matthias.althoff}@tum.de,

3 Department of Advanced Robotics, Istituto Italiano di Tecnologia,
Via Morego 30, 16163 Genova, Italy. {martijn.zeestraten,
darwin.caldwell}@iit.it

4 Idiap Research Institute, Rue Marconi 19, 1920 Martigny, Switzerland.
sylvain.calinon@idiap.ch

5 These authors contributed equally to this work.

might not be available. To solve these problems, we propose a

framework for modular robots that determines their structure

and program based on human demonstrations.

Programming by Demonstration (PbD) [1], [2] aims at

programming robots solely based on demonstrations. Quick

and user-friendly, PbD can replace teach pendants or text-

based command interfaces, which are currently common in

industry. It is a user-friendly method for skill transfer because

it leverages a learning strategy natural to humans: imitation.

Just as PbD offers accessibility and flexibility in terms of

programming, modular robots offer these benefits in terms

of robot assembly and control. Although anthropomorphic

manipulators seem an obvious choice to mimic human demon-

strations, a single manipulator is not likely to be capable of

performing the large variety of tasks found in industry. For

example, while demonstrating the task, the human may need

to step (in order to reach) or use several redundant degrees of

freedom in their body; these DOFs may not be necessary in a

robot optimized for the task. Our approach constructs a task-

specific serial kinematic manipulator with the required degrees

of freedom: this will have the required range of motion, but

cost less than full-sized humanoids.

However, it is neither trivial to find the optimal module

assembly, nor to control the resulting robot robustly and pre-

cisely. The large design space makes modular robot synthesis

complex and time-consuming. To tackle this, both exhaustive

search-based and sampling-based methods have been used

[3]–[6]; the former give consistent results but the latter are

computationally more efficient. Our framework generates the

most suitable robot assembly for the demonstrated task (e.g.

the most energy efficient), based on Icer et al. [4] using an

exhaustive yet efficient hierarchical composition synthesis.

The modularity of our approach makes the control design

more complex since each assembly exhibits different kinemat-

ics and dynamics. Most control approaches for modular robots

are decentralized and are either model-free (limiting perfor-

mance) or model-based (involving communication between

modules). In this paper, however, we use a simple approach for

on-the-fly generation of centralized model-based controllers

[7], [8]. This approach automatically derives the kinematic and

dynamic description of the robot directly after assembly by

processing electronically-transmitted module data. In contrast

to decentralized architectures, our approach can avail of well-

established centralized control techniques, including tracking

controllers and dynamic scaling of trajectories.

Our work combines methods in PbD and modular robots

for the first time. This combination yields a flexible and user-

friendly robotic system which automatically finds the most

suitable assembly of modules and generates the controller,



2

Fig. 2: Overview of the method: A demonstrator first demonstrates a task with a demonstrator tool. The trajectory generator

converts this into a trajectory, which is used by the robot generator to find the optimal robot assembly from the available

modules. Finally, the controller is generated and the task is automated.

from a task demonstrated by an operator. To program a

different task, the operator simply demonstrates it, reassembles

the robot in the most suitable assembly suggested, and runs the

newly generated controller: reassembly and reprogramming

are achieved in one go. This approach provides several (cost-

saving) advantages over anthropomorphic robots for small and

medium enterprises: the ability to reconfigure makes a single

system applicable to a wider range of tasks (flexibility); the

amount of expert knowledge required to program, assemble

and control a robot is low compared to conventional ap-

proaches (ease of use); the task-specific optimization reduces

the number of moving parts (reduced maintenance); modular

robots are easier to maintain as their parts are designed to be

replaced (less down time).

We next detail the complete approach and demonstrate it

in two different applications using the modular robot setup in

Fig. 1.

II. A UNIFIED APPROACH TO FLEXIBLE AUTOMATION

Figure. 2 illustrates our concept. A human operator has

a task to automate, dedicated tools to demonstrate the task

(see e.g. Fig. 5), and a set of robot modules. First, the user

performs the task using the demonstrator tool to provide the

system with demonstration data. Next, she places all task-

relevant objects into their intended positions for production.

The object locations are sensed and delivered together with the

demonstration data to the Trajectory Generator. As detailed in

Section II-A, the data are encoded in a task model from which

the desired task-space trajectory is generated. This trajectory

is fed to the Robot Generator which finds the most suitable

module assembly as described in Section II-B. Finally, after

assembly, the low-level motion control (Controller Generator)

executes the demonstrated task as detailed in Section II-C.

A. User-Friendly Task Transfer

Demonstration data are core to our approach. They can be

obtained in various ways: Users can record the robot state

(a) The peg-in-hole task is demon-
strated in different contexts. Here,
we demonstrate a point-to-point
movement from the green to the
purple hole. At each demonstration,
the end-effector trajectory (gray),
and peg position and orientation are
recorded.

(b) To create a context in-
dependent representation of
the end-effector data, we
project them into the (local)
coordinate systems that are
linked to the green and pur-
ple holes.

(c) The projected data are
encoded using a Gaussian
Mixture Model (GMM),
which approximates the
joint probability density
function P(xf1,xf2, t).

(d) To generate the most-
likely trajectory in each
coordinate system, the
conditional distribution
P

(

xf1,xf2|t
)

is
computed at each time
step, yielding a tube of
Gaussians.

(e) Given new positions of the two
holes, these results are projected in
the global coordinate system. They
are then fused using the product of
Gaussians to obtain the desired tra-
jectory for the current situation (the
yellow tube represents the trajectory
distribution).

D
E

M
O

N
S

T
R

A
T

IO
N

S
M

O
D

E
L

R
E

P
R

O
D

U
C

T
IO

N
S

Fig. 3: Illustration of the task-parameterized model.

while manually controlling the robot through teleoperation,

or by physically interacting with it (kinesthetic teaching).

Alternatively, they can record themselves performing the task



3

and transfer these data to the robot. Since the robot is not

assembled at the time of demonstration (as its structure is to

be determined) we choose the latter method.

To let PbD surpass simple record-and-replay behavior, the

robot must understand the objective underlying the demon-

stration data; it must comprehend what to imitate, as such

insight lets it generalize skills to new situations. For example,

while it may not understand “slice” a “pancake” in “half”, it

understands that it should move its end-effector above a certain

object, align the end-effector plane perpendicular to the plane

of this object, and move it downwards until a certain point on

the object. Given this, the robot must use its body to achieve

imitation. This requires the robot to know how to imitate. Any

method for PbD must address these core questions, which

typically involves pre-structuring the task models.

1) What to imitate: We use a Riemannian Task-

Parameterized Gaussian Mixture Model (TP-GMM) to model

the task [9]. This model can adapt a demonstrated task to new

contexts, and allows the robot to handle both position and ori-

entation data. Context adaptation is achieved by representing

the task in different (local) coordinate systems, as illustrated

in Fig. 3. These coordinate systems are linked to task-relevant

objects or landmarks (the task context), and related to a global

coordinate system.

By considering the demonstration data from different per-

spectives, the context-related robot motions and their impor-

tance in task execution can be determined. When demonstra-

tions are given in different task contexts (Fig. 3(a)), variant

and invariant regions appear in the local coordinate systems

(Fig. 3(b, c)). The observed variance relates to the importance

of an object or landmark during task execution: invariance

indicates that the end-effector moved consistently with respect

to an object, and variance indicates that the object state was

irrelevant to the end-effector motion. These local motions and

their (co)variance are captured in the TP-GMM: this model

represents the robot’s understanding of the task, i.e. what to

imitate.

2) How to imitate: Having modelled the task, we obtain

a trajectory—how to imitate—as follows. We detect objects

and their coordinate systems in task space, and transform the

TP-GMM into task-space coordinates (Fig. 3(d)). Using the

product of Gaussians, we obtain a distribution of trajectories in

the task space, whose mean is the desired trajectory (Fig. 3(e)).

Furthermore, the robot must know how to relate the demon-

strated data to its kinematic structure: a mapping is required

to relate the demonstrator state to the robot state. This clas-

sical problem is called the correspondence problem [2]. We

resolve it practically, by working in task space using dedicated

demonstrator tools (see Section. III).

3) Encoding Orientation: The use of task space requires

us to cope with the non-Euclidean space of orientation data.

Unlike position data, statistical operations on orientation data

are not straightforward as they do not allow Euclidean oper-

ations (e.g. the sum of two rotation matrices is not a rotation

matrix). Riemannian geometry and statistics provide a way to

perform PbD on orientation data [9].

Riemannian TP-GMM has several of advantages over other

well-known models such as Dynamic Movement Primitives

(DMP) [10] and Probabilistic Movement Primitives (ProMP)

[11]. Whereas DMP only adapts to changes in goal position,

TP-GMM encodes relations to landmarks anywhere along the

motion trajectory. Furthermore, as TP-GMM encodes spatial

relations, it also extracts soft motion constraints from the

demonstration data. Fig. 3 shows how this allows the motion

to adapt to different orientations of start and goal landmarks.

Like TP-GMM, a ProMP allows adaptation of the trajectory

while respecting movement constraints. However, its structure

is inherently Euclidean, and therefore not well-suited for

orientation data.

4) Context-dependent movement adaptation: Movement

adaptation in DMP or ProMP requires the specification of a

new end-effector (goal) position explicitly. In the peg-in-hole

example, one must specify the exact center of the hole to

allow the DMP or ProMP to reach it. In contrast, TP-GMM

only requires location and orientation of a coordinate system

linked to the hole. These coordinate systems adapt not only

the end-point, but also the direction of the movement for the

approaching phase. They can be arbitrarily set without prior

knowledge of the task at hand, making TP-GMM more generic

than DMP or ProMP. For the peg-in-hole example, the origin

of the coordinate system linked to the hole does not need to

lie at its center; the required relation between end-effector and

hole is inferred from demonstration data.

B. Robot Assembly

The set of modules in our setup comprises a base, three joint

modules, five link modules and one end-effector (see Fig. 4a).

The number of possible assemblies from a set of modules

grows rapidly with the size of the set, making selection of

the optimal assembly for a task challenging. To solve this

combinatorial problem, we eliminate assemblies hierarchically

[4]. We perform a series of increasingly computationally

expensive tests on all assemblies and eliminate unfeasible ones

at each step, as early as possible. From the remaining feasible

assemblies, we pick the best (in our case, that which can

achieve the task fastest).

Our first test eliminates all assemblies which do not have

the required Degrees of Freedom (DOFs). Next, we sample

end-effector poses from the trajectory given by the Trajectory

Generator in Section II-A, and first eliminate assemblies

whose total length is less than the distance from the base to

these poses, then assemblies that cannot achieve the poses

kinematically and statically are removed, and finally those

assemblies that generate self-collision are discounted. For

inverse kinematics we use an iterative solver initialized from

several points to improve the chances of finding a valid

solution. Self-collision is detected as in [4]: enclosing module

geometry in spheres or cylinders, and determining collision

from pairwise distance checks.

From the remaining set of feasible assemblies, we generate

the trajectory in joint space using the inverse kinematics

scheme of Section II-C and scale speed such that joint po-

sitions and torque limits are respected. The optimal assembly

is that which can perform the task fastest. Other optimality

criteria may be considered (e.g. minimal energy consumption).



4

Base Module
Link Modules

Joint Modules

End Effector Module

(a) (b)

Fig. 4: (a) The given modules and (b) a set of possible assemblies. The sketches of the robot components have been derived

using CAD data which has been downloaded from the website of the robot manufacturer (Schunk GmbH).

If no robot is found at the assembly selection stage, the path

is considered unfeasible for the available set of modules. The

time required for obtaining this result depends on the number

of modules available, their geometry, and the actual path.

C. Robot Control

Once the assembly is selected and the user has assembled

the robot, the controller should make the arm perform the task

without additional user intervention, which would otherwise

limit the swift reconfigurability of the overall system. The

realization of such a controller is nontrivial, particularly since

the kinematics and dynamics of the assembled robot depend

on the modules and their configuration.

To solve this challenge, we automatically generate cen-

tralized model-based controllers from kinematic and dynamic

parameters of the modules [7], [8]. Each module has a unique

ID and a set of characterizing parameters (module data),

stored either in the module or in a database. The module

data are based on an extension of the Denavit-Hartenberg

(D-H) convention as in [7], which is necessary to resolve

the typical non-uniqueness of the standard D-H notation for

certain relative joint axis orientations. After assembly, the

module data are collected by the central control unit which

generates a kinematic and dynamic model of the robot, from

which the controller is derived directly [8].

We denote the array of structures created by the cen-

tral control unit by ModRob. It contains the module data

and order of assembly. For an assembled robot with N

degrees of freedom, we wish to track sufficiently smooth

joint-space trajectories qd ∈ R
N and automatically deploy

a classical passivity-based tracking controller. We denote

by NE∗
mod (· · · ,ModRob) the algorithm that synthesizes

ModRob into a description of the assembled robot as in

[8] and performs the modified recursive Newton-Euler (N-E)

method for passivity-based control as in [12]. By denoting

respectively with M(q), C(q, q̇)q̇, n(q, q̇) the inertia matrix,

the vector of Coriolis and centrifugal terms and the vector of

friction and gravity terms, this algorithm efficiently provides

M(q)q̈+C(q, q̇)q̇a + n(q, q̇) =

NE∗
mod (q, q̇, q̇a, q̈,ModRob) ,

where q ∈ R
N is the vector of joint positions. Then, the

passivity-based control commands are computed as:

u = NE∗
mod (q, q̇, q̇a, q̈a,ModRob) +Kr,

where

q̇a = q̇d +KV (qd − q) , r = (q̇d − q̇) +KV (qd − q) ,

and where K and KV are positive definite matrices of

proper dimension. Note: for each new assembly, the structure

ModRob changes accordingly, so that the low-level control

is always computed with the correct model and thus always

ensures global tracking.

To track the encoded trajectories in task-space and pro-

vide the proper reference qd to the passivity-based tracker

mentioned above, we solving the inverse kinematic problem

numerically online [13]. By denoting with pr ∈ R
3 the

desired end-effector trajectory for the translation, with or =
[ηr, ǫr]

T
∈ R

4 the orientation unit quaternion, and with J†

the Jacobian pseudo-inverse (or damped least-squares inverse

[14] near the kinematic singularities), the following kinematic

control scheme is employed1:

q̈d = J†(qd)
(

ν − J̇(qd, q̇d)qd

)

− κ
(

I− J†(qd)J(qd)
)

q̇d,

(1)

with

ν =

[

p̈r +Kv(ṗr − Jp(qd)q̇d) +Kp(pr − pfk(qd))
ω̇r +Kω(ωr − Jω(qd)q̇d) +Koeo(qd)

]

.

(2)

1When moving the robot from its rest position to the initial pose of the
trajectory, we wait until the inverse kinematic solution converges before
moving with a point-to-point motion in joint-space.



5

(a) Spring loaded pen (b) Pickup Tool

Fig. 5: Demonstrator tools used in the experimental evaluation.

In (1) and (2), κ, Kv , Kp, Kω , Ko are positive gains, pfk(qd)
is the position of the end effector computed with the forward

kinematics and finally

eo = ηfk(qd)ǫr − ηrǫfk(qd)− S(ǫr)ǫfk(qd)

is the quaternion-based orientation error feedback vector in

which S(·) is the common skew symmetric matrix operator;

ηfk(qd) and ǫfk(qd) are the components of the unit quater-

nion for orientation computed with the forward kinematics.

Since the assembled robot may be kinematically redundant, we

add damping in the null space to prevent floating null-space

motions as in [15]. We emphasize that, given the automatically

generated D-H table from ModRob, no user intervention is

required after reassembling the robot.

III. APPLICATION

Two common types of automation tasks are trajectory

tracking, where a robot end effector must follow a particular

trajectory, and pick and place tasks (P&P), where a robot must

grasp an object and deposit it at another location. Welding and

gluing are examples of trajectory tracking, while bin picking

is an example of P&P. In this section, we demonstrate our

approach on both types of task.

A. Experimental Setup

The skill transfer uses a Vicon infrared motion tracking

system. Though unconventional in industry, the system is

easy to set up and provides accurate tracking of any object

equipped with markers. The different tasks are demonstrated

with demonstrator tools (see Fig. 5), each relating to a

specific end-effector module. The known kinematic relation

between the demonstrator tool and the corresponding end-

effector module enables accurate transfer of end-effector pose

trajectories.

During demonstration, we record poses of both the demon-

strator tool and of objects that are relevant to the task (e.g.

door pose, P&P locations). Irrelevant data at the start and

end of each demonstration are manually cut using a graphical

user interface, and the temporal signals are rescaled linearly

to the interval [0, 1]. For reproduction, we optimize the ve-

locity profile along the trajectory to improve performance

and respect joint limits. Although the optimization might

alter the demonstrated motion dynamics, in many industrial

applications, including our examples, successful task execution

does not depend on this.

Our modular robot comprises the Schunk LWA-4P arm and

additional modules we manufactured to enhance its reconfig-

urability (see Fig. 4). The low-level control is implemented

using Simulink Real-Time and a Speedgoat Real-Time target

machine equipped with a CAN-bus communication module.

The sampling rate used for control is 500Hz.

B. Experimental Results

Our industrial partner BMW provided a typical scenario

they would automate on their shop floors: fixing insulation

material onto a car door. This skill requires pressing a previ-

ously mounted piece of fabric along a specific trajectory. An

overview of the experimental setup and the results obtained are

provided in Fig. 6. The skill is transferred using 3 demonstra-

tions. To attain the required pressure, we used a spring-loaded

pen tool (Fig. 5a). By pressing the tool firmly against the

door frame while tracking the desired trajectory, the required

pressing force can be achieved. Following the procedures laid

out in sections II-A and II-B, we obtain the skill model from

the demonstration data, and the module assembly. The task

model in Fig. 6 displays the demonstration data (in red),

the resulting skill model (green colored ellipses), and the

reproduction (in blue). As the tracking task requires large

precision, the Gaussians display low variance perpendicular

to its trajectory. The generated trajectory mimics all essential

motion features for proper profile tracking.

The procedure for finding the optimal robot assembly starts

with the search for all assemblies that could fulfill the task.

With the given modules, more than 9.8 million module com-

binations can be generated. Based on the assumptions that:

i) all assemblies start with a base-module and end with an

end-effector module, and, ii) two joint modules cannot be

assembled consecutively; only 83 assemblies remain. From

these, we eliminated assemblies that could not perform the

task kinematically or statically (70), or encountered collision

(9). From the remaining four assemblies we selected the one

that could perform the task fastest without exceeding the joint

limits. The optimal robot assembly is displayed in the center

of Fig. 6.

After the robot is assembled, the controller is automatically

generated as described in Section II-C. Finally, the task is

replicated using the learned skill model and the robot con-

troller. Snapshots of a reproduction are displayed at the bottom

of Fig. 6.

To demonstrate the flexibility of the approach, we use the

same experimental setup to transfer a P&P task, as shown

in Fig. 7. As in the door task, a dedicated demonstrator

tool (Fig. 5b) is used to capture the data. The task is to

transport an object from the red pick location to the green

place location (see e.g. top of Fig. 7). Additionally, we wish

the robot to replicate the learned skill for previously unseen

combinations of pick and place locations. To achieve this,

we demonstrate the task on 9 different combinations of pick

and place locations. The demonstrations allow the robot to

determine the importance of the pick and place locations in

different sections of the trajectory. This is reflected in the

Gaussian Mixture Model (GMM) fitting the data set, as shown



6

in Fig. 7, by the colored ellipsoids. The algorithm clearly

distinguishes the variant and invariant regions required to

reproduce the task; low variant regions appear in the pick and

place frames at pick and place actions, respectively.

The optimal assemblies of the robot are determined based

on the demonstration data, and on the desired pick and place

locations. The approach for selecting the optimal assembly

follows the same steps of the previous task. In this case,

the total time required for finding the optimal assembly was

under 5 minutes. At the bottom of Fig. 7 are two successful

replications of the pick and place task in previously unseen

situations. As the task configuration changes, the ability of

the robot assembly to execute the task needs to be assessed.

This is achieved by applying the inverse kinematics solver in

advance.

IV. DISCUSSION

Our proposed approach has three fundamental steps: trajec-

tory generation, assembly selection and automatic controller

generation. Here, we discuss open challenges and possible

improvements for each step.

The number of demonstrations required very much depends

on the task to be transferred (namely, if there are possible

variations), and on the teaching propensity of the demonstrator

(namely, if the user shows useful variations of the same task

to the robot learner). Then, the amount and quality of the

demonstrations will influence the generalization capability of

the approach, meaning that the number of demonstrations

also depends on the generalization capability that is expected

during reproduction. Furthermore, obstacles have not been

considered in the trajectory generation. This is an interesting

research problem, whose solution would enhance this frame-

work significantly. A potential approach for modulating the

trajectory around obstacles is presented in [16].

The task encoding requires the selection of the number of

Gaussians. Too few Gaussians, and fine movements required

for successful task execution will be omitted; too many will

overfit the data, and introduce movement artefacts that were

not demonstrated. Although methods exist to automatically

select the number of Gaussians, they are not ideal for trajectory

data.

When a robot is expected to change tasks frequently, re-

configuration of the robot might not be the most time efficient

alternative. This aspect will be considered in future work by

enhancing the optimization procedure with the inclusion of

reconfiguration cost, and by optimizing over a set of tasks

rather than just one. Yet, to (optimally) execute dissimilar tasks

different robots are required. Our modular approach allows

such task-specific optimization, while in the past this would

have required the acquisition of dedicated robots.

The presented approach assumes that the kinematic param-

eters of the modules and the location of the base module are

accurately known, and that the tracking system is calibrated.

However, the reader should keep in mind that high-precision

positioning (say better than a human) requires the approach to

be extended, e.g., using a scale model for demonstrations and

spatially scaling human motions.

Certainly, an interesting extension of the motion con-

troller would be the inclusion of automatic generation of an

impedance control scheme starting from the automatically gen-

erated robot description from [7], [8], which could potentially

be combined with the demonstration-driven encoding of the

impedance target parameters as in [17], [18]. In addition,

approaches to optimize the redundancy resolution, instead of

simply adding damping for the null-space motions, could be

also considered.

V. CONCLUSION

Motivated by the increasing need for easy implementation of

automation in small and medium-sized enterprises, we present

a scheme whereby a task is demonstrated by a human, and the

optimal modular robot assembly as well as the control for this

task is automatically generated. Despite tremendous progress

in PbD in recent years, the ability to reproduce demonstrated

skills may be limited by the structural capability of classi-

cal fixed-structure robots. With the proposed framework, we

resolve such hardware limitations by making the physical

structure fully adjustable: we assemble a robot from modules,

which are selected to optimally fit the task programmed by

demonstration. We also remove limitations to modular robot

technology by performing trajectory planning using PbD and

by generating robust motion control automatically.

Our framework, for the first time, combines recent develop-

ments in PbD, assembly selection, and controller synthesis of

modular robots. It enables the exploitation of modular robot

reconfigurability and paves the way for flexible automation.

REFERENCES

[1] A. G. Billard, S. Calinon, and R. Dillmann, “Learning from humans,”
in Handbook of Robotics 2nd Edition, B. Siciliano and O. Khatib, Eds.
Secaucus, NJ, USA: Springer, 2016, pp. 1995–2014.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robot. Auton. Syst., vol. 57, no. 5,
pp. 469–483, May 2009.

[3] C. J. Paredis and P. K. Khosla, “Kinematic design of serial link
manipulators from task specifications,” The International Journal of

Robotics Research, vol. 12, no. 3, pp. 274–287, June 1993.

[4] E. Icer, A. Giusti, and M. Althoff, “A task-driven algorithm for config-
uration synthesis of modular robots,” in Proc. of the IEEE Int. Conf. on

Robotics and Automation, May 2016, pp. 5203–5209.

[5] E. Icer and M. Althoff, “Cost-optimal composition synthesis for modular
robots,” in Proc. of the IEEE Multi-Conference on Control Applications

(CCA), September 2016, pp. 1408–1413.

[6] E. Icer, H. A. Hassan, K. El-Ayat, and M. Althoff, “Evolutionary cost-
optimal composition synthesis of modular robots considering a given
task,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems, September 2017, pp. 1408–1413.

[7] A. Giusti and M. Althoff, “Automatic centralized controller design for
modular and reconfigurable robot manipulators,” in Proc. IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, September 2015, pp. 3268–
3275.

[8] ——, “On-the-fly control design of modular robot manipulators,” IEEE

Trans. on Control Systems Technology, vol. –, no. –, pp. –, – 2017 (in
press).

[9] M. J. A. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, and D. G.
Caldwell, “An approach for imitation learning on Riemannian mani-
folds,” IEEE Robotics and Automation Letters (RA-L), vol. 2, no. 3, pp.
1240–1247, June 2017.

[10] A. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, February
2013.



7

[11] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Advances in Neural Information Processing

Systems 26, December 2013, pp. 2616–2624.
[12] A. De Luca and L. Ferrajoli, “A modified Newton-Euler method for

dynamic computations in robot fault detection and control,” in Proc.

IEEE Int. Conf. on Robotics and Automation, May 2009, pp. 3359–
3364.

[13] S. Chiaverini and B. Siciliano, “The unit quaternion: A useful tool for
inverse kinematics of robot manipulators,” Systems Analisis, Modelling

and Simulation, vol. 35, no. 1, pp. 45–60, September 1999.
[14] F. Caccavale, S. Chiaverini, and B. Siciliano, “Second-order kinematic

control of robot manipulators with jacobian damped least-squares in-
verse: theory and experiments,” IEEE/ASME Trans. on Mechatronics,
vol. 2, no. 3, pp. 188–194, September 1997.

[15] A. De Luca, G. Oriolo, and B. Siciliano, “Robot redundancy resolution
at the acceleration level,” Laboratory Robotics and Automation, vol. 4,
no. 2, pp. 97–106, January 1992.

[16] M. J. Zeestraten, A. Pereira, M. Althoff, and S. Calinon, “Online
motion synthesis with minimal intervention control and formal safety
guarantees,” in Proc. IEEE Sys., Man. Cybern., 2016, pp. 2116–2121.

[17] L. Rozo, S. Calinon, D. G. Caldwell, P. Jimenez, and C. Torras, “Learn-
ing physical collaborative robot behaviors from human demonstrations,”
IEEE Trans. on Robotics, vol. 32, no. 3, pp. 513–527, June 2016.

[18] M. J. A. Zeestraten, I. Havoutis, S. Calinon, and D. G. Caldwell,
“Learning task-space synergy controllers from demonstration,” in Proc.

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Septem-
ber 2017, pp. 73–78.



8

Fig. 6: Overview of experimental results for trajectory tracking task.



9

Fig. 7: Overview of experimental results for the P&P task.


	Reconfigurable and automatically programmable robots
	A unified approach to flexible automation
	User-Friendly Task Transfer
	What to imitate
	How to imitate
	Encoding Orientation
	Context-dependent movement adaptation

	Robot Assembly
	Robot Control

	Application
	Experimental Setup
	Experimental Results

	Discussion
	Conclusion
	References

