
1

KUKA Sunrise Toolbox: Interfacing Collaborative
Robots with MATLAB

Mohammad Safeea and Pedro Neto

Abstract—Collaborative robots are increasingly present in our
lives. The KUKA LBR iiwa equipped with the KUKA Sunrise.OS
controller is a good example of a collaborative/sensitive robot.
This paper presents a MATLAB Toolbox, the KUKA Sunrise
Toolbox (KST), to interface KUKA Sunrise.OS using MATLAB.
The KST contains functionalities for networking, real-time con-
trol, point-to-point motion, setters and getters of parameters and
physical interaction. KST includes more than 50 functions and
runs on a remote computer connected with the KUKA Sunrise
controller via transmission control Protocol/Internet Protocol
(TCP/IP). The KST potentialities are demonstrated in three use
cases.

Index Terms—KUKA Sunrise Toolbox, MATLAB, KUKA LBR
iiwa, KUKA Sunrise.OS, collaborative robotics.

I. INTRODUCTION

A. Motivation and Related Work

MATLAB is a high-level programming language, exten-
sively used in engineering, research and education. It

integrates computation, visualization and programming. MAT-
LAB popularity is owed to its simplicity since programming
commands are expressed in familiar mathematical notation.
In addition, the software can be extended easily with extra
functionalities by introducing Toolboxes.

In the robotics field several MATLAB Toolboxes had been
introduced. One of the most popular is the Robotics Toolbox
for MATLAB [1], [2]. This Toolbox includes functionalities
for robotic manipulators, such as homogeneous transforma-
tions, direct and inverse kinematics, direct and inverse dy-
namics, and trajectory generation. The Dynamics simulation
toolbox for industrial robot manipulators can be used for
simulating robot dynamics in addition to other functionalities
[3]. The DAMAROB Toolbox allows kinematic and dynamic
modeling of manipulators [4]. The KUKA control toolbox is
dedicated to motion control of KUKA manipulators equipped
with the KRC controller [5].

Recently, KUKA lunched the LBR iiwa series of manip-
ulators [6], sensitive robots that are programmed using the
KUKA Sunrise.Workbench. From an external computer we
can interface with Sunrise.OS using Robot Operating System
(ROS) [7] or the fast research interface (FRI) [8]. Using ROS
requires the user to have advanced technical and programming
skills. The FRI is a platform for controlling the KUKA iiwa
remotely from a personal computer (PC). This package is
destined for researchers, people who have good technical
knowledge in C++.

Mohammad Safeea is with the Department of Mechanical Engineering,
University of Coimbra, Coimbra, Portugal, e-mail: ms@uc.pt.

Pedro Neto is with the Department of Mechanical Engineering, University
of Coimbra, Coimbra, Portugal, e-mail: pedro.neto@dem.uc.pt.

The KUKA Sunrise.OS controller is programmed using
java, allowing the internal implementation of algorithms and
interfacing with external sensors. Nevertheless, our expertise
indicates that the use of an external computer is advantageous
in several cases:

1) To interface with multiple external devices;
2) Easy integration of external software modules;
3) Implementation of complex algorithms (requiring image

processing, machine learning, etc.);
4) When the amount of computations involved is relatively

high so that performance is limited by the robot con-
troller hardware.

B. Original Contribution

This paper presents a new MATLAB Toolbox, the KUKA
Sunrise Toolbox (KST), the first Toolbox to interface KUKA
Sunrise.OS that equips the KUKA LBR iiwa manipulators.
The KST contains more than 50 functions divided in six
categories. The advantages are multiple:

1) Easy and fast interaction with the robot from an external
computer running the KST;

2) External sensors/devices are integrated in the computer
and data are transmitted to/from the robot via TCP/IP;

3) Speed up the development of advanced robot applica-
tions in MATLAB. Complex algorithms can be imple-
mented in an external computer and existing software
modules/toolboxes (vision, machine learning, statistics,
etc.) can be integrated;

4) The KST makes the KUKA LBR iiwa manipulators
more accessible to a wide variety of people from dif-
ferent backgrounds, and opens the door of collaborative
robotics to many potential new users for academic,
educational and industrial applications.

The KST Toolbox can be freely downloaded from the
Web page: https://github.com/Modi1987/KST-Kuka-Sunrise-
Toolbox.

II. KUKA SUNRISE TOOLBOX

In this section the main functions of Toolbox are illustrated
with implementation examples, Table I. For the sake of con-
venience the functions are divided into six categories:

1) Networking – establish (and terminate) connection with
the robot controller;

2) Real-time control – Activate/deactivate real-time control
functionalities;

3) Point-to-point motion – Point-to-point motion in joint
space and in Cartesian space;

http://ms@uc.pt
mailto:pedro.neto@dem.uc.pt

2

Fig. 1. Architecture and communication scheme of the KST.

4) Setters – Set parameter values in the robot controller
(robot poses, LED and IO connectors);

5) Getters – Get parameter values from the robot controller
(joint angles, end-effector position, end-effector orien-
tation, force/moment acting on the end-effector, joints
torques, IO connectors);

6) Physical interaction – Activate/deactivate hand-guiding
and touch detection.

Figure 1 illustrates the architecture and communication
scheme of the KST. The KST is running in an external/remote
computer and communicates with KUKA Sunrise via TCP/IP
through an Ethernet network using the X66 connector of the
robot. The KST implements a TCP/IP client which commu-
nicates with the java server (KST Server and KST Main)
running in the Sunrise.OS. The KST Server and KST Main
are provided with the KST Toolbox.

A. Networking

The KST provides two functionalities to establish and
terminate the connection with the robot controller. The TCP/IP
connection is initialized by typing:

>> t=net_establishConnection(ip);

Where ip is a string with the IP address of the robot controller
and t is a TCP/IP object (to be used by other functions within
the KST). The following function is used to terminate the
connection:

>> net_turnOffServer (t);

B. Real-time control

Continuous real-time control of robot motion in joint space
is also allowed by the KST:

>> realTime_startDirectServoJoints(t);

Once started, we can send the target angular positions of the
joints to the robot:

>> jPos={pi/3,0,0,-pi/2,0,pi/6,pi/2};
>> sendJointsPositions(t,jPos);

Where jPos is a cell array of dimension 1x7 containing the
values of the target joints angles (KUKA LBR iiwa is a 7
DOF manipulator), in radians. A loop can be implemented for

sending a stream of joint angles to the robot, so that the robot
will perform the motion between the points in real-time.

To stop the real-time motion control the following function
is used:

>> realTime_stopDirectServoJoints(t);

C. Point-to-point motion

The KST point-to-point motion functionalities allow robot
motion from the current configuration/end-effector pose to a
defined target configuration/pose, such that continuous motion
between segments cannot be achieved. The user is not required
to implement the motion planning algorithms since they are
integrated in the robot controller. The robot can be controlled
in joint space:

>> jPos={pi/3,0,0,-pi/2,0,pi/6,pi/2};
>> vel=0.25;
>> movePTPJointSpace(t,jPos,vel);

Where vel represents the override velocity assuming a value
from zero to one. The robot can also be controlled in Cartesian
space moving along a straight line:

>> pos={400,0,580,-pi,0,-pi};
>> vel=50;
>> movePTPLineEEF(t,pos,vel);

Where pos is the target end-effector pose in Cartesian space,
a 1x6 cell array in which the first three cells are the end-
effector X,Y and Z coordinates and the last three cells are the
fixed rotation angles (alpha, beta, and gamma) representing
the orientation of the end-effector in the space. The variable
vel represents the linear velocity of the end-effector in
mm/sec. The KST also includes functionalities for arc and
circle motion.

D. Setters

The KST functionalities to set the values of robot parame-
ters include robot poses, turning on and off the LED light, and
to change the state of outputs of the media flange connectors
of the robot. For example, to turn on the blue LED light we
have:

>> setBlueOn(t);

To turn off the blue led:

>> setBlueOff(t);

E. Getters

The KST provides functionalities to acquire various internal
parameters of the robot such as joint angles, end-effector pose
(position and orientation), force/moment acting on the end-
effector, joints torques and the values of the IO connector
inputs. For example, to acquire the joint angles of the robot,
the following function is utilized:

3

TABLE I
LIST OF KST FUNCTIONALITIES DIVIDED BY CATEGORY.

Category Function Description

Networking net_establishConnection Connect to KUKA Sunrise.OS
net_turnOffServer Terminate connection to KUKA Sunrise.OS

Real-time control
realTime_moveOnPathInJointSpace Moves the robot continuously in joint space
realTime_startDirectServoJoints Start the direct servo
realTime_stopDirectServoJoints Stop the direct servo

Point-to-point motion

movePTPJointSpace Moves from the current configuration to a new configuration in joint space
movePTPLineEEF Moves the end-effector in a straight line from the current pose to a new pose
movePTPHomeJointSpace Moves the robot to the home configuration
movePTPTransportPositionJointSpace Moves the robot to the transportation configuration
movePTPLineEefRelBase Moves the end-effector in a straight line path relative to base frame
movePTPLineEefRelEef Moves the end-effector in a straight line path relative to end-effector initial

frame
movePTPCirc1OrientationInterpolation Moves the end-effector in arc specified by two frames
movePTPArc_AC Moves the end-effector in arc specified by center, normal, arc’s radius and

angle
movePTPArcXY_AC Moves the end-effector in arc in the XY plane
movePTPArcXZ_AC Moves the end-effector in arc in the XZ plane
movePTPArcYZ_AC Moves the end-effector in arc in the YZ plane

Setters

sendEEfPositions Sets in memory end-effector Cartesian positions
sendJointsPositions Sets the joint angles to a desired value
sendJointsPositionsf Sets the end-effector position to a desired value
setBlueOff Turns on the blue LED of the pneumatic flange
setBlueOn Turns off the blue LED of the pneumatic flange
setPin1Off Sets the output of Pin1 to low level
setPin1On Sets the output of Pin1 to high level
To turn off and on Pin2, Pin11 and Pin 12 (setPin2Off, setPin2On,
setPin11Off, setPin11On, setPin12Off, setPin12On)

Getters

getEEF_Force Returns the measured force at the end-effector flange reference frame
getEEF_Moment Returns the measured moments at the end-effector flange reference frame
getEEFCartesianOrientation Returns the orientation (fixed rotations angles) of the end-effector in radians
getEEFCartesianPosition Returns the position of the end-effector relative to robot base reference

frame
getEEFPos Returns the position and orientation of the end-effector relative to robot base

reference frame
getJointsExternalTorques Returns the robot joint torques due to external forces
getJointsMeasuredTorques Returns the robot joint torques measured by the torque sensors
getJointsPos Returns the robot joint angles in radians
getMeasuredTorqueAtJoint Returns the measured torque in a specific joint
getExternalTorqueAtJoint Returns the measured torque in a specific joint due to external forces
getEEFOrientationR Returns the end-effector orientation as rotation matrix
getEEFOrientationQuat Returns the end-effector orientation as a quaternion
getPin3State Returns the state of Pin3 of the pneumatic flange
Returns the state of Pin4, Pin10, Pin13 and Pin16 (getPin4State,
getPin10State, getPin13State, getPin16State)

Physical interaction
startHandGuiding Initializes hand-guiding functionality
performEventFunctionAtDoubleHit Detects double touch
eventFunctionAtDoubleHit Double touch event

>> jPos = getJointsPos(t);

The variable jPos we get is a 1x7 cell array with the robot
joint angles in radians.

F. Physical interaction

The physical interaction functionalities are the hand-guiding
mode and the touch detection. The hand-guiding function is
activated using:

>> startHandGuiding(t);

Once called the hand-guiding functionality is initiated. To
perform hand-guiding operation on the robot side we have to
press the flange white button to deactivate the brakes and move
the robot. After we release the white button the robot stops in

its current configuration. To terminate the hand-guiding mode,
we have to press the green button continuously for more than
1.5 seconds (after 1.5 seconds of pressing the green button the
blue LED light starts to flicker), release the green button and
the hand-guiding mode is terminated.

III. APPLICATION EXAMPLES

Three application examples on a KUKA iiwa 7 R800 ma-
nipulator (Sunrise.OS 1.11.0.7) demonstrate the performance
and ease of use of KST:

1) Example 1: Hand-guiding and teaching making use of
getters/setters functionalities and physical interaction;

2) Example 2: The robot drawing a rectangle exploring the
point-to-point motion functionalities of KST;

3) Example 3: Human-robot collision avoidance requiring
continuous motion functionalities in real-time.

4

Fig. 2. Example 1: Hand-guiding teaching of five target points. (a) – (e) User teaching the robot path sequence with five points. (f) The robot automatically
moves through the taught points.

The video that accompany this article show the three applica-
tion examples https://youtu.be/nCIBYZ42uJw.

A. Example 1: hand-guiding and teaching

Kinesthetic teaching is one of the main function-
alities of collaborative robots. In this example (file
HandTeachingExample.m) the user can teach the robot
by hand-guiding it through a set of frames, five points
in this specific example, Figure 2. When running the
example file, the hand-guiding functionality is activated
(startHandGuiding), so that the user is able to hand-
guide the robot to a desired location. Once reached a target
pose, in order to capture and save it the user has to click
continuously the green button until the blue LED light starts
to flash. This operation can be repeated to define other target
poses. The taught poses are saved in MATLAB files allowing
the automation of the process and its application to develop
other robot applications with different sequencing if desired.
The process is illustrated in the video.

B. Example 2: Drawing a rectangle

The robot produces the drawing of a rectangle (a x b) on a
white box with a pen mounted on the flange of the manipulator.
The TCP/IP communication between KST and robot controller
is initialized and the four points defining the vertices of the
rectangle are sent to the robot using the point-to-point motion
function movePTPLineEEF. The example code is in the
MATLAB file kuka0_move_sequare.m. Figure 3 shows
a snapshot of the robot drawing the rectangle.

Fig. 3. Example 2: Robot drawing a rectangle.

C. Example 3: Human-robot collision avoidance

The ability to have humans and robots working side-by-side
and sharing the space is critical for the success of collaborative
robots. In this example we propose human-robot collision
avoidance based on the famous potential fields method [9]. In
this example, the robot is in a home position (target) and when
the human (obstacle) approaches the robot smoothly moves to

5

Fig. 4. Example 3: Human-robot collision avoidance. (a) – (e) The human co-worker tries to touch the robot but the robot reacts by moving to avoid collision.
(f) Even with the human hand approaching the robot is not moving because its working area is limited by the table top.

avoid collision. The human pose in space is captured using a
magnetic tracking sensor attached to the human hand.

The collision avoidance control algorithms were imple-
mented in MATLAB allowing to speed up the implemen-
tation of advanced mathematical calculations (complex con-
trol algorithms, matrix manipulation, signal processing). An-
other advantage of using an external computer is related
with the ease interfacing with external sensors to cap-
ture the human pose and the required computational power
to run such algorithms and on-line generate robot mo-
tion to avoid collisions. The amount of calculations (we
used an external computer with eight cores) required for
the control algorithm renders the use of the robot con-
troller alone unfeasible. The KST online updates the col-
lision avoidance robot motion in the robot controller at a
frequency of 275 Hz. The robot motion was controlled in
joint space using the real-time control functions provided in
the KST (realTime_startDirectServoJoints and
sendJointsPositions). Figure 4 shows snapshots of the
robot avoiding collisions with the human.

IV. CONCLUSION

We presented the MATLAB KUKA Sunrise Toolbox (KST)
to interface KUKA Sunrise.OS controller that equips the well-
known KUKA LBR iiwa collaborative manipulator. The Tool-
box runs on an external computer connected with the KUKA
controller via TCP/IP. The KST functionalities for networking,
real-time control, point-to-point motion, setters and getters of
parameters and physical interaction, demonstrated reliability,
versatility and ease of use. This performance was successfully
validated in three application examples.

V. ACKNOWLEDGMENT

This research was partially supported by Portugal 2020
project DM4Manufacturing POCI-01-0145-FEDER-016418
by UE/FEDER through the program COMPETE2020, and
the Portuguese Foundation for Science and Technology (FCT)
SFRH/BD/131091/2017.

REFERENCES

[1] P. I. Corke, “A robotics toolbox for matlab,” IEEE Robotics Automation
Magazine, vol. 3, no. 1, pp. 24–32, Mar 1996.

[2] P. Corke, Robotics, vision and control: fundamental algorithms in MAT-
LAB. Springer Science & Business Media, 2011, vol. 73.

[3] M. Toz and S. Kucuk, “Dynamics simulation toolbox for industrial
robot manipulators,” Computer Applications in Engineering Education,
vol. 18, no. 2, pp. 319–330, 2010. [Online]. Available: http:
//dx.doi.org/10.1002/cae.20262

[4] M. Bellicoso, DAMAROB Toolbox [On-line]. Available:
http://www.damarob.altervista.org.

[5] F. Chinello, S. Scheggi, F. Morbidi, and D. Prattichizzo, “Kuka control
toolbox,” IEEE Robotics Automation Magazine, vol. 18, no. 4, pp. 69–79,
Dec 2011.

[6] KUKA LBR iiwa series [On-line]. Available: https://www.kuka.com/en-
my/products/robotics-systems/industrial-robots/lbr-iiwa.

[7] ROS Industrial support for the KUKA LBR iiwa [On-line]. Available:
http://wiki.ros.org/.

[8] R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schaeffer,
A. Beyer, O. Eiberger, S. Haddadin, A. Stemmer, G. Grunwald, and
G. Hirzinger, “The kuka-dlr lightweight robot arm - a new reference
platform for robotics research and manufacturing,” in ISR 2010 (41st
International Symposium on Robotics) and ROBOTIK 2010 (6th German
Conference on Robotics), June 2010, pp. 1–8.

[9] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” The international journal of robotics research, vol. 5, no. 1, pp.
90–98, 1986.

http://dx.doi.org/10.1002/cae.20262
http://dx.doi.org/10.1002/cae.20262

	Introduction
	Motivation and Related Work
	Original Contribution

	KUKA Sunrise Toolbox
	Networking
	Real-time control
	Point-to-point motion
	Setters
	Getters
	Physical interaction

	Application examples
	Example 1: hand-guiding and teaching
	Example 2: Drawing a rectangle
	Example 3: Human-robot collision avoidance

	Conclusion
	Acknowledgment
	References

