
GPU-Accelerated Vision for Robots
with OpenCV and CUDA

OpenCV is  an  open  source  computer  vision  and  machine  learning  library  for  C/C++/Python
available  for  Windows,  Linux,  macOS  and  Android  platforms.  It  contains  low-level  image
processing functions as well as high-level algorithms such as object identification, face recognition,
action classification in videos, etc. OpenCV has become very popular with more than 47,000 people
in  their  user  community  and  18  million  downloads  (https://opencv.org/about/).  Under  a  BSD
license, it can be used in academic and commercial applications.

Significant  part  of  computer  vision  is  image  processing,  with  massive  parallel  computations.
Modern  GPUs  (Graphical  Processing  Units)  are  highly  parallel  multi-core  systems,  powerful
enough for performing general purpose computations in large blocks of data. So it is challenging yet
potentially very rewarding to accelerate OpenCV on graphics processors.

CUDA (Computing Unified Device Architecture) is a parallel computing architecture created by
Nvidia that  makes it  possible  to  use the many computing cores  in a  GPU to perform general-
purpose mathematical calculations [1]. However, it only works on Nvidia cards.

OpenCV and CUDA have been available since more than ten years [2], and their use has increased
significantly;  however,  their  combined  application  is  not  so  widespread.  Considering  that  a
GPU/CUDA module for OpenCV is available since 2010, the number of works published in IEEE
Xplore using both libraries is relatively small and grows very slowly: Figure 1 depicts the number
of references in IEEE Xplore citing CUDA, OpenCV, or both (in 2018 only 7 references are found,
compared with 240 for CUDA and 180 for OpenCV).
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Figure 1: Number of references in IEEE Xplore for CUDA and OpenCV.
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The  aim  of  this  paper  is  to  describe  how the  CUDA module  for  OpenCV works,  with  some
examples of well-known vision problems documented with source code, in order to encourage more
robotics researchers to migrate their applications towards GPU computation.

The usefulness of CUDA in robotics and vision has been successfully demonstrated with significant
speed-ups  in  many  applications  [3-6].  However,  it  introduces  an  overhead  due  to  the  need  of
transferring  data  between the  CPU and GPU spaces,  because  most  GPU processors  work in  a
dedicated memory, independent from the system memory of the CPU. Consequently, image data
needs to be moved back and forth between the different types of memory for the processing in the
GPU. The processing flow consists of the following steps:

1. Upload data from main memory to GPU memory
2. Initiate the GPU computing kernel
3. Parallel computation in the GPU’s cores
4. Download the resulting data from GPU memory to main memory

In the following, we will assume that the reader is familiar with OpenCV and C++ programming
(for novices,  an introduction is  provided in [7]).  Unless otherwise stated,  the code snippets are
based on OpenCV 3.4.0, but they can be easily adapted to earlier (2.4) or later (4.x) versions. 

In the OpenCV library, all the classes and functions are defined in the name space  cv. The main
object is the class cv::Mat, which is essentially a matrix holding pixel values of an image. GPU
modules in OpenCV define a class  cv::cuda::GpuMat which is a container for an image data
kept in GPU memory, with a very similar interface to its CPU counterpart.

Let’s see a quick example with a color image, which is converted into gray, and binarized with a
fixed threshold. In the CPU version, the source image src is first converted to an intermediate gray
image src_gray, which is then thresholded into the resulting image dst. We need to define the
variables (line 1) and call the OpenCV functions cv::cvtColor and cv::threshold (lines 2-3)
for executing the task:

 1 cv::Mat src, src_gray, dst;
 2 cv::cvtColor( src, src_gray, cv::COLOR_BGR2GRAY );
 3 cv::threshold( src_gray, dst, 128, 255, cv::THRESH_BINARY );

This processing flow is depicted in Figure 2: all the data is stored in the CPU memory, and all the
operations are performed by the CPU.

Figure 2: Image processing flow with CPU only.

In the GPU version, in addition to the variables for the initial and destination images (line 1), we
need some new variables for processing the data in the GPU memory (line 2); the intermediate

image src_gray is also stored in the GPU memory for minimizing data transfers:

 1 cv::Mat src, dst;



 2 cv::cuda::Mat gpu_src, gpu_dst, src_gray;
 3 gpu_src.upload( src );
 4 cv::cuda::cvtColor( gpu_src, src_gray, cv::COLOR_BGR2GRAY );
 5 cv::cuda::threshold( src_gray, gpu_dst, 128, 255, cv::THRESH_BINARY );
 6 gpu_dst.download( dst );

The  processing  task  is  performed  by  the  equivalent  functions  of  the  OpenCV CUDA module

cv::cuda::cvtColor and cv::cuda::threshold. First, the image is transferred from CPU to

GPU memory (line 3); then, the processing steps are executed (lines 4-5), and finally, the resulting
image is transferred from GPU back to CPU memory (line 6).

The processing flow is depicted in  Figure 3, where the CPU and GPU memory spaces and the
different processing steps are represented.

Figure 3: Image processing flow with CPU and GPU.

There is an inherent overhead in the GPU processing flow due to the transfer of the images between
the CPU and GPU memories. Such overhead can be minimized if all the processing operations are
performed in the GPU, and only the initial and final images are transferred:

Let’s  define   and   as  the  computation  times  of  the  image  processing  operations

(cvtColor, threshold) at the CPU and GPU respectively. A speed gain will be obtained if and

only if:

Those computation times depend mainly on two factors: 

• Hardware technology of the respective boards: OpenCV is highly optimized for CPUs with
multiple cores and vector instructions.

• Degree of parallelization of the processing algorithms: some vision operations may benefit
more than others from the use of multiple cores in the GPU.



In the following, we elaborate four examples of image processing applications (edge detection,
feature extraction, optical flow, and object detection with deep neural networks) that use OpenCV
with CPU and GPU in different hardware configurations.

The first example is a simple edge detection application with the well-known Canny algorithm [8].
The CPU version of the application is:

 1 cv::Mat src, dst;
 2 const int lowThreshold = 20;
 3 const int ratio = 3;
 4 const int kernel_size = 3;
 5 cv::Mat src_gray, blurred, edges;
 
 6 cv::cvtColor( src, src_gray, cv::COLOR_BGR2GRAY );
 7 cv::blur( src_gray, blurred, cv::Size(3,3) );
 8 cv::Canny( blurred, edges, lowThreshold, lowThreshold*ratio, kernel_size );
 9 src.copyTo( dst, edges );

Besides the initial and final images defined in line 1, three more variables are created in line 5 for
storing  the  intermediate  images.  The  algorithm  parameters  are  defined  in  lines  2-4,  and  the
processing steps are executed in lines 6-8: converting to gray, blurring, and computing the edges.
Finally, the edges are used as a pixel mask for copying the original image to the destination image
in line 9.

The CUDA version is very similar, yet there some changes in the API of the processing functions:

 1 cv::Mat src, dst;
 2 const int lowThreshold = 20; 
 3 const int ratio = 3; 
 4 const int kernel_size = 3; 
 5 cv::cuda::GpuMat gpu_src, gpu_dst;
 6 cv::cuda::GpuMat src_gray, blurred, edges;

 7 gpu_src.upload( src );
 8 cv::Ptr<cv::cuda::Filter> blur =
     cv::cuda::createBoxFilter( CV_8UC1, CV_8UC1, cv::Size(3,3) );
 9 cv::Ptr<cv::cuda::CannyEdgeDetector> canny =
     cv::cuda::createCannyEdgeDetector( lowThreshold,
     lowThreshold*ratio, kernel_size );
 
10 cv::cuda::cvtColor( gpu_src, src_gray, cv::COLOR_BGR2GRAY ); 
11 blur->apply( src_gray, blurred ); 
12 canny->detect( blurred, edges );
13 gpu_src.copyTo( gpu_dst, edges );
14 gpu_dst.download( dst );

Now we need to define the original and destinations images both as  Mat and  GpuMat variables

(lines 1 and 5). The parameters are defined in the same ways as in the previous version (lines 2-4),

and the intermediate images are defined as GpuMat (line 6).

The original image is uploaded to the GPU memory in line 7. Then, two new objects have to be
defined for applying the blur filter and the Canny detector respectively in lines 8 and 9.

Image processing is executed in lines 10-12, and the original image is masked with the detected
edges and copied to the destination (line 13). Finally, in line 14 the result is downloaded to the CPU
memory. Figure 4 depicts the output for a frame of a video recorded during a car navigation task.



Figure 4: Output image of the edge detection example.

For measuring the average computing times of the algorithm, we have processed the frames of a
benchmarking video on three different hardware configurations of CPU and GPU:

• Desktop PC: with a CPU Intel Core i7-6700 at 3.4 GHz, and a GPU GeForce GTX 1080.

• Laptop PC: with a CPU Intel Core i7-8550U at 3.3 GHz, and a GPU GeForce GTX 1050.

• Embedded PC:  NVIDIA Jetson Nano,  with  an  ARM-A57 processor,  and an integrated
GPU.

The video consists of a 50-second footage from a car in a highway available at Udacity’s Advanced
Line Finding Project (https://github.com/udacity/CarND-Advanced-Lane-Lines), recorded at 25 Hz
with a resolution of 1280 x 720 RGB 24-bit pixels. The main specifications of the GPUs for the
three systems are presented in Table  1. The desktop PC features the most powerful CPU, both in
terms of processing cores and transfer speed, but it also requires more energy power, compared to
the laptop and embedded PCs, which are more adequate for mounting on a small robotic platform.

Table 1: Technical specifications of the systems used in the experiments.

GPU features Desktop PC Laptop PC Embedded PC
CUDA Cores 2560 640 128

Memory 8 GB 4 GB 4 GB
Memory Interface GDDR5 GDDR5 LPDDR4

Memory Interface Width 256-bit 128-bit 64-bit
Memory Bandwidth 320 GB/sec 112 GB/sec 25.6 GB/sec
Power consumption 180 W 40-50 W 10 W

The  source  code  with  instructions  for  compilation  and  execution  is  publicly  available  in
https://github.com/RobInLabUJI/opencv-cuda.  For  the  sake  of  reproducibility,  we  use  docker
(https://www.docker.com), a Linux container technology that offers some advantages for an easy
replication of code: encapsulation, isolation, portability, and control. In addition, containers have
less overhead than virtual machines, and they can access the GPU transparently (usually the impact
should be in the order of less than 1% and hardly noticeable.) As a downside, the GPU-enabled
version of docker (nvidia-docker) does not support Windows nor macOS yet.

https://www.docker.com/
https://github.com/RobInLabUJI/opencv-cuda
https://github.com/udacity/CarND-Advanced-Lane-Lines


The code can also be compiled and executed natively in a Linux computer  (as long as all  the
requirements  are  previously  installed,  basically  OpenCV and CUDA) with  the  typical  building
commands:

 mkdir -p build
 cd build
 cmake ..
 make

The results are shown in Table 2: they measure the mean and standard deviation of the execution
time for 1200 frames in the video (the initial  60 frames are skipped for avoiding initialization
delays). The execution time is measured starting from the first call to processing functions, until the
final result is returned; the result is averaged with a moving window of 30 frames. For the GPU
cases, the measured time includes the uploading of the initial image to the GPU memory, and the
downloading of the result image back to CPU memory. Visual information (edges, ORB keypoints,
optical flow) is included in the measured code for clarity and debugging purposes, though in a real
setup it could be removed in order to increase the throughput.

Table 2: Computation times (in milliseconds) for the edge detection algorithm (lower is better).

Desktop PC Laptop PC Embedded PC

CPU 3.514 ± 0.272 4.562 ± 0.331 12.985 ± 1.197

GPU 4.422 ± 0.150 7.469 ± 0.106 54.064 ± 1.993

It  is  worth noting  that  for  this  application the  CPUs are faster  than the  GPUs in all  the  three
systems:  edge  detection  is  a  relatively  simple  computation,  and the  execution  time is  small  in
comparison with the overhead of transferring the images into the GPU memory.

An example of the benchmarking code for measuring the execution time is presented below:

 1 double ticks = (double)cv::getTickCount();
 2 if (use_gpu) {
 3     gpu_processing(frame, dst);
 4 } else {
 5     cpu_processing(frame, dst);
 6 }
 7 ticks = ((double)cv::getTickCount() - ticks)/cv::getTickFrequency()*1000;

The  OpenCV  functions  cv::getTickCount() and  cv::getTickFrequency are  used  for

getting the number of ticks before and after the processing work, translated into seconds. A boolean
variable indicates whether to use the CPU or GPU; the value of this variable can be toggled through
a keyboard press.

In a second example, ORB features are detected and extracted from the image. Such features are
very important in robotics applications, e.g. for visual SLAM [9]. The source code for the CPU
version is:

 1 cv::Mat src, dst;
 2 cv::Mat src_gray, descriptors;
 3 std::vector<cv::KeyPoint> keypoints;

 4 cv::Ptr<cv::ORB> detector = cv::ORB::create();



 5 cv::cvtColor( src, src_gray, cv::COLOR_BGR2GRAY );
 6 detector->detect( src_gray, keypoints ); 
 7 detector->compute( src_gray, keypoints, descriptors );
 8 cv::drawKeypoints( src, keypoints, dst, 
     cv::Scalar::all(-1), cv::DrawMatchesFlags::DEFAULT );

Firstly, we define the necessary variables for storing the original and final images, the intermediate
gray image, and the structures for storing the keypoints and descriptors of the ORB features (lines
1-4).

Secondly, the feature detector is initialized with default parameters in line 4.

Finally, the processing steps are performed in lines 5-7: the original color image is converted into a
gray image, the keypoints are detected, and their descriptors are computed. In line 8 the keypoints
are drawn into the destination image for visualization.

The CUDA version of this example is straightforward:

 1 cv::Mat src, dst; 
 2 cv::cuda::GpuMat gpu_src, gpu_dst;
 3 cv::cuda::GpuMat src_gray, descriptors;
 4 std::vector<cv::KeyPoint> keypoints;

 5 gpu_src.upload(src);
 6 cv::Ptr<cv::cuda::ORB> detector = cv::cuda::ORB::create();

 7 cv::cuda::cvtColor( gpu_src, src_gray, cv::COLOR_BGR2GRAY );
 8 detector->detect(  src_gray, keypoints );
 9 detector->compute( src_gray, keypoints, descriptors );
10 cv::drawKeypoints( src, keypoints, dst, 
     cv::Scalar::all(-1), cv::DrawMatchesFlags::DEFAULT );

As  in  the  previous  example,  we  need  to  define  two  GpuMat variables  for  the  original  and

destination images (line 2). The intermediate image is also stored in GPU memory, as well as the
descriptors (line 3), but the keypoints are stored in CPU memory (line 4). After uploading the image
in line 5, the feature detector is created and the processing steps are executed.

One should note that the processing code is basically similar to the previous version: lines 4-7 of the

CPU code and lines 6-9 of the GPU code only differ in the use of the namespace cv::cuda instead

of cv for the class ORB (line 4/6) and the functions  ORB::create and cvtColor (lines 4/6 and

5/7).

Finally, drawing the keypoints is done in exactly the same way (line 10 of the GPU code is the same
as line 8 of the CPU code). The output of the ORB detector is shown in Figure 5.

For debugging purposes, the code examples include visualization, and the corresponding function
calls have been included in the benchmarking. Since the visualization process is using the same
function call in both CPU and GPU versions, it should not affect the difference in the performance
between them.



Figure 5: Output image of the ORB feature detector example.

The results  are  shown in Table  3.  In  this  case the GPUs are faster  than the CPUs, due to  the
increased computational workload demanded by the ORB algorithm.

For simplicity, this example has not computed the matching of ORB features, but it is possible to
use either the CPU or the GPU for that purpose with the classes cv::DescriptorMatcher and
cv::cuda::DescriptorMatcher, respectively.

Table 3: Computation times (in milliseconds) for the ORB 
feature extraction algorithm (lower is better).

Desktop PC Laptop PC Embedded PC

CPU 15.323 ± 0.788 19.281 ± 0.883 101.586 ± 4.112

GPU 10.777 ± 1.246 11.588 ± 0.397 66.697 ± 2.936

In the third example, we compute the dense optical flow with the Farneback algorithm [10]. The
source code for the CPU version is:

 1 cv::Mat src, dst;
 2 cv::Mat prev, cv::Mat next;

 3 cv::Mat flow(prev.size(), CV_32FC2); 
    
 4 cv::cvtColor(src, next, cv::COLOR_BGR2GRAY);
 6 cv::calcOpticalFlowFarneback(prev, next, flow, 0.5, 3, 15, 3, 5, 1.2, 0); 

Since optical flow is computed with the difference between the current and previous frames, we
need to define some more variables in line 2 for storing the frames. We also define a matrix of float

numbers  flow for  the  result  (line  3  –  CV_32FC2 means  a  2-channel  [complex]  floating-point

array): this flow matrix contains the gradient of the movement between 2 frames; for each pixel

location in the original frame, the channels contain dx and dy, so that prev_x + dx = next_x, and

prev_y + dy = next_y.

The computation steps are quite simple: the color image is converted into a gray image (line 4), and
the  optical  flow  algorithm  is  executed  (line  5).  For  the  sake  of  simplicity,  we  have  omitted
additional instructions for displaying the result, and storing the frames.



The GPU version is not very different:

 1 cv::Mat src, dst, flow;
 2 cv::cuda::GpuMat gpu_src, gpu_flow;
 3 cv::cuda::GpuMat prev, next;

 4 gpu_src.upload(src);

 5 cv::Ptr<cv::cuda::FarnebackOpticalFlow> fof = 
     cv::cuda::FarnebackOpticalFlow::create();

 6 cv::cuda::cvtColor( gpu_src, next, cv::COLOR_BGR2GRAY );
 7 fof->calc( prev, next, gpu_flow ); 
 8 gpu_flow.download( flow );

Besides defining all the intermediate matrices in GPU memory (lines 2-3), the main difference is in
the interface to the optical flow algorithm. In this version, the algorithm object is first defined in
line 5, then applied to the frames in line 7. Finally, the result is downloaded to CPU memory for
visualization.

The output of the optical flow algorithm is displayed in  Figure 6. The hue of each pixel block
represents the orientation of the optical flow vector at that point, and the intensity is proportional to
the magnitude of the flow.

Figure 6: Output image of the dense optical flow algorithm; the hue represents
the flow angle, and the intensity is proportional to the flow magnitude.

The results are shown in Table 4. As in the previous example, the execution times for the GPUs are
lower than for the CPUs, since the computation of dense optical flow is a demanding operation.

Table 4: computation times (in milliseconds) for the dense optical flow algorithm (lower is better).

Desktop PC Laptop PC Embedded PC

CPU 196.382 ± 0.889 228.838 ± 6.736 983.943 ± 12.776

GPU 33.970 ± 0.231 78.561 ± 0.498 686.960 ± 9.729

Finally, we test the Deep Neural Networks (DNN) module for OpenCV. Since version 3.1 there is a
DNN module in the library that implements forward pass (inferencing) with networks pre-trained
using some popular deep learning frameworks such as Caffe [11] or TensorFlow [12]. A backend for



CUDA was added in OpenCV 4.2.0. In this example we use the YOLO v3 network [13], a state-of-
the-art, real-time object detection system.

While the details of the OpenCV DNN module are out of the scope of this paper, its design is based
on a unique interface that runs on different backends and computation devices (CPU, OpenCL,
CUDA). Consequently, the source code is exactly the same, no matter if the CPU or GPU is used,
except for the parameters that select the appropriate backend and computation target. The values for
using the CPU are:

net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV);
net.setPreferableTarget (cv.dnn.DNN_TARGET_CPU);

And the GPU can be selected with:

net.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA);
net.setPreferableTarget (cv.dnn.DNN_TARGET_CUDA);

A typical output image from the DNN module is shown in  Figure 7, where a number of cars are
correctly identified in the input image. The frame rate for CPU and GPU versions running on the
three types of computers used in the tests is shown in Table 5.

Table 5: frame rates (in Hz) for the YOLO v3 network in the DNN module (higher is better).

Desktop PC Laptop PC Embedded PC

CPU 3.51 2.63 0.23

GPU 46.6 17.2 2.14

Besides absolute timings, it is illustrative to calculate the speed-up of the GPU with respect to the
CPU, i.e. how much the GPU is faster than the CPU for a given application. The speed-up results
are shown in  Figure 8, displaying the values for each application (edge detection, ORB features,
optical flow, deep neural network) on each of the platforms (desktop, laptop, and embedded PC).

Figure 7: Output image of the DNN module with YOLO v3.
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Figure 8: Performance comparisons of CPU versus GPU.

The overhead penalty can be noticed for the edge detection application on every platform. On the
other hand, the speed-up is higher in the other applications, sky-rocketing in the last example (DNN
for object recognition). This result is not surprising, since CUDA is used intensively by the deep
learning community. But the benefits of using the GPU with other OpenCV functions cannot be
overseen, obtaining speed-ups of 580% and 290% for the computation of the optical flow in the
desktop and laptop PCs, respectively.

OpenCV is a widely-used library in  robotics projects,  and consequently there is  a precompiled
module for ROS [14] (http://wiki.ros.org/opencv3), which unfortunately does not include CUDA
support.  However,  GPU acceleration can still  be used by replacing the standard module with a
CUDA-enabled  version  of  the OpenCV library.  This  can be done by installing the  library  and

setting the appropriate path in the file CMakeLists.txt of any ROS module using OpenCV:

find_package(OpenCV REQUIRED
  PATHS /usr/local
  NO_DEFAULT_PATH
)

In  addition,  all  other  ROS  packages  which  are  dependent  upon  OpenCV  (cv_bridge,

image_pipeline,  image_transport,  etc.)  must  be  rebuild,  i.e.  their  source  code  must  be

downloaded into a ROS workspace and compiled with  catkin_make. A complete example of a

simple subscriber is presented in the “ros” branch of the source code repository of this paper at
https://github.com/RobInLabUJI/opencv-cuda/tree/ros.

Converting a ROS topic image to a CUDA image is straightforward; the topic message is converted
to an OpenCV image, and this image is uploaded to the GPU:

cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);
gpuInImage.upload(cv_ptr->image);

Once the image is uploaded, the processing can be done as usual, and the result can be downloaded
and converted into a ROS message.

CUDA for OpenCV is an easy solution for accelerating vision applications in robotics, for systems
equipped with a CUDA-enabled GPU. The migration of the code from CPU-based to GPU-based is
simple and relatively straightforward, even trivial in some cases. The speed-up that can be achieved
is system- and problem-dependent: for simple vision algorithms, modern CPUs can be faster; for
complex problems involving a sequence of operations on the image, the parallelization in the GPU
leads to better performance; and for deep learning applications, the improvement is significant.

https://github.com/RobInLabUJI/opencv-cuda/tree/ros
http://wiki.ros.org/opencv3


We have provided some examples with well-known algorithms that are widely used by the robotics
community, with the aim of encouraging the researchers to improve the throughput of their systems
by  squeezing  all  the  computing  power  out  of  their  hardware.  CUDA and  other  computing
frameworks (DirectCompute [15], OpenCL [16]) have become programming standards for parallel
computing, and their inclusion in popular libraries like OpenCV is an opportunity for developers to
benefit  from parallelization  without  a  significant  investment  in  learning  some specific  parallel
programming techniques.

An advantage of an open framework such as OpenCL over CUDA is that it is supported by both
AMD and Nvidia cards. The interested reader can refer to [17] for details about using OpenCL in
OpenCV.
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