
GPU-Accelerated Vision for Robots
with OpenCV and CUDA

OpenCV is an open source computer vision and machine learning library for C/C++/Python
available for Windows, Linux, macOS and Android platforms. It contains low-level image
processing functions as well as high-level algorithms such as object identification, face recognition,
action classification in videos, etc. OpenCV has become very popular with more than 47,000 people
in their user community and 18 million downloads (https://opencv.org/about/). Under a BSD
license, it can be used in academic and commercial applications.

Significant part of computer vision is image processing, with massive parallel computations.
Modern GPUs (Graphical Processing Units) are highly parallel multi-core systems, powerful
enough for performing general purpose computations in large blocks of data. So it is challenging yet
potentially very rewarding to accelerate OpenCV on graphics processors.

CUDA (Computing Unified Device Architecture) is a parallel computing architecture created by
Nvidia that makes it possible to use the many computing cores in a GPU to perform general-
purpose mathematical calculations [1]. However, it only works on Nvidia cards.

OpenCV and CUDA have been available since more than ten years [2], and their use has increased
significantly; however, their combined application is not so widespread. Considering that a
GPU/CUDA module for OpenCV is available since 2010, the number of works published in IEEE
Xplore using both libraries is relatively small and grows very slowly: Figure 1 depicts the number
of references in IEEE Xplore citing CUDA, OpenCV, or both (in 2018 only 7 references are found,
compared with 240 for CUDA and 180 for OpenCV).

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
0

50

100

150

200

250

300

350

400

450

500

CUDA

OpenCV

CUDA + OpenCV

Year

#
 R

e
fe

re
n

ce
s

Figure 1: Number of references in IEEE Xplore for CUDA and OpenCV.

https://opencv.org/about/

The aim of this paper is to describe how the CUDA module for OpenCV works, with some
examples of well-known vision problems documented with source code, in order to encourage more
robotics researchers to migrate their applications towards GPU computation.

The usefulness of CUDA in robotics and vision has been successfully demonstrated with significant
speed-ups in many applications [3-6]. However, it introduces an overhead due to the need of
transferring data between the CPU and GPU spaces, because most GPU processors work in a
dedicated memory, independent from the system memory of the CPU. Consequently, image data
needs to be moved back and forth between the different types of memory for the processing in the
GPU. The processing flow consists of the following steps:

1. Upload data from main memory to GPU memory
2. Initiate the GPU computing kernel
3. Parallel computation in the GPU’s cores
4. Download the resulting data from GPU memory to main memory

In the following, we will assume that the reader is familiar with OpenCV and C++ programming
(for novices, an introduction is provided in [7]). Unless otherwise stated, the code snippets are
based on OpenCV 3.4.0, but they can be easily adapted to earlier (2.4) or later (4.x) versions.

In the OpenCV library, all the classes and functions are defined in the name space cv. The main
object is the class cv::Mat, which is essentially a matrix holding pixel values of an image. GPU
modules in OpenCV define a class cv::cuda::GpuMat which is a container for an image data
kept in GPU memory, with a very similar interface to its CPU counterpart.

Let’s see a quick example with a color image, which is converted into gray, and binarized with a
fixed threshold. In the CPU version, the source image src is first converted to an intermediate gray
image src_gray, which is then thresholded into the resulting image dst. We need to define the
variables (line 1) and call the OpenCV functions cv::cvtColor and cv::threshold (lines 2-3)
for executing the task:

 1 cv::Mat src, src_gray, dst;
 2 cv::cvtColor(src, src_gray, cv::COLOR_BGR2GRAY);
 3 cv::threshold(src_gray, dst, 128, 255, cv::THRESH_BINARY);

This processing flow is depicted in Figure 2: all the data is stored in the CPU memory, and all the
operations are performed by the CPU.

Figure 2: Image processing flow with CPU only.

In the GPU version, in addition to the variables for the initial and destination images (line 1), we
need some new variables for processing the data in the GPU memory (line 2); the intermediate

image src_gray is also stored in the GPU memory for minimizing data transfers:

 1 cv::Mat src, dst;

 2 cv::cuda::Mat gpu_src, gpu_dst, src_gray;
 3 gpu_src.upload(src);
 4 cv::cuda::cvtColor(gpu_src, src_gray, cv::COLOR_BGR2GRAY);
 5 cv::cuda::threshold(src_gray, gpu_dst, 128, 255, cv::THRESH_BINARY);
 6 gpu_dst.download(dst);

The processing task is performed by the equivalent functions of the OpenCV CUDA module

cv::cuda::cvtColor and cv::cuda::threshold. First, the image is transferred from CPU to

GPU memory (line 3); then, the processing steps are executed (lines 4-5), and finally, the resulting
image is transferred from GPU back to CPU memory (line 6).

The processing flow is depicted in Figure 3, where the CPU and GPU memory spaces and the
different processing steps are represented.

Figure 3: Image processing flow with CPU and GPU.

There is an inherent overhead in the GPU processing flow due to the transfer of the images between
the CPU and GPU memories. Such overhead can be minimized if all the processing operations are
performed in the GPU, and only the initial and final images are transferred:

Let’s define and as the computation times of the image processing operations

(cvtColor, threshold) at the CPU and GPU respectively. A speed gain will be obtained if and

only if:

Those computation times depend mainly on two factors:

• Hardware technology of the respective boards: OpenCV is highly optimized for CPUs with
multiple cores and vector instructions.

• Degree of parallelization of the processing algorithms: some vision operations may benefit
more than others from the use of multiple cores in the GPU.

In the following, we elaborate four examples of image processing applications (edge detection,
feature extraction, optical flow, and object detection with deep neural networks) that use OpenCV
with CPU and GPU in different hardware configurations.

The first example is a simple edge detection application with the well-known Canny algorithm [8].
The CPU version of the application is:

 1 cv::Mat src, dst;
 2 const int lowThreshold = 20;
 3 const int ratio = 3;
 4 const int kernel_size = 3;
 5 cv::Mat src_gray, blurred, edges;

 6 cv::cvtColor(src, src_gray, cv::COLOR_BGR2GRAY);
 7 cv::blur(src_gray, blurred, cv::Size(3,3));
 8 cv::Canny(blurred, edges, lowThreshold, lowThreshold*ratio, kernel_size);
 9 src.copyTo(dst, edges);

Besides the initial and final images defined in line 1, three more variables are created in line 5 for
storing the intermediate images. The algorithm parameters are defined in lines 2-4, and the
processing steps are executed in lines 6-8: converting to gray, blurring, and computing the edges.
Finally, the edges are used as a pixel mask for copying the original image to the destination image
in line 9.

The CUDA version is very similar, yet there some changes in the API of the processing functions:

 1 cv::Mat src, dst;
 2 const int lowThreshold = 20;
 3 const int ratio = 3;
 4 const int kernel_size = 3;
 5 cv::cuda::GpuMat gpu_src, gpu_dst;
 6 cv::cuda::GpuMat src_gray, blurred, edges;

 7 gpu_src.upload(src);
 8 cv::Ptr<cv::cuda::Filter> blur =
 cv::cuda::createBoxFilter(CV_8UC1, CV_8UC1, cv::Size(3,3));
 9 cv::Ptr<cv::cuda::CannyEdgeDetector> canny =
 cv::cuda::createCannyEdgeDetector(lowThreshold,
 lowThreshold*ratio, kernel_size);

10 cv::cuda::cvtColor(gpu_src, src_gray, cv::COLOR_BGR2GRAY);
11 blur->apply(src_gray, blurred);
12 canny->detect(blurred, edges);
13 gpu_src.copyTo(gpu_dst, edges);
14 gpu_dst.download(dst);

Now we need to define the original and destinations images both as Mat and GpuMat variables

(lines 1 and 5). The parameters are defined in the same ways as in the previous version (lines 2-4),

and the intermediate images are defined as GpuMat (line 6).

The original image is uploaded to the GPU memory in line 7. Then, two new objects have to be
defined for applying the blur filter and the Canny detector respectively in lines 8 and 9.

Image processing is executed in lines 10-12, and the original image is masked with the detected
edges and copied to the destination (line 13). Finally, in line 14 the result is downloaded to the CPU
memory. Figure 4 depicts the output for a frame of a video recorded during a car navigation task.

Figure 4: Output image of the edge detection example.

For measuring the average computing times of the algorithm, we have processed the frames of a
benchmarking video on three different hardware configurations of CPU and GPU:

• Desktop PC: with a CPU Intel Core i7-6700 at 3.4 GHz, and a GPU GeForce GTX 1080.

• Laptop PC: with a CPU Intel Core i7-8550U at 3.3 GHz, and a GPU GeForce GTX 1050.

• Embedded PC: NVIDIA Jetson Nano, with an ARM-A57 processor, and an integrated
GPU.

The video consists of a 50-second footage from a car in a highway available at Udacity’s Advanced
Line Finding Project (https://github.com/udacity/CarND-Advanced-Lane-Lines), recorded at 25 Hz
with a resolution of 1280 x 720 RGB 24-bit pixels. The main specifications of the GPUs for the
three systems are presented in Table 1. The desktop PC features the most powerful CPU, both in
terms of processing cores and transfer speed, but it also requires more energy power, compared to
the laptop and embedded PCs, which are more adequate for mounting on a small robotic platform.

Table 1: Technical specifications of the systems used in the experiments.

GPU features Desktop PC Laptop PC Embedded PC
CUDA Cores 2560 640 128

Memory 8 GB 4 GB 4 GB
Memory Interface GDDR5 GDDR5 LPDDR4

Memory Interface Width 256-bit 128-bit 64-bit
Memory Bandwidth 320 GB/sec 112 GB/sec 25.6 GB/sec
Power consumption 180 W 40-50 W 10 W

The source code with instructions for compilation and execution is publicly available in
https://github.com/RobInLabUJI/opencv-cuda. For the sake of reproducibility, we use docker
(https://www.docker.com), a Linux container technology that offers some advantages for an easy
replication of code: encapsulation, isolation, portability, and control. In addition, containers have
less overhead than virtual machines, and they can access the GPU transparently (usually the impact
should be in the order of less than 1% and hardly noticeable.) As a downside, the GPU-enabled
version of docker (nvidia-docker) does not support Windows nor macOS yet.

https://www.docker.com/
https://github.com/RobInLabUJI/opencv-cuda
https://github.com/udacity/CarND-Advanced-Lane-Lines

The code can also be compiled and executed natively in a Linux computer (as long as all the
requirements are previously installed, basically OpenCV and CUDA) with the typical building
commands:

 mkdir -p build
 cd build
 cmake ..
 make

The results are shown in Table 2: they measure the mean and standard deviation of the execution
time for 1200 frames in the video (the initial 60 frames are skipped for avoiding initialization
delays). The execution time is measured starting from the first call to processing functions, until the
final result is returned; the result is averaged with a moving window of 30 frames. For the GPU
cases, the measured time includes the uploading of the initial image to the GPU memory, and the
downloading of the result image back to CPU memory. Visual information (edges, ORB keypoints,
optical flow) is included in the measured code for clarity and debugging purposes, though in a real
setup it could be removed in order to increase the throughput.

Table 2: Computation times (in milliseconds) for the edge detection algorithm (lower is better).

Desktop PC Laptop PC Embedded PC

CPU 3.514 ± 0.272 4.562 ± 0.331 12.985 ± 1.197

GPU 4.422 ± 0.150 7.469 ± 0.106 54.064 ± 1.993

It is worth noting that for this application the CPUs are faster than the GPUs in all the three
systems: edge detection is a relatively simple computation, and the execution time is small in
comparison with the overhead of transferring the images into the GPU memory.

An example of the benchmarking code for measuring the execution time is presented below:

 1 double ticks = (double)cv::getTickCount();
 2 if (use_gpu) {
 3 gpu_processing(frame, dst);
 4 } else {
 5 cpu_processing(frame, dst);
 6 }
 7 ticks = ((double)cv::getTickCount() - ticks)/cv::getTickFrequency()*1000;

The OpenCV functions cv::getTickCount() and cv::getTickFrequency are used for

getting the number of ticks before and after the processing work, translated into seconds. A boolean
variable indicates whether to use the CPU or GPU; the value of this variable can be toggled through
a keyboard press.

In a second example, ORB features are detected and extracted from the image. Such features are
very important in robotics applications, e.g. for visual SLAM [9]. The source code for the CPU
version is:

 1 cv::Mat src, dst;
 2 cv::Mat src_gray, descriptors;
 3 std::vector<cv::KeyPoint> keypoints;

 4 cv::Ptr<cv::ORB> detector = cv::ORB::create();

 5 cv::cvtColor(src, src_gray, cv::COLOR_BGR2GRAY);
 6 detector->detect(src_gray, keypoints);
 7 detector->compute(src_gray, keypoints, descriptors);
 8 cv::drawKeypoints(src, keypoints, dst,
 cv::Scalar::all(-1), cv::DrawMatchesFlags::DEFAULT);

Firstly, we define the necessary variables for storing the original and final images, the intermediate
gray image, and the structures for storing the keypoints and descriptors of the ORB features (lines
1-4).

Secondly, the feature detector is initialized with default parameters in line 4.

Finally, the processing steps are performed in lines 5-7: the original color image is converted into a
gray image, the keypoints are detected, and their descriptors are computed. In line 8 the keypoints
are drawn into the destination image for visualization.

The CUDA version of this example is straightforward:

 1 cv::Mat src, dst;
 2 cv::cuda::GpuMat gpu_src, gpu_dst;
 3 cv::cuda::GpuMat src_gray, descriptors;
 4 std::vector<cv::KeyPoint> keypoints;

 5 gpu_src.upload(src);
 6 cv::Ptr<cv::cuda::ORB> detector = cv::cuda::ORB::create();

 7 cv::cuda::cvtColor(gpu_src, src_gray, cv::COLOR_BGR2GRAY);
 8 detector->detect(src_gray, keypoints);
 9 detector->compute(src_gray, keypoints, descriptors);
10 cv::drawKeypoints(src, keypoints, dst,
 cv::Scalar::all(-1), cv::DrawMatchesFlags::DEFAULT);

As in the previous example, we need to define two GpuMat variables for the original and

destination images (line 2). The intermediate image is also stored in GPU memory, as well as the
descriptors (line 3), but the keypoints are stored in CPU memory (line 4). After uploading the image
in line 5, the feature detector is created and the processing steps are executed.

One should note that the processing code is basically similar to the previous version: lines 4-7 of the

CPU code and lines 6-9 of the GPU code only differ in the use of the namespace cv::cuda instead

of cv for the class ORB (line 4/6) and the functions ORB::create and cvtColor (lines 4/6 and

5/7).

Finally, drawing the keypoints is done in exactly the same way (line 10 of the GPU code is the same
as line 8 of the CPU code). The output of the ORB detector is shown in Figure 5.

For debugging purposes, the code examples include visualization, and the corresponding function
calls have been included in the benchmarking. Since the visualization process is using the same
function call in both CPU and GPU versions, it should not affect the difference in the performance
between them.

Figure 5: Output image of the ORB feature detector example.

The results are shown in Table 3. In this case the GPUs are faster than the CPUs, due to the
increased computational workload demanded by the ORB algorithm.

For simplicity, this example has not computed the matching of ORB features, but it is possible to
use either the CPU or the GPU for that purpose with the classes cv::DescriptorMatcher and
cv::cuda::DescriptorMatcher, respectively.

Table 3: Computation times (in milliseconds) for the ORB
feature extraction algorithm (lower is better).

Desktop PC Laptop PC Embedded PC

CPU 15.323 ± 0.788 19.281 ± 0.883 101.586 ± 4.112

GPU 10.777 ± 1.246 11.588 ± 0.397 66.697 ± 2.936

In the third example, we compute the dense optical flow with the Farneback algorithm [10]. The
source code for the CPU version is:

 1 cv::Mat src, dst;
 2 cv::Mat prev, cv::Mat next;

 3 cv::Mat flow(prev.size(), CV_32FC2);

 4 cv::cvtColor(src, next, cv::COLOR_BGR2GRAY);
 6 cv::calcOpticalFlowFarneback(prev, next, flow, 0.5, 3, 15, 3, 5, 1.2, 0);

Since optical flow is computed with the difference between the current and previous frames, we
need to define some more variables in line 2 for storing the frames. We also define a matrix of float

numbers flow for the result (line 3 – CV_32FC2 means a 2-channel [complex] floating-point

array): this flow matrix contains the gradient of the movement between 2 frames; for each pixel

location in the original frame, the channels contain dx and dy, so that prev_x + dx = next_x, and

prev_y + dy = next_y.

The computation steps are quite simple: the color image is converted into a gray image (line 4), and
the optical flow algorithm is executed (line 5). For the sake of simplicity, we have omitted
additional instructions for displaying the result, and storing the frames.

The GPU version is not very different:

 1 cv::Mat src, dst, flow;
 2 cv::cuda::GpuMat gpu_src, gpu_flow;
 3 cv::cuda::GpuMat prev, next;

 4 gpu_src.upload(src);

 5 cv::Ptr<cv::cuda::FarnebackOpticalFlow> fof =
 cv::cuda::FarnebackOpticalFlow::create();

 6 cv::cuda::cvtColor(gpu_src, next, cv::COLOR_BGR2GRAY);
 7 fof->calc(prev, next, gpu_flow);
 8 gpu_flow.download(flow);

Besides defining all the intermediate matrices in GPU memory (lines 2-3), the main difference is in
the interface to the optical flow algorithm. In this version, the algorithm object is first defined in
line 5, then applied to the frames in line 7. Finally, the result is downloaded to CPU memory for
visualization.

The output of the optical flow algorithm is displayed in Figure 6. The hue of each pixel block
represents the orientation of the optical flow vector at that point, and the intensity is proportional to
the magnitude of the flow.

Figure 6: Output image of the dense optical flow algorithm; the hue represents
the flow angle, and the intensity is proportional to the flow magnitude.

The results are shown in Table 4. As in the previous example, the execution times for the GPUs are
lower than for the CPUs, since the computation of dense optical flow is a demanding operation.

Table 4: computation times (in milliseconds) for the dense optical flow algorithm (lower is better).

Desktop PC Laptop PC Embedded PC

CPU 196.382 ± 0.889 228.838 ± 6.736 983.943 ± 12.776

GPU 33.970 ± 0.231 78.561 ± 0.498 686.960 ± 9.729

Finally, we test the Deep Neural Networks (DNN) module for OpenCV. Since version 3.1 there is a
DNN module in the library that implements forward pass (inferencing) with networks pre-trained
using some popular deep learning frameworks such as Caffe [11] or TensorFlow [12]. A backend for

CUDA was added in OpenCV 4.2.0. In this example we use the YOLO v3 network [13], a state-of-
the-art, real-time object detection system.

While the details of the OpenCV DNN module are out of the scope of this paper, its design is based
on a unique interface that runs on different backends and computation devices (CPU, OpenCL,
CUDA). Consequently, the source code is exactly the same, no matter if the CPU or GPU is used,
except for the parameters that select the appropriate backend and computation target. The values for
using the CPU are:

net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV);
net.setPreferableTarget (cv.dnn.DNN_TARGET_CPU);

And the GPU can be selected with:

net.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA);
net.setPreferableTarget (cv.dnn.DNN_TARGET_CUDA);

A typical output image from the DNN module is shown in Figure 7, where a number of cars are
correctly identified in the input image. The frame rate for CPU and GPU versions running on the
three types of computers used in the tests is shown in Table 5.

Table 5: frame rates (in Hz) for the YOLO v3 network in the DNN module (higher is better).

Desktop PC Laptop PC Embedded PC

CPU 3.51 2.63 0.23

GPU 46.6 17.2 2.14

Besides absolute timings, it is illustrative to calculate the speed-up of the GPU with respect to the
CPU, i.e. how much the GPU is faster than the CPU for a given application. The speed-up results
are shown in Figure 8, displaying the values for each application (edge detection, ORB features,
optical flow, deep neural network) on each of the platforms (desktop, laptop, and embedded PC).

Figure 7: Output image of the DNN module with YOLO v3.

Edge detection ORB features Optical flow DNN
0

2

4

6

8

10

12

14

0.8x
1.4x

5.8x

13.3x

CPU GPU
S

p
e

e
d

u
p

a) Desktop PC

Edge detection ORB features Optical flow DNN
0

1

2

3

4

5

6

7

8

0.6x

1.7x

2.9x

6.5x

CPU GPU

S
p
e
e
d
u
p

b) Laptop PC

Edge detection ORB features Optical flow DNN
0
1
2
3
4
5
6
7
8
9

10

0.2x

1.5x 1.4x

9.3x

CPU GPU

S
p
e
e
d
u
p

c) Embedded PC

Figure 8: Performance comparisons of CPU versus GPU.

The overhead penalty can be noticed for the edge detection application on every platform. On the
other hand, the speed-up is higher in the other applications, sky-rocketing in the last example (DNN
for object recognition). This result is not surprising, since CUDA is used intensively by the deep
learning community. But the benefits of using the GPU with other OpenCV functions cannot be
overseen, obtaining speed-ups of 580% and 290% for the computation of the optical flow in the
desktop and laptop PCs, respectively.

OpenCV is a widely-used library in robotics projects, and consequently there is a precompiled
module for ROS [14] (http://wiki.ros.org/opencv3), which unfortunately does not include CUDA
support. However, GPU acceleration can still be used by replacing the standard module with a
CUDA-enabled version of the OpenCV library. This can be done by installing the library and

setting the appropriate path in the file CMakeLists.txt of any ROS module using OpenCV:

find_package(OpenCV REQUIRED
 PATHS /usr/local
 NO_DEFAULT_PATH
)

In addition, all other ROS packages which are dependent upon OpenCV (cv_bridge,

image_pipeline, image_transport, etc.) must be rebuild, i.e. their source code must be

downloaded into a ROS workspace and compiled with catkin_make. A complete example of a

simple subscriber is presented in the “ros” branch of the source code repository of this paper at
https://github.com/RobInLabUJI/opencv-cuda/tree/ros.

Converting a ROS topic image to a CUDA image is straightforward; the topic message is converted
to an OpenCV image, and this image is uploaded to the GPU:

cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);
gpuInImage.upload(cv_ptr->image);

Once the image is uploaded, the processing can be done as usual, and the result can be downloaded
and converted into a ROS message.

CUDA for OpenCV is an easy solution for accelerating vision applications in robotics, for systems
equipped with a CUDA-enabled GPU. The migration of the code from CPU-based to GPU-based is
simple and relatively straightforward, even trivial in some cases. The speed-up that can be achieved
is system- and problem-dependent: for simple vision algorithms, modern CPUs can be faster; for
complex problems involving a sequence of operations on the image, the parallelization in the GPU
leads to better performance; and for deep learning applications, the improvement is significant.

https://github.com/RobInLabUJI/opencv-cuda/tree/ros
http://wiki.ros.org/opencv3

We have provided some examples with well-known algorithms that are widely used by the robotics
community, with the aim of encouraging the researchers to improve the throughput of their systems
by squeezing all the computing power out of their hardware. CUDA and other computing
frameworks (DirectCompute [15], OpenCL [16]) have become programming standards for parallel
computing, and their inclusion in popular libraries like OpenCV is an opportunity for developers to
benefit from parallelization without a significant investment in learning some specific parallel
programming techniques.

An advantage of an open framework such as OpenCL over CUDA is that it is supported by both
AMD and Nvidia cards. The interested reader can refer to [17] for details about using OpenCL in
OpenCV.

References
[1] D. Luebke, «CUDA: Scalable parallel programming for high-performance scientific

computing,» in 2008 5th IEEE International Symposium on Biomedical Imaging: from Nano
to Macro, pp. 836-838, DOI: 10.1109/ISBI.2008.4541126.

[2] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov «Real-Time Computer Vision with
OpenCV,» ACM Queue vol. 55, no. 6, pp. 61-69, June 2012, DOI:10.1145/2184319.2184337.

[3] P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J. Kuffner, and T. Kanade, «GPU-
accelerated real-time 3D tracking for humanoid locomotion and stair climbing,» in 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 463-469, DOI:
10.1109/IROS.2007.4399104.

[4] T. Xu, T. Pototschnig, K. Kuhnlenz and M. Buss, «A high-speed multi-GPU implementation
of bottom-up attention using CUDA," in 2009 IEEE International Conference on Robotics
and Automation, pp. 41-47, DOI: 10.1109/ROBOT.2009.5152357.

[5] J. Kim, E. Park, X. Cui, H. Kim and W. A. Gruver, «A fast feature extraction in object
recognition using parallel processing on CPU and GPU,» in 2009 IEEE International
Conference on Systems, Man and Cybernetics, pp. 3842-3847, DOI:
10.1109/ICSMC.2009.5346612.

[6] N. Dalmedico, M. A. S. Teixeira, H. S. Barbosa, A. S. de Oliveira, L. V. R. de Arruda, and F.
Neves Jr, «GPU and ROS: the Use of General Parallel Processing Architecture for Robot
Perception,» in Robot Operating System (ROS), pp. 407-448, Springer, Cham, 2018.

[7] I. Culjak, D. Abram, T. Pribanic, H. Dzapo and M. Cifrek, «A brief introduction to OpenCV,»
in 2012 Proceedings of the 35th International Convention MIPRO, pp. 1725-1730.

[8] J. Canny, «A Computational Approach To Edge Detection, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 8, no. 6. pp. 679-698, 1986.

[9] R. Mur-Artal and J. D. Tardós, «ORB-SLAM2: An Open-Source SLAM System for
Monocular, Stereo, and RGB-D Cameras,» in IEEE Transactions on Robotics, vol. 33, no. 5,
pp. 1255-1262, Oct. 2017, DOI: 10.1109/TRO.2017.2705103.

[10] G. Farneback, «Very high accuracy velocity estimation using orientation tensors, parametric
motion, and simultaneous segmentation of the motion field,» in 2011 IEEE International
Conference on Computer Vision, pp. 171-177, DOI: 10.1109/ICCV.2001.937514.

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama and T.
Darrell, «Caffe: Convolutional architecture for fast feature embedding,» in Proceedings of the

22nd ACM international conference on Multimedia, pp. 675-678, 2014, DOI:
0.1145/2647868.2654889.

[12] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard and M. Kudlur, «Tensorflow: A system for large-scale machine learning,» in 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI), pp. 265-283,
2016.

[13] J. Redmon and A. Farhadi, «Yolov3: An incremental improvement,» arXiv preprint
arXiv:1804.02767.

[14] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng.
«ROS: an open-source Robot Operating System.» In ICRA workshop on open source
software, vol. 3, no. 3.2, p. 5. 2009.

[15] T. Ni, «Direct Compute: Bring GPU computing to the mainstream,» in GPU Technology
Conference, p. 23, 2009.

[16] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra, «From CUDA to
OpenCL: Towards a performance-portable solution for multi-platform GPU programming,»
Parallel Computing, 38(8), 391-407, 2012.

[17] H. Gasparakis, «Heterogeneous compute in computer vision: OpenCL in OpenCV,» Visual
Information Processing and Communication V. Vol. 9029. International Society for Optics
and Photonics, 2014.

	References

