

Edinburgh Research Explorer

Decoding Motor Skills of AI and Human Policies

Citation for published version:
Yuan, K, McGreavy, C, Yang, C, Wolfslag, WJ & Li, Z 2020, 'Decoding Motor Skills of AI and Human
Policies: A Study on Humanoid and Human Balance Control', IEEE Robotics and Automation Magazine, vol.
27, no. 2, pp. 87 - 101. https://doi.org/10.1109/MRA.2020.2980547

Digital Object Identifier (DOI):
10.1109/MRA.2020.2980547

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Robotics and Automation Magazine

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 16. Apr. 2024

https://doi.org/10.1109/MRA.2020.2980547
https://doi.org/10.1109/MRA.2020.2980547
https://www.research.ed.ac.uk/en/publications/f5b9700e-af7f-476c-8c2e-2ca578781433

1

Decoding Motor Skills of AI and Human Policies: A Study on
Humanoid and Human Balance Control

Kai Yuan, Christopher McGreavy, Chuanyu Yang, Wouter Wolfslag, and Zhibin Li

I. SCIENTIFIC MOTIVATION

(a) Ankle Strategy (b) Hip Strategy (c) Toe Strategy (d) Step Strategy

Fig. 1: Human-like Push Recovery strategies emerging from Deep Reinforcement Learning. The discovered behaviours serve
as a guideline for the design of certifiable and safe controllers that replicate advantageous strategies from AI policies.

From the advancement in computers, computer-aided design for mechanical and electronic engineering, architecture and
many other engineering fields emerged. Foreseeing a similar development curve and technology wave, we forecast a new
emerging discipline in the near future that uses learning-aided approaches for catalysing control development, alongside other
similar applications such as in medicine discovery. In this study, we propose a new paradigm of using a machine learning
approach to facilitate a quicker, more efficient and effective control development, as a different approach of leveraging the
power of machine learning in addition to other options that intent to use learning directly in real-world applications.

Machine Learning and Deep Reinforcement Learning (DRL) in particular have reached an advanced stage to produce powerful
policies with better autonomous performances than many state-of-the-art control and planning approaches in robot locomotion
[1], robotic manipulation [2], and even the control of complex morphological machines [3]. Notably, DRL’s ability to solve
complex problems with a relatively short development time is especially attractive, which is empowered by training policies
that maximise the cumulative reward through the exploration of the action and state space, rather than using prior knowledge
of the models about the robot, the world, and their interactions.

To leverage the capabilities of DRL, we first develop a DRL-based control framework to learn rich motor skills of push
recovery for humanoid robots. The complexity in whole-body balancing arises in challenges such as multi-contact coordination
based on multi-sensory inputs, state transitions between fully- and under-actuated situations, switching policies, and generalising
to external disturbances on any body parts, while accounting for all edge cases that a designer has difficulty to consider
beforehand. In such a setting, manually designing the individual control strategies and finding a reliable switching mechanism
requires both substantial development time, mathematical rigour, and code implementation. On the other hand, through a well-
designed DRL framework and task-specific training procedures, a robust policy can be learned automatically by interacting
with the environment, requiring only computational power. In particular, as shown in Fig. 1, our learned policy exhibits
human-like push recovery behaviour with four typical push recovery strategies emerging naturally: ankle, hip, toe, and
stepping strategy.

Though the learned control policy could possibly be deployed on the real robotic system, the lack of explainability and
analytical reasoning of the Neural Network makes it unsuitable for safety-critical applications in real world. Furthermore,
due to the demand of large data and sample-inefficient nature of DRL algorithms, complex policies are typically trained in

2

simulation, which cannot guarantee the same performance while transferred directly to the real system [1], and the challenge
of reality gap raises concerning about both the safety and performance.

Train AI

Policy

via DRL

DRL policy Formulate

control

guidelines

Extract policy

Policy transfer

Control robot

Direct deployment

Robot

Collect Human Push Recovery Data

Human policy

Policy transfer

Post-processing DataPost-processing Data

Design control

scheme

Fig. 2: Proposed control design approach by policy transfer from AI policies to real robotic platforms. By understanding
the underlying concepts of the learned policies, we can reverse-engineer a controller that closely resembles the behaviour of
the AI policy while being transparent and safe.

To benefit from both the safety and interpretability for the control policy and the versatility and adaptability from
learning, we propose to take advantage of DRL to quickly discover versatile, deployable policies and solutions for very
difficult problems, and then study, analyse and extract the principles of those policies as guidelines for developing engineered
controllers in a reliable manner. By doing so, we utilise the AI-solutions for rapid control development (Fig. 3) to design safe
and certifiable controllers which can be verified and deployed on real-world robots (Fig. 2).

While classical control development is based on gradually building knowledge that increases the performance incrementally,
using a template policy will provide disruptive, innovative solutions that will escalate performance (green line, Fig. 3). DRL is
able to achieve good performance by a number of iterations in the DRL learning framework. However, the achieved performance
is still comparatively low to what tuning in control can do. Combining both approaches to “kick-start” the iteration process
helps to design good controllers. After knowing the system and the controller, it is straightforward to improve upon due to
the fact that we are then able to understand why the performance is lower than the optimum, whereas in the case of DRL,
there is little influence from human engineers to improve the performance but reshaping the reward and/or altering the learning
framework, and relying on the exploration being sufficiently large to achieve high performance.

AI-guided controller

development time per iteration

System

definition

transferred

from AI policy

Tuning and

evaluation

 Development Time

per iteration

Development time

Performance

Max. performance

AI policy development

time per iteration

System definition for

DRL framework

Tuning and evaluation

Reformulation

 Development time

per iteration

AI policy development

time per iteration

System definition for

DRL framework

Tuning and evaluation

Reformulation

 Development time

per iteration

Classical controller development

time per iteration

System definition & mathematical

modeling of system, sensors, and actuators

Tuning and evaluation

Reformulation

 Development time

per iteration

AI policy

AI-guided controller

Classical controller

Starting performance AI policy & controller

Starting performance AI-guided controller

Fig. 3: Qualitative depiction of the performance of the controllers over iterations: leveraging the solution provided by an
AI policy decreases the development time of controllers compared to AI policy and traditional controller development while
starting at a higher initial performance. The width between every black dot indicates the relative development time of the
individual control design approaches with the shortest development time per iteration for the AI-guided controller.

3

In this paper, we are motivated to study a viable approach to infer underlying principles of an AI policy by studying its
perception-action relation, i.e., to some extent, reverse-engineer an equivalent controller in terms of functionality based on a
black-box policy. This methodology is not only applicable to AI policies, but also to any black-box policies, such as a human
policy. Without knowing exactly how push recovery policies are realised by Artificial Neural Network (ANN) or biological
human Neural Network, we can still analyse the behaviour at the functionality level by studying their input-output relationship.

Based on evidence of optimality in human manipulation tasks [4], we hypothesise that policies for push recovery in humans
and humanoid are both optimal control process that follows certain optimal criteria that can be quantified. Following this
hypothesis, we analyse and utilise input-output data collected from both humanoid and human policies, and propose a Minimum-
Jerk Model-Predictive Control (MJMPC) Framework that is able to quantitatively reflect both the AI and human push recovery
policies. The engineered controller has high similarity (Coefficient of Determination more than 90%) with the collected data,
and also exhibits the same human-like push recovery strategies, which emerge from the proposed MJMPC without the need
of manual switching between the strategies.

Furthermore, a comparison between humanoid and human balancing is conducted to show the characteristics of the learned
humanoid behaviour. This comparison will show that DRL algorithms are very powerful to learn a policy (e.g., balancing)
within a short development and training time that may require humans years to learn. In contrast, in order to design an
engineered controller from scratch with similar performance, months or even years are needed for developmental iterations,
mainly because of the high-redundancy and a diversity of control actions, which are yet challenging to resolve the physical
optimality on a high Degree of Freedom (DoF) robot. In this regard, the learning approach is very attractive because of the
significant reduction of manual effort, and the learning architecture requires only the design of input-output and rewards. This
article shed some light on a new paradigm: the recent high-profile successes in DRL suggest new high-quality value in learning
methods that the discovered policies can be used as a basis for speeding up the development of robotic controllers (Fig. 2). As
an outcome in this push recovery study, we obtain a certifiable, analysable optimal controller that does not require any state
machine or switching mechanism, while exhibiting human-like push recovery strategies, such as ankle, hip, toe, and stepping
strategy all in a coherent optimisation process.

II. GENERATING COMPLEX MOTIONS FOR HUMANOID ROBOTS THROUGH DEEP REINFORCEMENT LEARNING

To use DRL-policies as a basis for analysis, these policies must reach a certain performance threshold that ideally surpasses
traditional control approaches both in the types of motions it can generate and the amount of disturbances that it can withstand.
DRL has been shown to be capable of learning locomotion and fall recovery policies that surpasses traditional control approaches
for quadruped robots in terms of power efficiency, and versatility of motion [1].

In this section, we present a hierarchical learning framework for achieving versatile behaviours during push recovery for
humanoid robots as proposed in [5]. The learned policy exhibits a wide range of balancing strategies that are comparable to
human push recovery. In particular, the learned policy is able to withstand external disturbances by modulation of the Centre
of Pressure (Ankle strategy), Angular Momentum (Hip strategy), Centre of Mass height (Toe strategy), and Support Polygon
(Stepping strategy) and surpasses traditional control methods with respect to the disturbances that it can withstand.

All motions are trained for deployment on NASA’s humanoid Valkyrie [6], a 44 DoF bipedal humanoid robot designed for
operating in disaster response scenarios and extraterrestrial planetary space missions such as unmanned pre-deployments on
Mars. Valkyrie is built to operate in human-engineered environments standing 1.87m tall and weighing 129kg with ranges of
motion similar to humans. Locomotion and manipulation of Valkyrie are enabled through 25 series-elastic actuators in arms,
torso, and legs; their respective joint limits are described in Table I. For sensing, Valkyrie has proprioceptive and exteroceptive
sensors consisting of a multitude of gyroscopes, accelerometers, load cells, pressure sensors, sonar, LIDAR, depth cameras,
and stereo sensors.

TABLE I: Mechanical specifications of Valkyrie.

Arm Torso Leg
Shoulder
roll

Shoulder
pitch

Shoulder
yaw

Elbow
pitch

Torso
roll

Torso
pitch

Torso
yaw

Hip
Roll

Hip
pitch

Hip
yaw

Knee
pitch

Ankle
Pitch

Ankle
Roll

Lower joint position [rad] -1.3 -2.9 -3.1 -2.2 -0.2 -0.1 -1.3 -0.6 -2.4 -0.4 -0.1 -0.9 -0.4
Upper joint position [rad] 1.5 2.0 2.2 0.1 0.3 0.7 1.2 0.5 1.6 1.1 2.1 0.7 0.4
Joint velocity [rad/s] 5.9 5.9 11.6 11.5 9.0 9.0 5.9 7.0 6.1 5.9 6.1 11.0 11.0
Joint torque [Nm] 190 190 65 65 150 150 190 350 350 190 350 205 205

For training the policy, the physics simulator PyBullet [7] was used, which is able to simulate physics faster than real-time
expediting the training process, and simulates collisions, and soft and rigid dynamics by loading objects defined in the Unified
Robot Description Format (URDF). The Valkyrie URDF model closely replicates the real robot and is provided by NASA
including physical quantities, such as inertia, mass distribution, sensor noise, friction, and damping [6].

A. Learning Framework
Our DRL framework (Fig. 4) has an actor-critic architecture, in which both the actor πθ(a|s) and the critic Vφ(s) are Neural

Networks parametrised by the weights θ and φ respectively.

4

 Jo
in

t p
o
sitio

n
 targ

et

CoM

state

Torso

state

Pelvis

state

Feet

state

Contact

forces

Joint

state

Actor
150

tanh

50

tanh

25

tanh

Jo
in

t p
o
sitio

n
 targ

et

CoM

state

Torso

state

Pelvis

state

Feet

state

Contact

forces

Joint

state

Actor
150

tanh

50

tanh

25

tanh

EnvironmentEnvironment

CoM

state

Torso

state

Pelvis

state

Feet

state

Contact

forces

Joint

state

Critic

V(s)

150

ReLU

50

ReLU

25

ReLU

CoM

state

Torso

state

Pelvis

state

Feet

state

Contact

forces

Joint

state

Critic

V(s)

150

ReLU

50

ReLU

25

ReLU

CoM

state

Torso

state

Pelvis

state

Feet

state

Contact

forces

Joint

state

Critic

V(s)

150

ReLU

50

ReLU

25

ReLU

Update network weights of value

function via gradient descent

using sampled rewards

 Calculate advantage estimates

 from trajectories and

current value function

Update network weights of policy

 via stochastic gradient ascent of the

DRL objective using advantage estimate

Fig. 4: Learning framework for Deep Reinforcement Learning of a Push Recovery policy.

The AI policy πθ(a|s) is trained through a policy gradient method called Trust-Region Policy Optimization (TRPO) [8].
Policy gradient methods directly model and optimise the policy that will yield the highest reward J(θ):

J(θ) =
∑
s∈S

dπ(s)V π(s) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a), (1)

with stationary distribution dπ(s), state value function V π(s), and action value function Qπ(s, a) under policy πθ. Using the
gradient ∇θJ(θ), gradient ascent is used to find an optimal parameter set θ that maximises the reward.

Because the true value functions V π(s), Qπ(s, a) are not known, a critic Vφ(s) estimating the true value function V π(s)
will be trained. The critic Vφ(s) is updated by minimising the expected loss LV (φ) via gradient descent:

min
φ
LV (φ) = min

φ
E[(Vφ(st)−Gt)2], (2)

with value function estimation Vφ(st) and return Gt. The return Gt =
∑∞
k=t γ

k−trk is the discounted cumulative reward using
the discount factor γ ≤ 1 and reward rt.

Using the value function estimation Vφ(st), the actor’s parameters θ are updated by maximising the reward (1) via stochastic
gradient ascent. Additionally, TRPO improves the training stability through trust-region optimisation - constraining the KL
divergence during a policy update preventing large policy changes that could cause instability - and reduces the variance of
the policy gradient estimate using an advantage estimation At:

max
θ
J(θ) = max

θ
E[

πθ(a|s)
πθold(a|s)

At(st)]

subject to E[DKL(πθold(·|s)||πθ(·|s))] ≤ δ,
(3)

with updated policy πθ(a|s), old policy πθ(a|s), advantage estimate At =
∑∞
l=0(γλ)

l(rt + V (st+1)− V (st)), discount factor
γ, variance/bias trade-off parameter λ ∈ [0, 1], KL divergence DKL(·||·), and trust region δ.

5

During the training process, by sampling the action at from the stochastic policy πθ(at|st) and performing this action,
the environment returns the resulting reward rt, and the corresponding state st+1. During every update step during training,
so-called SARS tuples {st, at, rt, st+1} are collected in a batch D. Upon reaching a certain batch size N - the size of the batch
is a hyper-parameter trading off the variance of the data against the speed of training - the actor and critic are then updated
through gradient ascent and descent respectively. While a stochastic policy provides exploration, additionally, by applying
random forces to the pelvis, the policy’s ability to withstand large pushes is increased due to a larger coverage of the state
space in the stored experience data. With the additional push experience during training, the policy will be able to generalise
better to push disturbances during runtime.

B. Inferring actions from the AI policy

By training in the presented learning framework and interacting with the environment, the AI policy experiences what reward
certain actions in different states will yield. Using these experiences in form of SARS tuple trajectories τ = {s1:N , a1:N , r1:N , s′1:N}
and reward maximisation through gradient ascent, the policy is incentivised to perform actions that will lead to high-value
states while avoiding low-value states. Consequently the AI policy π(a|s) learns how to optimally act in state st by performing
actions at to maximise a human-defined reward function r.

The reward function is designed as:

r = rpose + rCoM pos + rCoM vel + rGRF + rcontact + rpower. (4)

The reward function is designed such that high rewards are given if torso pose rpose, Centre of Mass (CoM) position rCoM pos,
CoM velocity rCoM vel, and ground contact force rGRF (equally distributed ground reaction forces) remain close to the nominal
values. A radial basis function ri = exp(−αi(xtarget − x)2) is used for torso pose, CoM position, CoM velocity, and ground
contact force to encourage the robot being close to a target position. Furthermore, a penalty (negative value) is given proportional
to the power consumption rpower, and if the upper body is in contact with ground or the foot is not in contact with the ground
rcontact. For the contact penalty, a constant value is subtracted if there was no ground contact of the foot or an upper body
contact with the ground.

The high-level AI policy generates actions in form of target joint angle references at a frequency of 25Hz by forward-
propagating through the actor network using the current state as input. The robot performs its motions with upper body joints
locked in their nominal position. The action space A ∈ R11 thus consists of joint positions for torso pitch, hip roll, hip pitch,
knee pitch, ankle roll, and ankle pitch. The target joint angles are given to a low-level Proportional Derivative (PD) controller
operating at 500Hz to generate the joint torques that are ultimately applied to control the robot (Top of Fig. 6).

The state space S ∈ R47 consists of joint position and velocity of the actuated joints, pelvis states (translational and angular
velocity, orientation), CoM states (translational velocity and position in local frame), ground contact force, torso position (in
local frame), and foot position (in local frame). The state is sampled at a frequency of 500Hz and filtered by a first-order
Butterworth filter with a cut-off frequency of 10Hz.

More details regarding the formulations of the learning framework can be found in [5].

C. Behaviours of the AI Policy

Training a robust push recovery policy in the presented learning framework requires 6-8 hours of simulation time on a
commercial desktop PC (Intel i7 6700K, Nvidia Titan X, Tensorflow) and equates to 1-2 days in real time. The learned push
recovery policy demonstrates human-like push recovery strategies such as ankle, hip, toe, and stepping strategy which emerge
at different levels of disturbance (Fig. 1). The policy performs well in the presence of external disturbances and large sensor
noises due to the filtering and sufficient amount of exploration.

Notably, the AI is able to generalise to external disturbances it was not trained for. In Figure 5 snapshots of Valkyrie are
shown during which an impulse push on the shin is performed. The policy is able to generalise to this untrained case by
generating a stepping behaviour. This generalisation ability further extends to the ability of recovering from an impact during
landing from 0.55m height.

The performance of the policy learned by the AI is compared with push recovery controllers in terms of maximum impulse
disturbance. The AI demonstrates the ability, comparable to state-of-the-art push recovery controllers, to withstand a wide
range of impulse disturbances. The details of the comparison are presented in [5]. In Section IV we will further show that the
motions are human comparable both quantitatively and qualitatively.

III. UNDERSTANDING AND LEARNING THE FUNDAMENTAL PRINCIPLES FROM THE AI-POLICY

The idea of using AI-generated policies as inspiration for solving hard problems has taken flight in other fields, most notably
in games such as Go, Chess and Shogi [9] for which the AI policy achieved super-human level performance. Analysing the
concepts and solution process of the AI allows humans to construct better solutions and improve the way humans approach
these problems: AlphaGo, a super-human policy that beat 18-time world champion Lee Seedol 4:1, has subsequently been

6

t = 0.00s t = 0.06s

F = 1080N

t = 0.10s

F = 1080N

t = 0.13s

F = 1080N

t = 0.16s

F = 1080N

t = 0.20s t = 0.36s t = 0.50s t = 0.70s

t = 0.83s t = 1.06s t = 1.16s t = 1.46s

Fig. 5: Valkyrie recovering from an unexpected disturbance in a test scenario which is never encountered during training
(impulse at the shin of 108Ns). The learned policy naturally evolves and generates a stepping behaviour. Top row: a nominal
starting pose (left), and the motion during the disturbance (being pulled at the shin); bottom 2 rows: recovery reactions where
Valkyrie takes 3 steps backwards and successfully recovers balance.

analysed to provide humans with insights on why and how AlphaGo won. The release of AlphaGo Teach enabled Go-players
to analyse strategies, and changed the way in which humans played the game: AlphaGo Teach helped to quantify the value
of starting the game (suggesting that the current compensation of 6.5 points for not starting puts the non-starting player in an
advantage), redefined conventional openings, and utilised unconventional moves that went against conventional human wisdom
and were previously deemed as disadvantageous.

Inspired by the performance of the AI policy, this section aims to present an approach to reverse-engineer the policy to
obtain a unified controller exhibiting the same push recovery strategies as the AI policy. By reverse-engineering the AI policy,
its versatility is maintained while enabling us to analyse and modify the controller with respect to stability and safety.

We aim to find a controller which is able to stabilise the system, and has a close similarity and fit to the DRL policy. To
this end, a choice of system model and the controller type need to be made. In the following, we will show that the DRL
policy can be accurately replicated with point-mass dynamics that is controlled by a minimum jerk controller. This indicates

7

Step location

CoM reference

Target

joint angles
Joint torque

Joint states

Robot state

Control design

Choice of

controller family

Control

formulation

Parameter

tuning

Evaluation of

fit/similarity

Guidelines

for Control Design

Choice of System Model

Controller implementation

High-level Neural Network
Low-level Joint controller

Pointmass LIPM Whole-Body

If not good fit

MJMPC
Whole-body

Control
RobotRobot

CoM state

Robot state

Non-linear step

location optimiser

Non-linear step

location optimiser

Reverse-engineered Controller

)) ((p dK tt K ee +

Robot

Robot

Fig. 6: Top: Hierarchical control system for push recovery. The high-level neural network is learned as depicted in Fig. 4.
Mid: Design process of the engineered controller. Bottom: Implementation of the designed controller into a whole-body control
framework.

that the NN may internally use a point-mass template and try to optimise the jerk.
The design process (Fig. 6) involves three steps: acquiring state-action data from the AI policy, reverse-engineering the

policy, and deploying the controller in a whole-body control framework. First, various state-action pairs are acquired through
simulation for different external disturbances. In the reverse-engineering process, based on the criterion of least square error
fit, both a suitable system dynamics representation and a controller using these system dynamics will be determined. Lastly,
in the deployment phase, the engineered controller will be used to generate step locations and the CoM trajectory which will
then be tracked by a whole-body controller.

A. Analysing the AI-policy

The Actor Neural Network can be analysed thoroughly with the goal of finding guidelines and quantities that enable general
push recovery. The insights gathered from analysing the actor can be used to improve controller design. Methods for analysing
and interpreting the NN are mainly of visual nature and originate from the field of Computer Vision.

In this work, we visualise the NN’s activation by using t-distributed Stochastic Neighbor Embedding (t-SNE) to project the
activation of NN’s onto a 2D plane while preserving neighbourhoods and clusters in projections [10]. T-SNE is performed
on the neuron activations to project the high-dimensional NN activation on a 2-dimensional space in order to investigate the
generalisation behaviour of the policy. In the final projection, data points that represent similar NN activation are grouped
nearby with high probability, whereas non-similar data points are distant from each other. We treat all neuron activations (c.f.
Fig. 4) during one time-step as one high-dimensional data point for the t-SNE analysis. For every time step of a trial we
collect all neuron activations across disturbances ranging from 0Ns−210Ns. During these disturbances, all four push recovery
strategies (Fig. 1) occurred and are labelled by colour in Fig. 7.

8

Fig. 7: T-SNE with every dot indicating the activation of all 175 neurons during one time step. The classification of every dot
is determined by whether they are non-zero (exceed a threshold) for foot velocity (step), angular momentum (hip), vertical
CoM velocity (toe), and is Ankle Strategy otherwise.

As can be seen in Figure 7, the distinct strategies are cover separate regions and thus partly explain the ability of the AI
policy to generalise across different disturbances, as the activation is similar for the same strategy. NN representations that are
labelled as the same strategy are perceptually similar and are projected close to each other. The points that represent ankle
strategy cluster well with few outliers and is visually distinct from other strategies. The toe strategy and stepping strategy are
also quite distinct from each other. Furthermore, the lack of activations corresponding to the hip strategy (blue points in Fig. 7)
indicate that the AI policy does not utilise the Angular Momentum as much as the other strategies and could suggest that the
hip strategy should be used less than other strategies, such as the toe strategy. The hip strategy does not cluster as clearly as the
other strategies, thus we hypothesise that it is an artefact of other motions rather than an intentional motion. The effectiveness
of the hip strategy is further questioned in the literature [11], and should be kept in mind when reverse-engineering the AI
policy.

B. Incorporating AI-policy inspired principles in the control design

The close resemblance between the DRL (dashed lines in Fig. 10) and human data (dashed lines in Fig. 13), for which
strong evidence of being minimum jerk exists [4], [12], along with the typical smoothness characteristics of minimum jerk
trajectories motivates the design of a minimum jerk control scheme. Inspired by this, reverse-engineering the AI policy involved
investigating whether it is also minimum jerk1. We designed an MPC controller that is using point-mass dynamics to minimise
the jerk of the CoM state for motion generation and feedback control. In order to prevent that arbitrarily large motions are
generated that violate the actuation constraints of the robot, the CoM state is further constrained in the MPC scheme.

The idea of MPC lies in solving an optimisation problem at every time-step. By using the feedback of the current state,

a closed-loop control behaviour can be achieved. The objective function J = 1
2

∫ tf
0

(
d3x(t)

dt3

)2
dt = 1

2

∫ tf
0
u(t)2dt is designed

1 For the control design process of reverse-engineering the AI policy, we followed the processes as in Fig. 5. Our study eventually found that applying the
controller proposed in our previous work [12] leads to the best fitting results, and strong resemblance between the AI policy and the reconstructed controller.
In contrast, the further tested different models (point-mass, Inverted Pendulum, Whole-Body Model), and controllers (PD control, Linear Quadratic Regulators,
and MPC) have worse fitting to the data.

9

Fig. 8: Left: Point-mass model with free moving CoM independent on actuation. This model is used for our proposed Minimum
Jerk Model-Predictive Controller. Right: Inverted-Pendulum model with actuated ankle torque and kick-force and free moving
CoM according to the Inverted Pendulum motions. This model is used to validate and verify that the controller generated a
feasible and implementable trajectory.

to minimise jerk
...
x (the input u of the system) with final time tf . The MPC solves the following constrained optimisation

problem:

min
u(t)

1

2

∫ tf

0

u(t)2dt

subject to
d3x(t)

dt3
= u

[x(0), ẋ(0), ẍ(0)] = [x0, ẋ0, ẍ0]

[x(tf), ẋ(tf), ẍ(tf)] = [xf , ẋf , ẍf]

[xmin, ẋmin, ẍmin] ≤ [x, ẋ, ẍ] ≤ [xmax, ẋmax, ẍmax], (5)

with initial condition [x0, ẋ0, ẍ0], and terminal condition [xf , ẋf , ẍf]. The upper and lower inequality constraints of the
optimisation problem prevent the Minimum Jerk Model-Predictive Control (MJMPC) scheme outputting trajectories that the
subsequent whole-body controller cannot track. We constrain the maximum vertical displacement, velocity, and acceleration
of the CoM, as well as the maximum jerk the point mass can be exposed to. For the final state two quantities need to be
determined: the final time tf at which the system should reach state xf , and the final CoM state itself which is provided by
non-linear step optimiser [13] and thus evokes stepping behaviour if the push gets too large.

1) Determining final time via data fitting: While the final time tf , at which the robot should come to a rest, could also
be optimised, this would introduce non-linearity to the optimisation problem. Thus, we treat the final time tf as an open
parameter: too short and it violates the physical capabilities, too long and it may get unstable or use too much energy. We
determine an appropriate value for tf via least square error fitting between collected DRL data and the MJMPC. In Figure 9
it can be seen that both a piece-wise linear and a quadratic approximation are able to fit the data.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.2

0.4

0.6

Displacement in [cm]

t f
in

[s
]

Real data Piece-wise linear approximation Quadratic approximation

Fig. 9: CoM displacement from nominal pose over tf for the robot.

10

TABLE II: Average Coefficient of Determination (R2) over 2000 trials between DRL and robot trajectories for Ankle, Hip,
Toe, and Step Strategy.

Mean R2

Axis Ankle Hip Toe Step Total

X 0.97 0.94 0.93 0.96 0.95
Z 0.90 0.91 0.96 0.88 0.91

2) Non-linear Step Optimisation: In an outer loop, a non-linear step optimiser [13] provides the MJMPC scheme with a
reference point. The position xf in the final state xf = [xf , 0, 0] is determined by the non-linear step location optimiser, and
the velocity ẋf and acceleration ẍf are set to zero. The step optimiser is able find a step location and timing within 3ms due
to the specific formulation of the optimisation problem. Consequently, we are able to run the optimiser at real time at 100Hz.
Furthermore, the non-linear optimiser considers the kinematic constraints of the robot to determine the maximal step length,
while also constraining the minimal and maximal step velocity of the robot.

3) Emerging Strategies and Quality of Fit: From the x and z CoM position trajectories in Figure 10 it can be seen that
MJMPC generates trajectories from which the push recovery strategies (Fig. 1) emerge naturally. From the data of the DRL
policy we found that very little Angular Momentum was generated (Section III-A), and consequently do not regulate the angular
momentum of the humanoid. Typical for the ankle strategy (blue solid line), the Centre of Pressure (CoP) is moved within
the Support Polygon to move the CoM position. The CoM height modulation emerges from regulating the CoM height to its
nominal position. For large pushes, the step optimiser sets a new reference position, and thus stepping behaviour emerges.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

Po
si

tio
n

[m
]

Ankle simulated Ankle real
Hip simulated Hip real

0 0.5 1 1.5 2 2.5

−0.2

0

0.2

0.4

0.6

V
el

oc
ity

[m
/s

]

0 0.5 1 1.5 2 2.5
1

1.5

2

Time [s]

Fo
rc

e
[k

N
]

Ankle Hip
Toe Step

0 0.5 1 1.5 2 2.5

Po
si

tio
n

[m
]

Toe simulated Toe real
Step simulated Step real

0 0.5 1 1.5 2 2.5

0

0.2

V
el

oc
ity

[m
/s

]

0 0.5 1 1.5 2 2.5

−500

0

500

Time [s]

To
rq

ue
[N

m
]

Fig. 10: Robot data. Left column: x position, velocity, and required force. Right column: z position, velocity, and required
torque

To show the quality of fit, we identify the open parameters by optimising these via least square error between the controller
and the DRL policy. We apply k-fold cross validation across 2000 trials of the robot, and show the mean and standard deviation
in Table II with an average coefficient of determination of 0.95 and 0.91 for x and z direction respectively.

11

As can be seen in Figure 10, by using the methodology described in Section III-B1, a final time tf can be chosen such that
the engineered policy fits the DRL, indicating that MJMPC is a suitable controller for resembling the AI policy. The fit for
the vertical component is slightly worse due to the fact, that the approximation of tf for the CoM height was not as well as
for the sagittal component.

C. Realisability of MJMPC on Real Systems

In the following, we propose a framework for real world deployment of the generated push recovery motions and demonstrate
the feasibility of the motions generated from MJMPC.

Non-linear step location optimiser MJMPC

Step location

CoM reference

Whole-body

Control
RobotRobot

CoM state

Robot state

100Hz 100Hz 500Hz

Fig. 11: Control diagram for the robot.

In order to deploy the push recovery motions on a real robot while guaranteeing stability and implementability, a whole-body
controller is included in the control framework (Fig. 11). To this end, Quadratic Programming (QP) based whole-body controllers
can be leveraged to track reference motions while providing stability and were successfully deployed on humanoids such as
Valkyrie [6], Atlas [14], and HRP-2 [15]. Beside the ability to incorporate stability and feasibility guaranteeing constraints in
the optimisation problem formulation, QP problems can be solved extremely fast with off the shelf QP solvers enabling loop
closure at over 500Hz. Furthermore, in practise, whole-body QP controllers exhibit robustness to model uncertainties due to
fast frequent loop closure, and have been shown to reliably work on the real Valkyrie platform.

After the MJMPC generates a reference CoM trajectory yref, a whole-body controller is minimising the tracking error
Jtask = 1

2‖y − yref‖ while guaranteeing physically feasible torques realising the push recovery motion. Reformulation of the
tracking tasks of Jtask = 1

2‖y − yref‖2 = 1
2‖AX − b‖2 with state X = [q̈, τ, λ]T consisting of torque commands τ , joint

accelerations q̈ and contact wrench λ yields the matrices H = ATA, f = −AT b. The QP problem is formulated as:

min
X

XTHX + fTX

s.t. AeqX +Beq = 0

AineqX +Bineq ≥ 0.

(6)

Further tasks, e.g., tracking feet trajectories from the non-linear step location optimiser, regularisation terms, or other tasks
benefiting the stability of the controller, can be stacked in A = [w0A0, w1A1, ..., wnAn]

T , b = [w0b0, w1b1, ..., wnbn]
T and

task priorities are represented by the weights wi, where i = 0, ..., n is the i-th task (for details, c.f., [14]).
The equations of motion guaranteeing physical coherence between the states form the equality constraints of the QP problem

(6): [
M(q) −S −JT (q)

] q̈τ
λ

+ h(q, q̇) = 0, (7)

with inertia matrix M(q), selection matrix S, Jacobian matrices JT (q) of the contact links, and nonlinear effects h(q, q̇).
In addition to physical coherence of the solution, locomotion specific constraints are formulated guaranteeing that the

robot will not fall over. This is achieved by imposing inequality constraints in the QP problem on the contact wrench λ =
[fx, fy, fz, τx, τy, τz] between feet and the ground. Slippage in x, y direction is prevented by constraining the force in the
respective direction |fx| ≤ µfz, |fy| ≤ µfz for a given friction coefficient µ. Unilateral forces (no suction of the feet to the
ground) are guaranteed by fz > 0. A stability constraint is achieved by constraining the CoP within the Support Polygon
|τx| ≤ Yfz, |τy| ≤ Xfz with dimensions X ,Y of the Support Polygon. Lastly yaw slippage is prevented by τmin ≤ τz ≤ τmax
with τmin = −µ(X + Y)fz + |Yfx − µτx|+ |Xfy − µτy|, τmax = +µ(X + Y)fz − |Yfx + µτx| − |Xfy + µτy|.

12

The physical feasibility of the motions on the actuators during push recovery motions can be further shown using an Inverted
Pendulum Model. The Inverted Pendulum (IP) Model [16] simplifies the dynamics of a robot into an IP whose length can
be extended via a ”kick-force” and a torque applied to the pivot point corresponding to the ground reaction force and torque
of the real robot. Using the torque limits of the actuators, the robot can produce a ground contact force of fmax = 2500N
and torque of τmax = 1000Nm. Using the IP model, the required ground contact forces and torques for tracking the CoM
reference can be calculated and are shown in Figure 10. For all four push recovery scenarios, the required force and torques
are well below the maximal generatable ground contact force and torque of fmax = 2500N and τmax = 1000Nm respectively.

Summarised, feasible and stable motions are enabled using this proposed control framework of first generating push recovery
motions via MJMPC and then tracking the motions with a whole-body controller. In the inequality constraint (5) of the
MJMPC optimisation problem it is explicitly considered at which speed the whole-body controller can track a reference
motion. Therefore, trackability of the reference motion is guaranteed. Furthermore, for the whole-body controller, the CoM
Height Modulation does not necessarily need to come from a toe lift, but can come from any leg length extension increasing
the CoM height. This is possible if the gait is not performed with stretched knees which is mostly the case in robot control
tasks that aim to prevent singularities in a stretched knee pose.

IV. BENCHMARKING BETWEEN HUMAN- AND AI-POLICIES

To this point, we have shown that methods of policy extraction can be used to estimate and reconstruct control policies from
DRL. Interestingly, when these methods are applied to human movement similar strategies are revealed [12]. In this section we
compare the findings from our previous work with those based on the AI policy to highlight the similarities between policies
extracted from humans and DRL. This will show that even though training in DRL can take just hours, the emergent behaviours
are similar to human behaviours which are highly successful only after being refined over months. These similarities show that
DRL can be a high quality source of inspiration for control design since it can closely match human level behaviour.

A. Data Collection

To compare human and DRL push recovery policies, human data was recorded in 60 trials while short impulses were applied
close to their CoM (Fig. 12 left), analogous to those applied to robots during DRL testing. After the push ends (Fig. 12 middle)
the subject takes a recovery action (e.g., stepping in Fig. 12 right). Different impulse magnitudes were applied to obtain a wide
range of push recovery behaviour. Impulses were measured by a Force/Torque sensor. Movement was measured via a VICON
motion tracking system and the data was post-processed using OpenSim and gait analysis tools as presented in [17].

Fig. 12: Example of one experiment trial. Left: subject stands upright during the beginning of the push. Middle: subject transits
into stepping strategy after being pushed. Right: subject comes to a halt after stepping action.

B. Push Recovery Strategies in Humans and AI policies

Analysis of the human data [12] shows that various strategies are used for push recovery as shown in Fig. 1. Each strategy
is associated with a control action such as the modulation of (CoP), Angular Momentum, CoM Height, or Support Polygon.
Interestingly, a very similar structure also emerges in the AI policy, which demonstrates the similarities between DRL and
human policies.

13

TABLE III: Coefficient of Determination (R2) between human and robot trajectories for Ankle, Hip, Toe, and Step Strategy.

Mean R2

Axis Ankle Hip Toe-Lift Step Total

X 0.76 0.84 0.95 0.89 0.86
Z 0.95 0.92 0.86 0.59 0.83

C. Control Strategy

We find that a single controller implementing the MJMPC scheme in Section III can explain human data across all strategies
(Fig. 13) as was the case for DRL. Comparing these to the DRL results (Fig. 10, Table II) and it becomes apparent that the
trajectories are similar in each strategy. In conclusion, applying policy extraction methods to humans and DRL revealed that
they are generalisable to different sources and shows that the respective policies are very similar, as evidenced by the MJMPC
controller.

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

Po
si

tio
n

[m
]

Ankle real Ankle fitted Toe real
Toe fitted Step real Step fitted

0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

V
el

oc
ity

[m
/s

]

0 0.5 1 1.5 2 2.5

1.32

1.34

1.36

1.38

Time [s]

Fo
rc

e
[k

N
]

0 0.5 1 1.5 2 2.5

0.92

0.94

0.96

0.98

Po
si

tio
n

[m
]

Ankle real Ankle fitted Toe real
Toe fitted Step real Step fitted

0 0.5 1 1.5 2 2.5

−5

0

·10−2

V
el

oc
ity

[m
/s

]

0 0.5 1 1.5 2 2.5

−400

−200

0

Time [s]

To
rq

ue
[N

m
]

Ankle Toe Step

Fig. 13: Human data. Left column: x position, velocity, and required force. Right column: z position, velocity, and required
torque.

D. Why Learn From DRL Policies Instead of From Humans?

This section showed that the policies of DRL and humans and their derived, reversed-engineered controllers are similar,
which raises the question: why use an AI policy instead of learning from a human policy? The answer lies in the logistics and
applicability of both methods for control design. While humans could be used as template to gain insights on how to improve
the target system (humanoid robots), learning from an AI policy yields three main advantages:

1. Access to all internal states: by deploying DRL on the same system as the target system, the state space is identical.
Thus, data can be collected from DRL learned policies as soon as the learning process is complete and is immediately
available for analysis.
In the case of human policy analysis, data post-processing is highly labour intensive and requires expensive data collection
equipment in order to infer accurate joint angle, joint torques and CoM positions [17]. Data collection required around
two weeks of work, including setting up experiments, collecting subjects, carrying out experiments and processing data.
These labour intensive logistics further motivate the use of DRL to transfer policies over the collection of human data
since a lot more data can be extracted in a shorter time from DRL trials.

14

2. Policy transfer to non-humanoid robots: using humans as template policy only allows a policy transfer to humanoids. In
contrast, DRL policies can be applied to system which are non-humanoid, such as quadrupeds or multi-legged robots, or
where the template is not available, such as extinct vertebrates [18].

3. Analysis of the internal mechanisms of the policy: For analysis of the policy beyond its input-output relations, e.g., t-SNE
analysis (Section III-A), the AI policy is more accessible than the human policy. The AI policy is represented as NN and
analysis tools outlined in Section III-A can be leveraged to gain insights in the mechanisms of the AI policy. Analysing
the mechanisms of the human policy on the other hand require a neuroscientific understanding of the brain and other
involved components of the humans.

The summarised strengths and limitations of DRL in a number of different areas with respect to classical control and human
control can be found in Table IV.

TABLE IV: Comparison between various control paradigms. Note that the limitations of DRL in optimality, robustness, and
safety are cancelled out by the strengths of classical control in these areas, and vice versa. The “Control + DRL” paradigm
can overcome the difficulties which are encountered in human-inspired control (last column).

Attribute Control DRL Humans Control + DRL Control + Human

Optimality Optimal Sub-Optimal Near-Optimal Optimal Optimal

Robustness High Low High High High

Behaviour Emergence Time Weeks Weeks Months Weeks Weeks

Generalisability High High Low High Low

Data Collection Time N/A Low High Low High

Prior Knowledge Required High Low High Low High

Safety/Accountability High Low High High High

V. DISCUSSION AND CONCLUSION

In this work, we presented an alternative application of DRL: instead of directly deploying the AI policy, we aim to formulate
control guidelines from the AI policy. As a result, we bypass major drawbacks of learned policies - unsafety, and stability issues
- and obtain a certifiable, optimal controller that demonstrates human-like behaviours (Fig. 1). These results were obtained for
the challenging task of Push Recovery.

A. Results

We showed that DRL is powerful enough to learn complex motions that resemble those of humans. The learned policy
demonstrated the same push recovery strategies that can be observed in humans, and exhibit similar robustness as state-of-the-
art control algorithms. After analysing the learned AI policy we use it as a guideline and template for control design.

The engineered controller is able to reproduce the same strategies as human and AI policies with close quantitative fit to the
collected data. As observed in humans [12], the policy minimises jerk and implements feedback control via Model-Predictive
Control. Furthermore, analysis of the required torques and forces on the system show that the trajectories provided by the
engineered policy are realisable on the real system.

We further compared the decoded DRL and human push recovery policies, and surprisingly found that the AI policy has
strong similarity with human policies. We hypothesise that both the AI and humans are able to identify the key features in the
problem, as required for high quality performance. This finding is interesting due to the time for the DRL agents to acquire
human-comparable push recovery abilities: learning a good AI policy requires 6-8 hours; human infants require 10-18 months
to learn the ability of locomotion [19].

While MJMPC was able to reproduce both policies, and both human and AI policy can be used as template model for control
design, we found the usage of AI policies for template models more advantageous. This was due to the data of DRL being
immediately available - in contrast to the human data which required time-intensive post-processing -, and having direct access
to the policy in form of a Neural Network allowing analysis of the Neural Network in addition to merely the input-output
behaviour. We performed a t-SNE analysis on the AI policy (Fig. 7), and found that the DRL agent - through interaction with
the environment - decided to not use the Angular Momentum modulation due to its little effectiveness.

15

B. Challenges and Outlook

In this study, we showed that through analysis of template models from human and AI policies for push recovery a certifiable
safe controller for humanoid robots can be engineered.

Currently, all analysis and implementations were conducted in a high-fidelity physics-simulator which, despite our best efforts,
differs from reality. To mitigate this problem, we proposed a control framework for real-world deployment that combined the
proposed control law with a whole-body controllers in a cascaded manner. Due to the shown feasibility of the motions and the
reliable stability of whole-body controllers in real-world applications, we anticipate a seamless deployment of the controller
onto a real system.

Our future work will investigate approaches in directly bridging this reality gap and use interactions with the real environment
to close this reality gap in the DRL process. Furthermore, we aim to apply this principled approach of designing controllers
from template models to other systems (e.g., quadrupeds) and tasks (locomotion and manipulation).

REFERENCES

[1] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills for legged robots,”
Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[2] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates,” in International
conference on robotics and automation. IEEE, 2017.

[3] M. Zhang, X. Geng, J. Bruce, K. Caluwaerts, M. Vespignani, V. SunSpiral, P. Abbeel, and S. Levine, “Deep reinforcement learning for tensegrity robot
locomotion,” in 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017, pp. 634–641.

[4] T. Flash and N. Hogan, “The coordination of arm movements: an experimentally confirmed mathematical model,” Journal of neuroscience, vol. 5, no. 7,
pp. 1688–1703, 1985.

[5] C. Yang, K. Yuan, W. Merkt, T. Komura, S. Vijayakumar, and Z. Li, “Learning whole-body motor skills for humanoids,” in 2018 IEEE-RAS 18th
International Conference on Humanoid Robots (Humanoids). IEEE, 2018, pp. 270–276.

[6] N. A. Radford, P. Strawser, K. Hambuchen, J. S. Mehling, W. K. Verdeyen, A. S. Donnan, J. Holley, J. Sanchez, V. Nguyen, L. Bridgwater et al.,
“Valkyrie: Nasa’s first bipedal humanoid robot,” Journal of Field Robotics, vol. 32, no. 3, pp. 397–419, 2015.

[7] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation in robotics, games and machine learning.” [Online]. Available:
https://pybullet.org/

[8] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimization,” in International conference on machine learning, 2015,
pp. 1889–1897.

[9] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[10] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.
[11] P. Zaytsev, W. Wolfslag, and A. Ruina, “The boundaries of walking stability: viability and controllability of simple models,” IEEE Transactions on

Robotics, 2018.
[12] C. McGreavy, K. Yuan, D. Gordon, K. Tan, W. Wolfslag, S. Vijayakumar, and Z. Li, “Unified push recovery fundamentals: Inspiration from human

study,” submitted to Robotics and Automation Letters, accessible through https://cam586.github.io/mcgreavy 2019 RA-L.pdf , 2019.
[13] W. Hu, I. Chatzinikolaidis, K. Yuan, and Z. Li, “Comparison study of nonlinear optimization of step durations and foot placement for dynamic walking,”

in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 433–439.
[14] S. Feng, X. Xinjilefu, W. Huang, and C. G. Atkeson, “3d walking based on online optimization,” in 2013 13th IEEE-RAS International Conference on

Humanoid Robots (Humanoids). IEEE, 2013, pp. 21–27.
[15] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic programming: Fast online humanoid-robot motion generation,” The International

Journal of Robotics Research, vol. 33, no. 7, pp. 1006–1028, 2014.
[16] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to humanoid robotics. Springer, 2014, vol. 101.
[17] D. Gordon, G. Henderson, and S. Vijayakumar, “Effectively quantifying the performance of lower-limb exoskeletons over a range of walking conditions,”

Frontiers in Robotics and AI, 2018.
[18] J. A. Nyakatura, K. Melo, T. Horvat, K. Karakasiliotis, V. R. Allen, A. Andikfar, E. Andrada, P. Arnold, J. Lauströer, J. R. Hutchinson et al., “Reverse-

engineering the locomotion of a stem amniote,” Nature, 2019.
[19] H. Forssberg, “Ontogeny of human locomotor control i. infant stepping, supported locomotion and transition to independent locomotion,” Experimental

Brain Research, vol. 57, no. 3, pp. 480–493, 1985.

https://pybullet.org/
https://cam586.github.io/mcgreavy_2019_RA-L.pdf

	Scientific Motivation
	Generating Complex Motions for Humanoid Robots through Deep Reinforcement Learning
	Learning Framework
	Inferring actions from the AI policy
	Behaviours of the AI Policy

	Understanding and Learning the Fundamental Principles From the AI-Policy
	Analysing the AI-policy
	Incorporating AI-policy inspired principles in the control design
	Determining final time via data fitting
	Non-linear Step Optimisation
	Emerging Strategies and Quality of Fit

	Realisability of MJMPC on Real Systems

	Benchmarking Between Human- and AI-policies
	Data Collection
	Push Recovery Strategies in Humans and AI policies
	Control Strategy
	Why Learn From DRL Policies Instead of From Humans?

	Discussion and Conclusion
	Results
	Challenges and Outlook

	References

