
117SEPTEMBER 2021  •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •1070-9932/21©2021IEEE

T
he main aim of this article is to provide an example 
of reproducible research in robotics. Despite the 
fact that a large number of researchers agree on the 
need of reproducibility in robotics and artificial 
intelligence, the practice of reproducible research is 

still in an embryonic phase. As a matter of fact, IEEE Robotics 
and Automation Magazine is, at the date of this article 
submission, the only top-tier robotics publication accepting 

“reproducible” articles. To this end, we have chosen a very 
common and traditional problem and approached it with a 
“first principles” attitude.

Many different methods have been proposed in the litera-
ture for the control of robotic arms. In this article, to validate 
our reproducible research platform and provide a template 
methodology for its usage, we have thoroughly compared, in 
a reproducible way, the performance of simple  belief space 
planning (BSP) and proportional-integral-derivative (PID) 
controls when applied to a lightweight, low-accuracy, and 
compliant open source robot arm (i.e., H2Arm). Both control 
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schemes were implemented in their simplest form and under 
basic assumptions. BSP significantly outperforms PID on this 
platform, but not with respect to (w.r.t.) all of the metrics. The 
findings are interesting by themselves. They also show how 
easily statistically weak results can lead to qualitatively wrong 
conclusions if the results are cherry-picked. This practice may 
be more widespread in the literature than would be desirable 
in many areas of robotics.

Research Reproducibility
Our main goal is to provide a complete software and hard-
ware platform that allows for the statistical replication of 
our results and experimentation on other, more or less 

sophisticated control 
strategies and algo-
rithms. We believe this 
is much needed because 
real-world comparison 
of control methods for 
robot arms is seldom 
seen in the literature [1], 
[2]. This makes it diffi-
cult to assess the real rel-
evance and effectiveness 
of the many proposed 
solutions. It is interest-
ing to observe that in the 
industrial domain—
despite the wide number 

and variety of much more sophisticated existing control 
methods—the by far more widespread approach is based 
on PID control applied to heavy and highly accurate multi-
body rigid structures. The scarcity of reproducible experi-
ments about the real-world application of control 
methods has thus far hampered the adoption of more 
advanced methodologies by industry and practitioners. In 
particular, it is a reasonable and widely shared idea that 
“classical” methods do not work properly on lightweight, 
low-accuracy, and compliant structures. The study of the 
most suitable control strategies for this kind of structure 
lends itself naturally to experimental investigation. 

Among the many alternatives for the control of such 
structures, BSP methods are promising and comparatively 
simple to implement. As mentioned previously, we aim to 
contribute to the learning process of our community by 
providing a basic example of reproducible research in a 
traditional area such as robotic arm control and on a very 
affordable hardware and software platform. The afford-
ability of the platform provides the additional benefit of 
leveling the ground and facilitating the inclusion within 
the research community of groups with limited resourc-
es and/or from disadvantaged areas of the world [3]. We 
follow a “first principles” approach. This means that we 
focus on the performed task rather than on the particu-
lar technical approaches used to accomplish it. More-
over, we deliberately compared two very different 
methodologies and implemented them with minimal 
technical sophistication. We hope that, in the future, 
other researchers will be able to build on our work. For 
example, it could be interesting to add an appropriate 
control observer to the PID controller and carry out a 
qualitative and quantitative comparison with our basic 
controller implementation. The possibility of comparing 
different approaches is still lacking today, and it is 
strongly needed for both the progress of basic research 
and the development of new applications. 

The traditional “mechatronic” approach to robotics, as 
described in the major textbooks on the matter (e.g., [4]–
[6]), mainly consists of the application of some (typically 
linearized) deterministic control strategy on a  multi rigid-
body (typically heavy) kinematic structure. Usually, the sen-
sor measures are filtered by control observers. This basic 
structure underpins the great majority of “blind” robots that 
have been successfully utilized for many decades in automo-
tive factories. Is this approach fit for the kind of structure we 
study? Although already obtained results seem suitable for 
application in structured or semistructured environments 
(such as manufacturing facilities or hospitals), they lack the 
robustness and adaptivity necessary to be employed in 
open-ended environments and, in general, for long-awaited 
and long-promised service robotics (elder care, home assis-
tance, and so on). 

Organization
This article is organized in three parts.

•  Magazine Article: The text that you are currently reading. It 
provides an overview of our work, in particular the general 
idea, motivation, relevance, and obtained results. This could 
be enough for you if you do not aim to reproduce our work 
and results.

•  Supplemental Information: This material can be found in 
supplemental information. It provides an extended version 
of our article. It details exploited Materials and Methods 
and obtained Results and Discussion. The description of the 
research is in accordance with the Euron GEM Guidelines 
[12]. It provides the user guide for colleagues who are 

interested in reproducing our results. It would be great if 
they could report their work as an R-article (see [1], [13]).

•  Data, Code, and Design Repository: An online repository 
on IEEE DataPort [14] includes all the data, code, and 
hardware designs and details necessary and sufficient (we 
hope) to reproduce our experiments. For a discussion of 
the importance of open sourcing the hardware designs for 
robotics research, see [15].

Please note that, if you are interested in the scientific details of 
our work or in reproducing the results reported in this paper, you  
should check the supplemental information, where all the neces-
sary details (not reported here for sake of brevity) are included.

Among the many 

alternatives for the control 

of such structures, BSP 

methods are promising and 

comparatively simple to 

implement.
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A characteristic issue with “traditional” robotic arms 
deals with the modeling choices. The possibility to exploit a 
linear model for structures with nonlinear dynamics work-
ing at high speeds requires comparatively heavy weights for 
the structures themselves. This, consequently, has unwanted 
effects on the payload ratios of these manipulators, i.e., the 
ratio between the weight a robot can move and its own 
weight. A relationship of a 10-kg payload versus a 200–
300-kg robot body is not uncommon. Another issue is that a 
rigid structure limits the grasping and manipulation capa-
bilities of the robot in a number of situations (for example, 
when grasping partially unknown or limp objects). This 
limitation emerges even in partially unstructured environ-
ments or when (even slight) changes occur in the shapes 
and attitude of the object to be grasped and the operational 
space. Reducing weights and increasing compliance lead to 
a remarkable increase in nonlinearities and uncertainties in 
both dynamics and measures, thus rendering most widely 
used methods less reliable. These considerations make the 
experimental study of arm structures like the one we con-
sider especially interesting. 

In the industrial domain, the mainstream approach to 
robot arm control is the application of PID control schemes, 
usually framed into model-based and force control schemes 
(see, for example, [7]–[9]). The cost and functional benefits 
of totally or partially compliant arm mechanical structures 
are apparent. However, an extensive and reproducible study 
showing the limits of (even linear) control strategies applied 
to this kind of arm, not to mention other more sophisticated 
approaches, is missing. In robotics, control theory and engi-
neering also need to be considered as an experimental disci-
pline. In this article, we propose a platform for reproducible 
research on robotic arm control. To validate it, we carried out 
a performance comparison of standard PID and BSP con-
trols implemented on the same open source hardware plat-
form. Our work aims to provide a cheap open access and 

open source infrastructure, allowing objective comparisons 
of different control algorithms for lightweight tendon-driven 
arms. While doing this, we also contribute to the develop-
ment of reproducible research best practices in robotics to 
cope with a pressing need in our community (see [1], [2], 
[10], and [11]).

Even from these few references, it is clear that objective 
performance comparison procedures are still missing. It is 
worth noting that an extensive BSP experimental study in the 
field and, in particular, on system platforms like ours has 
never been published. 

System Setup
The main objective of our hardware/software platform con-
sists of allowing the objective functional comparison of dif-
ferent approaches while implementing the same basic task. 
As will become clear to 
anyone trying to repro-
duce our results, giving 
others the opportunity 
to confirm (or falsify) 
experimental results 
requires a lot more infor-
mation than what is  
usually provided, even in 
a detailed journal article 
[12]. Such details include 
experiment materials 
and methods but also 
adopted assumptions 
and criteria. We chose to perform an experiment as simply 
as possible, focusing on a visual-servoing problem: the con-
trol of the reaching movement of a low-cost and low-accu-
racy robot arm. The system, consisting of an arm and a 
basic in-hand video camera, was required to find and 
track a red blob (a wheel), as depicted in Figure 1. The 

(a) (b)

Figure 1. H2Arm performing an experiment. (a) The robot tracking a red blob and (b) a vision algorithm detecting and segmenting a 
red blob. 

It is quite common for 

sophisticated control 

strategies to work very  

well in simulation but  

fail in the field.
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arm reaches to the red object and stops when the blob, 
observed by the wrist-mounted camera, is in the image 
plane center, while the end effector is at a predefined dis-
tance from the blob itself.

In the “H2Arm,” “Vision Algorithm,” and “Low-Level 
Motor Control” sections, the different components of the 
hardware and software architecture depicted in Figure 2 are 
described; the adopted control strategies are revealed in the 
“Control Strategies” section.

H2Arm 
H2Arm is an open source arm that adapts the GummiArm 
concept to our purposes (see [17] and [18]). Both Gummi-
Arm and H2Arm are intended as inaccurate platforms to 
challenge the development of suitable controllers, which 
necessarily cannot be “classical.” The H2Arm is far less 
expensive and more challenging to control. In fact, the 
GummiArm is endowed with accurate and precise motors 
that provide feedback from their encoders. The only sen-
sor onboard the H2Arm, on the contrary, is a wrist-
mounted webcam (H2Arm motors are not equipped with 
encoders and do not provide any feedback). We chose to 
employ a low-quality camera to keep our platform very 
cheap (its cost is estimated at less than €200 overall) but 
also to introduce errors and uncertainties on the only 
available measurement.

The research described in this article contributes to the 
long-term goal of developing robust and reliable algorithms 
able to govern visual sensor-guided manipulators affected 
by high uncertainties, low-quality actuation, low accuracy, 
and low repeatability in the physical structure. For this rea-
son, we have designed a low-accuracy manipulator that is 
modular and 3D printed and equipped with a low-quality 
camera. This is a step toward our long-term targeted appli-
cation to robustly address the underwater manipulation 
problem of a robotic arm mounted on a floating platform. 
In ongoing work not reported here, we aim to develop a 
robust and adaptive control framework able to cope with 
the problems deriving from measurement uncertainty, 
external environmental disturbance, and robot inaccuracy. 
These can be embedded in the algorithm and smoothly 
compensated for.

The developed robotic arm, depicted in Figure 3, has four 
degrees of freedom: the first three are rotational joints while 
the last is a prismatic joint. The first and second joints pro-
vide motion in the horizontal and vertical axes (x, y w.r.t. 
frame < c > of Figure 4), respectively; the third joint is a 
wrist, rotating around axis z of reference frame < c >; while 
the last prismatic joint provides translation along axis z in 
reference to frame < c >.

Vision Algorithm
The computer vision algorithm, which seeks to retrieve a 3D 
space position of the object, is deliberately extremely simple. 
Errors and uncertainties in both the camera calibration and 
blob position measurements reach the control system 

(a) (b)

Figure 3. The 3D printed robot. The structure deliberately 
exhibits high inaccuracy when demonstrating the potentiality of 
the proposed control approach. (a) The overall 4-DoF structure 
and (b) a detailed view of joint J2. DoF: degree of freedom. 
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Figure 4. The reference frames chosen for the experiments. 
Symbol < c > represents the camera frame centered on the 
webcam, and < w > is the world frame, assumed to be placed in 
the center of the first joint (the big yellow horizontal disk).
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Figure 2. The software architecture. A block diagram of the 
system software architecture is 1) the vision algorithm is 
implemented in C++, relying on the OpenCV Library [16]; 2) the 
control scheme, both BSP and PID for comparison, is developed 
in MATLAB; and 3) the low-level control (LLC) generating 
the actual commands to motors is implemented in Python. 
Communication among the processes occurs through standard 
TCP/IP sockets. 
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whether it is BSP or PID, which is requested to cope with 
them as appropriate. As shown in the “Experiments” section, 
the BSP control is able to correctly manage such errors while 
the PID control is severely affected and is quite often unable 
to complete the task. Because the task consists of reaching a 
predefined position of the end effector in front of the red blob 
(a wheel), the minimized error is the estimated distance 
between the end effector and the red wheel.

To retrieve in real time the blob’s 3D space position from 
the camera w.r.t. the robot end effector, at each step the 
image is first acquired and pre-elaborated with a median fil-
ter smoothing. Then, it is converted in the hue, saturation, 
and value color space, which is more suitable for the follow-
ing step, consisting of retrieving all of the red pixels in the 
input image. The original image is suitably masked, and a 
new image containing only red pixels is built up, as shown 
in the bottom right window of Figure 1(b). From this red 
image, the contours are retrieved and ordered by their size. 
The biggest one, assumed to be the red wheel, is approxi-
mated with a curve, and its minimum enclosing circle is 
computed to retrieve its dimension and center, as seen by 
the camera. Note how this choice could be error-prone 
whenever another big red blob appears in front of the cam-
era; nonetheless, in the work described here, the simple 
assumption of having just one big red blob in the scene was 
intended to keep the image processing as simple as possible. 
In fact, the focus of the present work is not on the computer 
vision algorithm but on the performance of the BSP sto-
chastic control algorithm in comparison to a classical PID 
control strategy.

Using the blob position and size in the image, a mask is 
created to provide an indication for the blob tracking in sub-
sequent images (i.e., the tracking is limited in the neighbor-
hood of the image portion where the blob was in the previous 
step). The radius of the found red blob is augmented by 5% in 
the computation of the tracking mask; this is essential to 
avoid cutting the blob in subsequent images due to the robot’s 
motion. Whenever the blob is not found at some step, the 
mask is reinitialized with the dimension of the original input 
image. An example of the blob tracked in different images in 
subsequent time steps is reported in the top right window of 
Figure 1(b). At this point, the 3D space position of the red 
wheel is computed, exploiting the a priori known parameters 
(camera calibration and real-wheel dimension) and the cam-
era measurements (blob center and radius). The obtained 3D 
blob position w.r.t. the end effector is sent at each sample time 
as a feedback to the arm control system. The vision algorithm 
is implemented in C++ and uses the OpenCV library [16] for 
image processing.

Low-Level Motor Control
The low-level motor control is a driver that receives the four-joint 
velocity references for the arm, computes the appropriate control 
signals, and sends them to the Pololu Maestro board, which is in 
charge of physically piloting the motors. Four different models 
have been implemented for the low-level control (LLC) and were 

tested in different experimental runs. Note that the different LLC 
models have been refined during the testing phase; they apply a 
different gain to the related motor axis according to one or more 
thresholds on the requested joint velocity.

Control Strategies
Our main aim is to start an experimental research thread on 
the control of tendon-driven lightweight, low-cost arms in the 
context of visual-servoing. To that purpose, we have devel-
oped a platform for the reproducibility of this kind of experi-
ment. Platform validation has been carried out by comparing, 
in a reproducible way, the performance of both a PID- and 
BSP-based controller. In the “BSP Assuming Maximum Like-
lihood” and “PID Control” sections, we provided details of 
the two control approaches.

BSP Assuming Maximum Likelihood
A simple BSP algorithm, assuming maximum likelihood of 
the observations and using nonlinear optimization tech-
niques, can be effectively used to control a visual-servoed 
arm, as shown (even if 
only in simulation) in 
[19]. A BSP-computed 
trajectory for the robot 
end effector moves it 
from its current position, 
assumed to be the sum of 
a signal component and a 
Gaussian noise part [rep-
resented by a Gaussian 
probability density func-
tion (PDF)], to a final 
position. This last posi-
tion is again expressed as 
a Gaussian PDF with a 
mean value in the desired 
final position and lower covariance. It is quite common for 
sophisticated control strategies to work very well in simula-
tion but fail in the field. It is also typical that field experiments 
of novel control approaches are reported in such a way that 
they can neither be reproduced nor compared against other 
approaches. We aim to contribute to this gap mitigation. To 
that end, the control scheme described in [19], from a theo-
retical standpoint, has been adapted to the problem at hand; 
noise structures more elaborate than the standard “vanilla 
Gaussian” were tested, and the results were encouraging.

The BSP algorithm calculates the actions (i.e., the joint 
velocities) to move the end effector from initial position A to 
desired position B (both represented by Gaussian PDFs) by 
weighting two different objectives: the goal reaching on one 
side and the covariance reduction in the mid- and endpoints 
on the other. Such control actions reduce the number of 
uncertainties on the trajectory and end-effector positions. 
This is equivalent to stating that the controller actually per-
forms information-gathering actions while controlling the 
arm movement.

The act of randomly moving 

the blob in the environment 

was devised to inject 

into the experiments an 

unpredictable “noise” 

factor of human origin.
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The proposed procedure is summarized in Algorithm 1. 
The BSP algorithm requires as inputs the initial belief state 
mean m0  and the final goal ,mgoal  both representing the 
mean of the Gaussian PDFs modeling our beliefs on the ini-
tial and final positions ( p0  and pgoal ), and returns the 
sequence u :s1  of the control actions, where s is the number of 
discrete steps executed by BSP at each iteration. 

The algorithm initializes all of the variables to proper 
values via the function InitBSP  (line 1). The BSP 
strategy is then applied until the norm of the Cartesian 
error et for the end effector decreases below a predefined 
value thr2  (line 2). For each step (line 4), a plan is calcu-
lated via the createPlan function (line 3). The for 
loop starts at iCnt to keep the correct previous actions 

in case a replanning occurs at a certain point in the loop 
without discarding the entire computed plan. Thus, 
( , )u m: :s s1 1r r  are obtained, which are the sequences of the 
needed control actions to reach the goal and related 
belief states, respectively. From this plan, the optimal 
control action ut is computed through a linear quadratic 
regulator step (line 6). The distance zt  between the goal 
and the end effector is estimated (line 7), and, finally, the 
next belief state mt 1+  is propagated through an extended 
Kalman filter on line 9. Note that zt  is computed by the 
vision algorithm and ξ represents the noise affecting the 
measurements. In case the norm of the distance between 
the planned and the actual belief state (mtr  and mt , 
respectively) is above a predefined threshold thr1  (line 
10), the current plan is discarded (line 18) because it is 
not suitable for correctly driving the end effector toward 
the goal. In this occurrence, a new plan is computed, and 
the procedure starts again. Note that variables rplCnt 
and iCnt are counters in charge of correctly managing 
the replanning phase (lines 11–15). 

If, on the other hand, the control plan is able to suitably 
decrease the distance from the goal, the computed control 
action ut  is sent (line 19) to the arm LLC that applies the 
requested velocities to the motors. The process is iterated 
until the final goal is reached. Index t is not explicitly incre-
mented in the algorithm. This is because the BSP time step is 
not fixed but dynamically depends on the optimization. For 
this reason, for time-series reconstruction and storage it is 
necessary to use an external synchronization mechanism: 
during the real-time experiments, time is queried to the CPU 
and stored, allowing for reconstruction of the time evolution 
of all the variables.

PID Control
The BSP controller has been compared to a standard PID 
with fine-tuned gains , , .k k kandp i d  In particular, the 
H2Arm’s implemented controller has a significant propor-
tional component, a smaller integral one, and a small 
derivative component, which are introduced to avoid 
potential overshooting. During field applications, even in 
research activities, PID controllers are often chosen for 
reasons that have not been theoretically explored in depth 
thus far. This inspired us to compare BSP against PID. We 
believe that the findings are interesting and, more impor-
tantly, that our platform and reproducible results will 
allow an for objective comparison of different methods by 
other researchers. Some preliminary tests (besides those 
reported in the following and belonging to the three main 
test campaigns) were performed to tune the PID gains to 
improve the system’s overall performance without degrad-
ing its stability.

The PID control loop is shown in Algorithm 2. It 
requires as inputs the initial and desired blob 3D position 
p0  and ,pgoal  respectively, and outputs control action ut . 
Here, p0  and pgoal  represent the actual 3D position and 
not a PDF mean, as in the BSP case. After a first 

Algorithm 1: The BSP Algorithm.

  Input: ,m m0 goal

   Output: u :s1

 1: initBSP ();
 2: while e thrt 22  do
 3:   CreatePlan( , ) ( , ;u m m m ): :s s t1 1 goal!r r

 4:   for i iCnt=  to s do
 5:      GetSystemTime();t =
 6:      LQR( , , );u u m mt t t t! r r

 7:      MeasureBlob3Dposition();zt !

 8:      ;e m zt tgoal! p- +

 9:      EKF( , , );m m u zt t t t1 !+

10:      if m m thrt t 12-r  then
11:       ;rplCnt rplCnt 1! +

12:       if %rplCnt 5 0==  then
13:         ;iCnt 1!
14:       else
15:           ;iCnt i!

16:       break;
17:    DriveEE (ut);

Algorithm 2: The PID Algorithm.

  Input: ,p p0 goal

  Output: ut

 1: initPID ();

 2: while e thrt 22  do

 3: GetSystemTime();t =
 4: ;dt t t= - l

 5: MeasureBlob3Dposition();zt !

 6: ;e p zt tgoal! p- +

 7: ;e e e dtt t t= +8 8

 8: / ;u k e k e k e e dtt p t i t d t t= + + -8 l^ h
 9:  ;t t=l

10: DriveEE ( );ut
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initialization phase (line 1) in which all of the variables 
are correctly instantiated, the control loop computes, at 
each step, the current system time t (line 3) and the 
elapsed time dt (line 4) and receives the measured 3D 
blob position from the vision-based algorithm (line 5). 
Note that tl is initialized, along with many other variables, 
in the initPID function. Then, the residual Cartesian 
error et  is computed as the difference between the refer-
ence pgoal  and the measured 3D position zt  (eventually, 
with the injection of the additional noise ξ) in line 6. 
Finally, the error integral et8  is computed (line 7). The 
control action ut  to be sent to the LLC via the DriveEE 
function (line 11) is obtained through the classical PID 
expression u k e k e d k et

t p t i d t08 x= + +x o  (line 8). Other 
details of PID implementation (correspondence among 

control parameters, the number of successful and total 
runs, different test sets, the LLC model, and the parameter 
set) are omitted here for the sake of brevity. They can be 
found in the supplemental information.

Experiments
We performed an extensive experimentation with the goal of 1) 
validating our hardware/software platform, thus enabling the 
reproduction of our results; 2) testing the BSP and PID control-
lers on a specific, challenging real-world task; 3) comparing their 
results; and 4) studying the features of our simple manipulator.

The same “LLC” and “Vision Algorithm” blocks in Fig-
ure 2 were used for the BSP and PID experimentation to 
ensure that the observed differences in the performance 
depended on the controllers only.

Table 1. The main results of both PID and BSP control algorithms in the three performed test campaigns. 
— — PID BSP

Test Campaign Category Good Total % TM Tm T- Good Total % TM Tm Tr

(s) (s) (s) (s) (s) (s)

First Fixed blob,  
no noise 

4 12 33.3 88 3.2 31.3 8 11 72.7 385.6 10.8 96.6 

Moving blob,  
no noise 

5 6 83.3 137.7 9.2 48.8 5 5 100 159.9 44.1 97.2 

Moving blob,  
two-axis noise, 

.0 05w =

13 30 43.3 312.7 1.9 40.4 10 10 100 125.7 27.5 86.6 

Moving blob,  
three-axis noise, 

.0 025w =

3 11 27.3 49.6 13 23.1 15 15 100 340.9 34 128

Moving blob,  
three-axis noise,  

.0 05w =

1 12 8.3 47.9 13.4 28.5 21 22 95.5 442.3 54.6 191.8 

Second  
(optimized 
system) 

Fixed blob,  
no noise 

12 15 80 83.2 3.5 26.2 17 19 89.5 144.2 7.1 46.7 

Moving blob,  
three-axis noise, 

.0 025w =

2 6 33.3 41.9 12.9 22.7 6 6 100 238 66.1 131.3 

Moving blob, 
three-axis noise, 

.0 035w =

3 6 50 37.3 6.7 23.7 6 6 100 224 22.1 94.2 

Third  
(uncalibrated 
system)

Fixed blob,  
no noise 

0 5 0 58.3 9.8 28.3 4 5 80 56.1 15.1 34 

Moving blob,  
three-axis noise, 

.0 035w =

1 7 14.3 54.5 5.3 25.1 5 5 100 129.8 39.0 87.3 

all categories, 

TOTAL all campaigns 44 110 40 312.7 1.9 31.5 97 104 93.3 442.3 7.1 109.6 

T̄, TM, and Tm stand for the experiments’ mean, maximum, and minimum time duration, respectively, while w is related to the additional injected 
noise. The time statistics presented here do not distinguish between failed and successful runs. For detailed data, refer to [14]. 
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We performed more than 200 experimental runs sub-
divided into three different test campaigns—each of 
which was in a different condition—for both the BSP and 
PID experiments:

 ●  Fixed blob, no additional noise: The blob was kept still in 
the environment, and no additional noise was injected into 
the system.

 ●  Moving blob, no additional noise: The blob was randomly 
moved by hand in the environment during the task comple-
tion, and no additional noise was injected into the system.

 ●  Moving blob, two-axis noise: The blob was randomly 
moved by hand in the environment during the task com-
pletion, and an additional noise was injected into the sys-
tem feedback. Noise was added only to the x, y 
components of the estimation (w.r.t. frame < c > in Figure 
4) while the estimated distance (along the z-axis of frame < 
c >) from the blob was kept unaffected.

 ●  Moving blob, three-axis noise: The blob was randomly 
moved by hand in the environment during the task com-
pletion, and an additional noise was injected into the sys-
tem on all of the three feedback linear components x, y, 
and z (again, w.r.t. frame < c > in Figure 4).
The first test campaign was performed with an initial calibra-

tion of the system parameters retrieved through a small number 
of preliminary runs (probably comparable to the number of tests 
usually executed in an average robotics research work). The sec-
ond test campaign was based on the system parameter optimiza-
tion coming from the first campaign. However, during the third 
test campaign, a system parameter uncalibration was deliberately 
caused to test the respective robustness of the compared control 
systems. To be fair and to introduce an equal uncalibration for 
both BSP and PID, we “mistuned” the LLC. As a consequence, the 

PID and BSP control systems faced the same issues in comparable 
conditions. In the second and third campaigns, only the more 
interesting experimental categories resulting from the first cam-
paign were executed and investigated. The obtained results are 
reported in Table 1.

The act of randomly moving the blob in the environ-
ment was devised to inject into the experiments an unpre-
dictable “noise” factor of human origin. This kind of 
disturbance is typically challenging for many robotics 
applications as it is difficult to model. Furthermore, 
because the long-term target is the application of the BSP 
technique for the control of a manipulator mounted on a 
floating platform within a marine environment, the choice 
of the additional noise to be injected in the system was 
done accordingly. The Pierson–Moskowitz spectrum [20], 
an empirical description of the ocean energy distribution 
consolidated in the literature, was exploited for noise gen-
eration. We find it interesting that the BSP controller 
showed a comparable robustness to added noise with non-
uniform frequency characteristics. 

The results of the first test campaign are reported in the 
top part of Table 1. A total number of 63 and 71 experimen-
tal runs were conducted for the BSP and PID control sys-
tems, respectively, distributed among five different 
categories. The BSP control was, on average, much more 
reliable than the PID control, even in not particularly chal-
lenging conditions.

The results of the second test campaign can be found 
in the middle part of Table 1. They basically confirm the 
greater robustness of BSP w.r.t. the PID controller. In par-
ticular, if we focus only on the experimental runs con-
ducted after parameter optimization and with additional 

noise, the BSP and PID control 
schemes were able to complete the 
tasks in 100% and 41.7% of the 
cases, respectively.

The results of the third experi-
mental campaign are reported in the 
bottom part of Table 1. They show 
how much the PID control scheme 
can be impacted by even a minimal 
“miscalibration” of the system LLC.

The PID’s ability to complete the 
task dropped from 80% to 0% for the 
optimized and uncalibrated systems, 
respectively, in the “fixed blob, no 
noise” case. In the “moving blob, 
three-axis noise” case, the same 
probability dropped from 50% to 
14.3% for the optimized and uncali-
brated systems, respectively. BSP’s 
ability to complete the task in the 
“fixed blob, no noise” case decreased 
from the 89.5% to the 80%, while it 
did not change in the “moving blob, 
three-axis noise” case (100%).

Table 2. A comparison between BSP and PID control results in terms 
of mean, maximum, and minimum execution time T-, TM, and Tm re-
spectively, obtained within the third performed test campaign. 

Fixed Blob,  
No Noise

Moving Blob,  
Three-Axis Noise 

w = 0.035

BSP control—uncalibrated system

TM (s) Tm (s) T sr^ h T sM ^ h T sm ^ h T sr^ h
Successful Experiment 56.1 15.1 37.6 129.8 39 87.3 

Failed Experiment 19.6 19.6 19.6 — — —

PID control—uncalibrated system

TM (s) Tm (s) T sr^ h T sM ^ h T sm ^ h T sr^ h
Successful Experiment — — — 22.3 22.3 22.3 

Failed Experiment 58.3 9.8 28.3 54.5 5.3 25.6 

The time performance is reported for the BSP and PID control schemes for both their successful 
and failed runs. For each category, whenever no data were available (i.e., no experimental 
runs belonged to this category), a dash is drawn. When only one experiment belonged to the 
corresponding category, the same value is reported for all T̄, TM, and Tm because these values are 
equal and coincide with only the experiments’ time duration. 
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Note that, in the “uncalibrated” experiments, the already 
tuned , ,k k kandp i d  gains of the PID controller were main-
tained. This means that further sensitivity and misbehavior 
could be provoked in the PID control scheme; for the BSP 
scheme, the only possible miscalibration source is related to 
the manipulator LLC (i.e., the robot’s hardware). The third 
test campaign illustrates the greater robustness of BSP w.r.t. to 
the PID. In particular, when considering the more realistic 
case of additional noise injection, the BSP controller was able 
to complete the task in 100% of the cases compared to the 
14.3% success rate of the PID.

The BSP controller successfully completed 97 experimen-
tal runs out of a total of 104, while the PID controller com-
pleted the task in 44 cases out of 110. The experiments 
showed that the distribution of the final Cartesian error 
norm is quite similar whether the BSP or PID controller is 
used. The PID controller was definitely faster than the BSP 

(refer to Tables 1 and 2); in contrast, the BSP technique 
was more reliable in task completion. Moreover, the BSP 
controllers showed better 
performance when the 
test runs were affected 
by noise.

The PID controller 
was able to complete the 
task in the third test cam-
paign in only one case out 
of 12 tests, considering 
both the tested categories. 
For this reason, Figure 5 
reports the final error 
norm and time duration 
of the successful BSP runs 
after system uncalibration 

Figure 5. Boxplot diagrams showing (a) the final error norm and (b) the time duration for all successful BSP experiments of the third 
test campaign after the system’s parameter uncalibration. 
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Figure 6. The third test campaign performance reported for (a) the execution time (minimum, mean, and maximum) and (b) the 
successful and failed runs. Exp: experiments.
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The results showed 

that, on the H2Arm, 

the BSP algorithm was 

systematically more robust 

because it almost always 

allowed for task completion.
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Figure 7. The time evolution of mean posterior variance of the blob position measurement (left column) and of the end-effector 
Cartesian error (right column) throughout successful experiments in the different categories of the third test campaign. No PID run in 
the “fixed blob, no noise” case was successful. As expected, the graphs in the right column are very similar to those in the left column. 
(a) and (b) BSP with fixed blob, each with no noise. (c) and (d) BSP moving blob, each with three-axis noise, . .0 035w =  (e) and (f) 
PIDs with moving blobs, each with three-axis noise, . .0 035w =  [Just one experiment in each of (e) and (f) was successful.] 
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only. Table 2 summarizes the execution-time statistics for both 
PID and BSP control in the third test campaign, considering 
the two different categories and remarking successful and failed 
runs. The same data reported in Tables 1 and 2 are presented in 
bar diagrams in Figure 6. Moreover, in Figure 7 the time evolu-
tion of the mean posterior variance of both the blob position 
measurement and end-effector Cartesian error is reported for 
the third test campaign. A more detailed discussion of the 
results can be found in the supplemental information.

Conclusions and Future Work
We developed a platform for reproducible research and objec-
tive comparisons of different methods for a cheap, low-accu-
racy, lightweight robotic arm. Additionally, we performed an 
extensive comparison of two very different technical 
approaches for the execution of the same simple task. The 
results showed that, on the H2Arm, the BSP algorithm was 
systematically more robust because it almost always allowed 
for task completion. On the contrary, the PID completed the 
task in only a subset of cases, but, in general, it converged 
more quickly. Our research also showed that the qualitative 
conclusions of studies like ours depend on the number of exe-
cuted tests: we may have cherry-picked the successful PID 
tests and concluded that, on the H2Arm, a simple PID imple-
mentation worked properly. It is important to note that the 
qualitative and quantitative results of the comparison may 
change if some refinements are introduced, for example, a 
more sophisticated BSP approach or a control observer suit-
ably integrated in the PID controller. After establishing an 
objective ground for comparison, this research topic appears 
very interesting for the entire robotics community. The repro-
ducibility of our results allows for their replication by other 
research groups and the implementation and comparison of 
other control strategies on the same platform.

Our future work will focus on the application of deep 
(reinforcement) learning and other control strategies on the 
same hardware platform. Furthermore, we are interested in 
bringing some changes to the hardware platform and assess-
ing their impact on the implemented control strategies. We 
also plan platform improvements to obtain better computing 
efficiency; the first step toward this goal consists of porting 
the BSP optimization from MATLAB to C++. We hope that 
other researchers will build on our work due to the reproduc-
ibility of our results. We are aware that ours is just a small, yet 
necessary step toward making reproducible research a main-
stream practice in our field.
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