
T
he COVID-19 pandemic and the related emer -
gency have contributed to the push for innovative 
solutions applied to health care. In particular, 
robotics has shown huge potential for contributing 
to pandemic relief efforts and improving people’s 

quality of life in several scenarios. In this article, a robotic 
system, characterized by interaction capabilities and 
autonomous navigation, is developed to be used in a 
COVID-19 health-care treatment center for logistics and 
disinfection purposes. The article describes the two-month 
use of the platform in the University Hospital Campus Bio-
Medico (UCBM) COVID-19 treatment center in Rome, 
Italy, and presents experimental results for the robot’s 
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navigation capabilities in unstructured environments 
and collaborative activities with health-care operators in 
the clinical setting.

Managing a Pandemic 
On 31 December 2019, a pneumonia of unknown cause 
was detected in Wuhan, China. In a short time, the out-
break was declared a public health emergency of in -

ternational concern. On 
11 February 2020, the 
World Health Organi-
zation announced the 
name of the new dis-
ease: COVID-19. Severe 
acute respiratory syn-
drome coronavirus has 
affected people world-
wide, causing more than 
440,000 deaths [1].

During the past sev-
eral months, various 
solutions from the fields 
of prevention, diagno-
sis, and treatment have 

been considered for managing the pandemic. Although 
no specific treatment has been developed, the main solu-
tions seem to be preventive measurements, i.e., quaran-
tines, social distancing, and hygienic precautions [1]. The 
latter refers to both personal hygiene and surface disinfec-
tion, which are pivotally important to minimize the risk 
of contamination, especially in public environments, such 
as hospitals. Moreover, a fast diagnosis is crucial to limit 
the diffusion of the virus, especially by asymptomatic peo-
ple, and the real-time polymerase chain reaction (RT-
PCR) plays a fundamental role in the early identification 
of affected subjects. For this reason, to date, more than 
4 million RT-PCR tests have been performed only in Italy.

However, these measures require more health workers, 
with a related risk of contagion in hospital settings, and 
this could result in a further concern: since an infected 
caregiver is a potential vehicle for virus dissemination, it 
becomes clear that avoiding the risk of infection among 
health-care providers is paramount and that every effort 
should be taken in this direction. Moreover, a sudden lack 
of medical staff due to illness would expose the health sys-
tem to a critical overload. At the same time, robotics 
researchers across the world have been thinking about how 
they could help. The most relevant robotics contributions 
in this direction are summarized in [2]. They can be 
grouped into three main categories: 1) patient-care robots, 
both inside and outside clinical settings; 2) automation 
solutions, especially for logistics; and 3) environment dis-
infection platforms. Figure 1 shows examples of the devel-
oped robotics solutions.

Advances in digital technologies have promoted the 
development of solutions for remote patient monitoring. 
The COVID-19 pandemic is characterized by a very high 
contamination level; hence, it is becoming more and more 
important to break the transmission chain by avoiding 
physical contact with people. It is worth observing that 
health-care facilities could be sources of contamination 
and that face-to-face contact between clinicians and 
patients needs to be avoided. Therefore, examples of pre-
liminary COVID-19 diagnoses that were conducted 
remotely can be found in recent literature [3].

Interactive robots have been introduced inside the 
hospital environment to assist health-care operators in 
different activities [4]. The Vici robot [5], for example, 
developed by InTouch Health, has a high-definition 
screen and camera that enable doctors and nurses to 
assist patients via videoconferencing services, without 
physical contact. Ginger, another robot, welcomes 
incoming patients and visitors, monitoring some of their 
vital signs, including taking people’s temperature using 

the CloudMinds infrared thermo-
metric system [6]. A challenging 
application of robotic platforms inside 
a real COVID treatment center is 
reported in [7]. In Wuhan, a ward 
was assisted by humanoid robots that 
delivered food to noncritical patients. 
Tommy [8] is a child-size, wheeled 
robot used to monitor patients in 
severe clinical conditions, measur-
ing blood pressures and oxygen 
saturations when patients are on 
ventilators. Telepresence robots are 
becoming an effective tool for 
health-care operators treating high-
ly infectious patients, such as those 
with COVID-19.

Automation and robotic solutions 
for delivery services and handling 

(a) (b) (c)

Figure 1. An overview of robotic platforms to assist with the COVID-19 response. (a) 
Patient care robots, including Vici [5], Ginger [6], and Tommy [8]. (b) Logistics robots, 
including the fixed-wing drone Zipling [9] and the Hercules autonomous vehicle [10]. 
(c) Disinfecting robots, including the one commercialized by UVD Robots [12] and the 
prototype equipped with ultraviolet-C lights in [13]. (Sources: [5]–[6], [8]–[10], [12]–[13]; 
used with permission.)

Robotics has shown huge 

potential for contributing  

to pandemic relief efforts 

and for improving  

people’s quality of life in 

several scenarios.
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contaminated material can also be found. Zipline is a 
company that tried to face the pandemic by providing 
drone delivery services to reduce human interaction in 
the supply chain, minimizing a vector for infection [9]. 
This approach addressed the issue of hospital overcrowd-
ing since nonurgent patients could receive care in local 
clinics that were closer to their homes. In particular, the 
fixed-wing delivery drone produced by Zipline provided 
blood to hospitals and clinics across Ghana, and an 
extension of the delivery service was planned in India 
and the United States. At the same time, some communi-
ties in Zibo, eastern China, received fresh vegetables that 
were transported and delivered by a robot. This autono-
mous vehicle, called Hercules [10], uses lidar, camer-
as, and deep learning algorithms to drive on streets, 
carrying up to 1,000 kg.

Robots are increasingly present inside hospitals and 
clinics to help health-care providers with their work activi-
ties [11]. Special attention has been 
paid to the disinfection of hospital 
environments by using ultraviolet 
(UV) light. Infected materials can 
play a central role in contamination 
by transmitting pathogens to peo-
ple who touch them. UV-C radia-
tion emits enough energy to destroy 
t h e  deoxyribonucleic acid and 
ribonucleic acid of any microorgan-
ism exposed to the light. Mobile 
robots, both aerial and wheeled, are 
equipped with UV-C lights and 
steered through an environment to 
be sanitized [12], [13]. They scan the 
area using lidar and annotate points 
of interest (PoIs) on a map, and they 
can autonomously reach rooms and 
other environments to perform dis-
infection tasks.

This article describes a two-month 
experiment using a service robot, 
TIAGo (PAL Robotics, Barcelona, 
Spain), at the UCBM COVID treat-
ment center, in Rome, Italy. The arti-
cle analyzes the effectiveness and 
reliability of the proposed solution 
for logistics and disinfection. To the 
best of our knowledge, the UCBM 
platform is the first reported robotic 
solution to be introduced inside a 
COVID treatment center and to be 
capable of performing medical deliv-
eries and disinfection while requiring 
only minor hardware modifications 
to switch from one task to another. 
The modular nature and ease of use 
of the proposed system make the 

robot versatile and effective for applications inside a real 
clinical environment. Nonexpert operators can easily inter-
act and work with the robot to carry out fundamental 
activities. In addition, the ability to work autonomously 
enables the robotic system to successfully complete tasks 
under safe conditions for the health-care staff who collabo-
rate with the device. Safety criteria are met by using obstacle-
avoidance and dynamic path-planning algorithms. 

Materials and Methods

The Collaborative UCBM COVID Robot
The UCBM COVID robotic platform relies on TIAGo 
[14], which appears in Figure 2(a). The robot has a head, 
with pan and tilt degrees of freedom (DoF), that supports 
a red–green–blue depth sensor (RGB-D) camera; an 
anthropomorphic arm with 7 DoF; a lifting torso; and a 
wheeled mobile base, whose footprint has a diameter of 

Head (Two DoF)
RGB-D Camera

Anthropomorphic
Arm (Seven DoF)

Torso (One DoF)

Mobile Base
Laser Rangefinder

Development
Computer

Box for Material
Delivery

UV-C Lamp

Portable Power
Generator

(a) (b)

(c) (d)

Figure 2. (a) TIAGo, the service robot adapted for this case study. (b) The development 
computer mounted on TIAGo by custom metal supports. (c) and (d) The robot inside the 
UCBM COVID treatment center. (c) The logistics scenario. (Source: Luigi Avantaggiato; 
used with permission.) (d) The disinfection scenario.
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0.54 m. The robot is equipped with a frontal laser range-
finder and three rear sonars that are used to scan the envi-
ronment. The rangefinder has a π-rad field of view and an 
angular step of 0.006 rad, with a visible range of .0 05 10-  m, 
operating at a rate of 15 Hz. The robot autonomously navi-
gates its environment, thanks to the embedded sensors. To 
address the two intended scenarios of logistics and disin-
fection with the same platform, a modular system was 
developed that could be adapted as needed:

 ●  For the logistics scenario, the UCBM COVID robotic 
system was equipped with a box behind its head [Fig-
ure 2(c)] and was able to deliver materials weighing up 
to 5 kg.

 ●  For disinfecting the hospital environment, it was 
equipped with a UV-C lamp [Figure 2(d)].
Fundamental TIAGo capabilities, e.g., chassis motion 

and autonomous navigation, were exploited to promptly 
address the pandemic through available technology. On 
the other hand, TIAGo is a sophisticated robotic system 
capable of interacting with human users in multiple 
modalities and performing reaching and grasping tasks. 
This opens opportunities for future developments in hos-
pital scenarios (which we are working on), where all the 
robot’s functionalities can be fully exploited.

Two ad hoc, easy-to-use web graphical user interfaces 
(GUIs) were developed in HTML to select commands for 
each of the scenarios (the GUIs are described in the “Sce-
nario 1: Logistics” and “Scenario 2: Disinfection” sec-
tions). They ran on a laptop mounted to the back of 
TIAGo [Figure 2(b)]. The communication between the 
robot and the computer was established via an Ethernet 
port to avoid data packet losses and data slowdowns from 
wireless communication. The GUIs could be easily 
launched from the computer through any browser and 
operating system. Once a command was selected by a 
user, the robot autonomously accomplished the desired 
task. The energy autonomy of the UCBM COVID plat-
form runs out in 4 h. Hence, the system needs to be 
recharged multiple times per day. The time required for a 
full recharge is approximately 2 h. The platform was 
equipped with a 23.4-Ah portable generator providing 
power (220 V) to the UV-C lamp. The external power 
supply is shown in Figure 2(d).

Localization, Mapping, and  
Path Planning
To perform autonomous navigation, the mobile robot is 
equipped with a simultaneous localization and mapping 
(SLAM) algorithm. It requires data from the exteroceptive 
sensors (i.e., lidars, sonars, and cameras) as well as odome-
try information provided by wheel encoders and inertial 
measurement units. The SLAM algorithms estimate the 
robot pose xt inside known and unknown environments 
and build a map mt. This is performed by collecting and 
fusing sensor measurements zt and odometry readings ut, 
with all these quantities indexed by a time step t.

The Gmapping [15] strategy was implemented to solve 
the SLAM problem. Such a planar technique relies on 
robot odometry as well as measurements coming from 
exteroceptive sensors (e.g., sonars and lasers) to estimate 
the robot’s pose and the map where the robot is operating. 
The map is represented as a planar grid (the occupancy 
grid) consisting of a set of square cells, each having a prob-
ability value of the navigability of the cell itself. A Bayesian 
approach enables fusing pose transitions and laser scans in 
a probabilistic way. The algorithm solves the SLAM by fac-
torizing the posterior probability with a Rao–Black-
wellized particle filter (RBPF) [15]. Such a probability [16] 
is expressed as

 ( , | , ) ( | , ) ( | , ),p x m z u p x z u p m x zt t t t t t t t t=  (1)

where a complexity reduction has been performed through 
the RBPF factorization. Here, ( | , )p x z ut t t  is about having 
pose xt, given measurements zt and odometry ut, i.e., a 
pure localization problem; ( | , )p m x zt t t  represents the 
map mt, given robot pose xt and scan measurements zt, i.e., 
a pure mapping problem.

The robot’s pose xt and the map of the environment mt 
are stored inside a set of particles through a particle filter 
approach. The ith particle has the history of previous robot 
poses xi, the map computed from such a history mi, and a 
weight wi. The weight is the probability that the particle 
represents both the pose and the map. Gmapping estimates 
this probability based on robot odometry and scan match-
ing between consecutive laser scans and generates new par-
ticles. At the same time, the number of particles N is kept 
constant to reduce the computational burden. The com-
plexity of the adopted approach is ( ),O N M#  where M is 
the size of the generated grid map, as described in [15].

To address autonomous navigation, the robot is able to 
generate a reference trajectory through a path-planning 
module. This module is based on a Robot Operating Sys-
tem navigation package called global_planner. It needs the 
map to preplan the path to be followed and a local plan-
ner based on the global dynamic window approach, 
described in [17], that recalculates the trajectory accord-
ing to the instantaneous local condition along the path. 
This is an obstacle-avoidance approach that evaluates the 
robot’s kinematic and dynamic constraints and facilitates 
identifying the desired velocities. The desired velocities 
are chosen to maximize the alignment of the robot with 
the target and minimize the length of the trajectory in the 
absence of any obstacle. In this way, it is possible to com-
bine path planning and obstacle avoidance to enable the 
robot to navigate safely in an unstructured environment. 
The navigation parameters adopted in this work are given 
in Table 1. They are used to plan the global path, adjust 
the local trajectory, and adapt the behavior of the platform 
in the presence of obstacles.

The Gmapping SLAM algorithm was chosen because of 
two features, i.e., the ease of implementation and 
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robustness. These make the system effectively cope with 
highly dynamic indoor environments, such as hospital 
wards, with few estimation errors and a low computa-
tional burden [18]. More sophisticated SLAM approaches 
can be found in the literature [19]; however, they suffer 
from drawbacks that make them unsuitable for this 
application. For example, visual SLAM methods may 
suffer from the invalidity of the static world assump-
tion, which limits the application of RGB-D SLAM in 
dynamic environments [20].

Preliminary Autonomous Navigation Evaluation
The autonomous navigation system was preliminarily vali-
dated in laboratory settings that reproduced the health-
care ward. This phase facilitated measuring the system’s 
performance and assessing the reliability and robustness of 
the navigation system, especially in the presence of static 

and dynamic obstacles. Two controlled environments were 
mapped, and the obstacle-avoidance robustness was tested. 
The first environment, shown in Figure 3(a), represents an 
open space where the robot can navigate autonomously. 
The latter, reported in Figure 3(b), is a more complex envi-
ronment, consisting of a narrow passage between two 
areas. The robot could reach one area by crossing a 
1.2-m-wide corridor resembling the COVID treatment 
center where the robot was intended to operate. The tests 
were conducted under three conditions: the first aimed at 
testing the repeatability of the performed trajectory in an 
undisturbed condition, the second assessed how the 
implemented autonomous navigation handled the pres-
ence of static obstacles, and the third included the pres-
ence of dynamic obstacles (e.g., a health-care provider 
crossing in front of the robot).

The robot was directed to autonomously navigate from 
the starting pose X0  toward the target point X1  and vice 
versa. The reference fixed frames are reported in Fig-
ure  3(a) and (b) for the two environments used for the 
platform testing. Position and orientation are expressed 
by means of Cartesian coordinates and quaternions, 
respectively. Poses X0  and X1  for each environment are 
presented in Table 2. The robot performed each naviga-
tion task 16 times in each proposed environment. To val-
idate the algorithm in the presence of static obstacles, a 
box with dimensions of . . .0 3 0 21 0 5 m# #  was placed in 

,pobstacle  expressed in the reference frame O – xyz, specifi-
cally, [ . , , ]p 1 5 0 0 mE T1

obstacle =  in environment E1 and 
[ . , . , ]p 1 45 2 25 0 mE T2

obstacle =  in E2. The robot was asked to 

y
y

x

x

z

z
0

0
p0 p0

p1 p1

(a) (b)

Figure 3. Maps built by the robot in the laboratory setting. The 
fixed reference frame O – xyz and the target points p0 and p1 
used to validate the robot’s navigation capability are highlighted 
for the two tested environments. (a) The open-space scenario. 
(b) The more challenging indoor scenario.

Table 2. The target poses used in the navigation 
capability test phase.

Pose Position (m) Orientation ( )

E1 X0 [ , , ]p 0 0 0 T
0 = [ , , , ]q 0 0 0 1 T

0 =

X1 [ . , , ]p 2 5 0 0 T
1 = [ , , , ]q 0 0 0 1 T

1 =

E2 X0 [ . , . , ]p 0 53 0 42 0 T
0 = - [ , , . , . ]q 0 0 0 70 0 71 T

0 = -

X1 [ . , . , ]p 3 92 0 42 0 T
1 = - [ , , . , . ]q 0 0 0 77 0 64 T

1 = -

Table 1. The navigation parameters implemented 
on the UCBM COVID robotic platform.
Global Planner Parameters Value

Update frequency of the global planned path 1 Hz

Neutral cost 50

Cost factor 3

Lethal cost 253

Tolerance at the goal point 0.1 m

Local Planner Parameters Value

Time to forward-simulate trajectories 1.7 s

Update frequency of the local planned path 1 Hz

Controller frequency 10 Hz

Explored samples in the x velocity space 10

Explored samples in the y velocity space 0

Explored samples in the theta velocity space 20

Step size to take between points on a given trajectory 0.025 m

Weight for how much the controller should stay 
close to the path

32

Weight for how much the controller should 
attempt to reach its local goal

24

Weight for how much the controller should 
attempt to avoid obstacles

0.01

Tolerance in reaching goal position 0.2 m

Tolerance in reaching goal orientation 0.2 rad

Maximum transnational velocity 1.5 m/s

Maximum rotational velocity 2 rad/s

Cost Map Parameters Value

Global and local cost map update frequency 10 Hz

Local cost map obstacle range 3.5 m

Local cost map ray trace range 4 m

Local cost map width and height 5 m

Local cost map resolution 0.025 m
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repeat the same navigation task 16 times in each environ-
ment. Finally, for validation with dynamic obstacles, a vol-
unteer was invited to cross the path of the robot when it 
was 1 m from the starting point. Here, too, the robot trav-
eled 16 times in each environment.

The robot’s navigation capabilities were measured accord-
ing to the following performance indicators:

 ●  Completion time (CT): This is the time needed to reach 
the end position from the starting point, and it facilitates 
estimating the robot’s autonomous navigation replan-
ning capability.

 ●  Path length (PL): This is the effective distance traveled 
by the robot and provides a measure of how far along 
the path the robot traveled during different trials. It 
is computed as

 ( ) ,PL p t dt
t

t f

0
= o#  (2)

  where po  is the robot’s linear speed and , ,t t f0  and t are 
the initial, final, and current time of each navigation 
task, respectively.

 ●  Distance error (DE): This is the error made in reaching 
the assigned target position at the end of the movement. 
It provides a measure of the accuracy in reaching the 
assigned target. It is computed as

 ( )DE p p t fgoal= - , (3)

  where pgoal is one of the aforementioned goal positions 
{ , }p p0 1  and ( )p t f  is the position of the robot at the end 
of the movement.

 ● Success rate (SR): This is defined as

 ,SR N
N 100

tot

succ $=  (4)

  where Nsucc  is the number of completed navigation 
tasks satisfying both the constraints on the DE, i.e., 

. ,DE 0 1 m#  and the absence of collisions and Ntot  is 
the total number of performed motions ( ) .N 16tot =

Scenario 1: Logistics
A crucial aspect of health-care providers’ activities within a 
COVID treatment center involves continuous interaction 
with patients. In addition, health-care providers have to 
move around the hospital to deliver drugs and medical 
devices and to collect samples intended for the laboratory. 
Moreover, practitioners working inside intensive care units 
(ICUs) cannot leave because they must monitor their 
patients. This limits their ability to move from one envi-
ronment to another. The introduction of a robot to trans-
port useful materials can parallelize activities, help the 
caregivers, and optimize logistics.

From this perspective, for logistics purposes, a box was 
mounted on the robot’s laptop tray and loaded with several 
materials—drugs, blood products, and small instru-
ments—to be transported along the hallway of the ward. 
The robot had to navigate autonomously from one starting 
point to a target one, selected by an operator who could 
choose the target through the GUI. The robot planned the 
shortest path to reach the target and started navigating. 
The target areas identified inside the UCBM COVID treat-
ment center, highlighted in Figure 4, are explained briefly 
in the following:

 ●  Charging station: This was a very important point because 
the robot needed to be recharged after every 4 h of full 
working. This system automatically selected the target 
point whenever the battery level was lower than 15% to 
avoid having the robot stop in the hallway. The charging 
station was also the starting point for the mapping phase; 
thus, it was the origin of the global fixed reference frame.

 ●  Hot cell: This was the environment 
where ambulances accessed the 
hospital to drop off incoming 
patients, as reported in Figure 4. 
Patients were admitted in this 
zone to avoid contact with other 
environments and operators.

 ●  Red area: This included the ICU, 
which held a maximum of nine 
beds for critical patients. Each 
bed was provided with a moni-
toring station and a mechanical 
ventilator.

 ●  Intensive short observation area: 
This was a sub-ICU equipped with 
five bed stations. 

 ●  Holding area: This area contained 
a medical ward with 26 beds.
The GUI is described in Figure 5. 

It enabled an operator to check for a 
successful connection with the robot 

Red Area

Holding
Area

Hot Cell

Intensive
Short

Observation
Area

0
x z
y

Patients

Ambulance

UCBM-COVID Treatment Center

Charging Station

Figure 4. The UCBM COVID treatment center floor plan. Blue crosses represent target 
points that the robot can autonomously reach. The charging station is the origin of the 
fixed reference frame O – xyz used for the navigation algorithm.
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and to select one of the aforementioned target locations. 
After one of those buttons was pressed, the robot started 
its autonomous navigation toward the assigned target. 
Once the robot reached the desired position, a voice mes-
sage, reproduced by the robot, informed the operator 
about its arrival and the delivered materials. The robot 
performed its logistics activity during the day, transport-
ing drugs, tubes, blood components, and small medical 
devices from the hot cell toward the red area, intensive 
short observation area, and holding area and vice versa. 
Figure 2(c), shows a health-care operator interfacing with 
the GUI. The robot’s impact on logistics tasks was 
assessed through a set of indicators: the day of use, mean 
time spent delivering materials in a day, number of 
recharges required per day, average traveled distance in a 
day, and number of health-care personnel required to use 
the robot.

Scenario 2: Disinfection
In the second implemented scenario, displayed in Fig-
ure 2(d), the robot was equipped with a UV-C lamp to 
sanitize crucial environments, such as isolation rooms and 
areas dedicated to positive patients, i.e., the main hallway. 
Usually, certain health-care workers have the task of sani-
tizing hospital environments, including floors and surfac-
es, multiple times per day, using alcohol- and sodium 
hypochlorite-based solutions. However, this approach 
requires maximum human attention and precision, con-
suming time and requiring adequate staff.

For disinfection, a lamp emitting UV light at certain 
wavelengths (i.e., in the range of 200–280 nm) can be 
used. Such a radiant light has germicidal properties and 
can inactivate viral agents. The OnReal UV-C lamp was 
used; the mounting is depicted in Figure 2(d). This lamp 
was 0.49 m tall and had a UV quartz tube powered by the 
main voltage, i.e., the 220 V supplied by the portable gen-
erator. Such a device can output 36 W, efficiently treating 
10 m2  every 15 min, with a maximum operating time of 
60 min, after which the lamp automatically turns off. 
Given the dimensions of the ward hallway, the disinfec-
tion procedure was divided into two consecutive paths—
orange and blue—that received 2 h of cleaning at night. 
In particular, the hallway was divided into five areas, each 
identified as a PoI. As shown in Figure 6, during the 
orange and blue disinfection procedures, the robot 
reached and stopped at PoIs { , , }a a a1 2 3  and { , },b b1 2  
respectively. By dividing the activity into two sequential 
steps, it was possible to treat the corridor from the red 
area to the holding area.

The orange-area disinfection required the robot to stop 
for at least 20 min at each PoI. The robot began at the 
charging station and reached three PoIs identified on the 
map. Using a remote control, which functioned at a safety 
distance of 20 m, a human operator turned on the lamp 
when the robot stopped at the first PoI (1a). As an addi-
tional safety measure, the lamp did not begin disinfecting 

for 10 s after it was turned on, enabling the user to leave the 
corridor. At the end of the orange-area disinfection, the 
lamp turned off, and the robot returned to the charging 
station. Afterward, the blue-area disinfection could be 
launched. The lamp was turned on again, and the robot 
ran through the two PoIs of the blue disinfection path. At 
PoIs { , },b b1 2  the robot stayed for 30 min until the proce-
dure was completed.

Health-care operators could boot the disinfection pro-
cedure by using the second implemented GUI, reported in 
Figure 6. This interface showed the state of the connection 
with the robot and enabled starting the disinfection proce-
dure by means of dedicated buttons. To better distinguish 
the two consecutive phases, orange and blue were used to 
highlight the stations where the robot stopped during 
each treatment. A picture of the environment to be sani-
tized was shown in the GUI to ease the selection of the 
desired path. The first disinfection phase was marked 
with orange dots and the second one with blue dots. In 
addition, these points were numbered to indicate the 
order in which the robot would travel to the stations. As 
for logistics, certain measures were computed to quantify 
the robot’s impact during the disinfection scenario: the 

Connection State: Connected

Orange

Blue

Select the
Disinfection
Procedure:

3a 2a 1a 1b

2bCharging
Station

Figure 6. The GUI developed for the disinfection scenario. It 
enables operators to check for the correct connection between 
the development computer and the robot and to select a 
disinfection procedure.

Connection State:
Connected

Select the Target Position:

Charging Station

Hot Cell

Red Area

Intensive Short
Observation Area

Holding Area

Figure 5. The GUI developed for the logistics scenario. It enables 
operators to check for the correct connection between the 
development computer and the robot and to select the target 
position to be reached.
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number of procedures performed, mean time spent disin-
fecting the corridor, average traveled distance during the 
procedure, and number of personnel required to boot the 
disinfection scenario.

Results and Discussion
Experimental results showing the performance of the 
autonomous navigation algorithm in the laboratory set-
tings are reported in Figure 7(a)–(c) and Figure 7(d)–(f) 
for environments E1 and E2, respectively. The figure 
includes the maps built with the laser rangefinder, the 
fixed reference frames, and the trajectories executed by the 
robot in all the experimental conditions. Three different 
conditions were tested: the movement of the robot without 

obstacles in its path [Figure 7(a) and (d)], the avoidance of 
a static obstacle [Figure 7(b) and (e)], and the avoidance of 
a dynamic obstacle [Figure 7(c) and (f)]. As expected, the 
robot deviated from the unperturbed path once obstacles 
were introduced. Quantitative metrics, defined in the “Pre-
liminary Autonomous Navigation Evaluation” section, 
appear in Table 3.

Concerning the first environment (E1), the linear path 
the robot followed [Figure 3(a)] constitutes the simplest 
condition, and it can be used as ground truth to assess 
the other two situations. This experimental condition is 
in Figure 7(a). The mean CT required to reach the target 
position was 6.41 ± 1.04 s, and the traveled path was 2.58 ± 
0.13 m. The error at the end of the movement was 0.05 ± 

0.03 m. The introduction of a static obstacle led 
the robot to deviate from the straight line and 
plan an alternative path. This is highlighted 
in Fig ure 7(b). The robot took more time to 
reach the target—more than 10 s—and trav-
eled a longer path (3.83 ± 0.47 m). The DE was 

. .0 04 0 05!  m. In the third condition, a human 
subject crossed the ward while the robot was 
navigating. The robot stopped until the dynamic 
obstacle disappeared. This resulted in an 
increase in the required time to reach the target, 
keeping the PL comparable with the first case. 
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Figure 7. The preliminary tests of the autonomous navigation performed in laboratory settings. In (a)–(c) and (d)–(f), gray dashed 
lines indicate the trajectories the robot followed in environments E1 and E2, respectively. In (a) and (d), the robot moved toward 
the goal point without facing any obstacle. In (b) and (e), the robot avoided a fixed obstacle, circled in red. In (c) and (f), a person 
crossed the robot’s path while it was navigating.

Table 3. The robot’s quantitative performance in a  
laboratory setting.

CT (s) PL (m) DE (m) SR (%)

Without obstacle E1 6.41 ± 1.04 2.58 ± 0.13 0.05 ± 0.03 100

Static obstacle E1 10.81 ± 1.74 3.83 ± 0.47 0.04 ± 0.05 93.75

Dynamic obstacle E1 11.2 ± 2.51 2.82 ± 0.77 0.05 ± 0.06 68.75

Without obstacle E2 21.32 ± 1.02 7.79 ± 0.19 0.04 ± 0.02 100

Static obstacle E2 25.56 ± 2 8.35 ± 0.1 0.05 ± 0.02 100

Dynamic obstacle E2 39.06 ± 14.64 8.68 ± 2.24 0.06 ± 0.03 87.5
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The deviation with respect to the linear path was very 
small and can be seen in Figure 7(c).

The second scenario, illustrated in Figure 3(b), was also 
used to test the robot’s navigation capability. The robot’s 
paths are reported in Figure 7(d)–(f). In the unperturbed 
condition, the robot was able to reach the target position 
in 21.32 ± 1.02 s along a path 7.79 ± 0.19 m long. The tar-
get was reached in all the trials with a DE of 0.04 ± 0.02 m. 
The introduction of the static obstacle led the robot to take 
a longer path to reach the assigned position. The CT con-
sequently increased. The presence of the static obstacle did 
not affect the capability of the robot to reach the target, 
with a small residual error. In fact, the resulting DE was 
0.05 ± 0.02 m. During the third condition, i.e., a person 
crossing the robot’s path, the robot’s replanning capabilities 
were assessed. As expected, the robot stopped when a 
dynamic obstacle appeared in front of the mobile base. 
Therefore, the mean CT was much greater than those mea-
sured in the other experimental conditions (39.06 ± 14.64 s). 
The PL computed in this case was 8.68 ± 2.24 m. The high 
variability shown in these trials results from the fact that 
the robot, in reaching the target in position ,p1  searched 
for different paths when the dynamic obstacle obstructed 
the corridor, thus lengthening the PL. On the other hand, 
the robot was capable of reaching the assigned target with 
a small DE (0.06 ± 0.03 m).

All the tasks performed by the robot obtained a high 
SR. The robot was always able to avoid collisions with the 
obstacles and to reach the assigned target position with a 
small DE. The SR was less than 100% due to some DEs 
greater than 0.1 m that occurred in a few trials, i.e., 8%, 
corresponding to eight of the 96 trials. The results demon-
strate that the proposed system was able to complete the 
required tasks by safely managing (both for the robot and 
for the user) unexpected events, such as the presence of 
static and dynamic obstacles.

After this validation in a laboratory setting, the robot 
was installed at the UCBM COVID center at the beginning 
of May 2020. The main results collected during two 
months of use are reported and discussed in this section. 
Figure 8(a) conveys the map generated by the robot during 
the mapping phase. The red dots represent the PoIs listed 
in the previous section, while the blue dashed lines are the 
trajectories the robot executed during a daily logistics 
function. Quantitative results for the logistics scenario are 
summarized in Table 4. Mean values, computed during the 
total number of days of use, are reported with their stan-
dard deviation.

The robot worked in the logistics scenario for 43 days, 
for roughly 7 h per day, from 8 a.m. to approximately 
8 p.m. During the daily activities, at least two recharge phas-
es were required. The average traveled distance inside the 
ward, where the robot transported drugs, tubes, blood 
components, and medical devices, was roughly 8,000 m 
per day. The number of human operators required for the 
logistics scenario was three. The operators were inside the 

hot cell, the red area, and the intensive short observation 
and holding areas. Each user filled and emptied the robot’s 
cargo box according to their needs and determined the 
robot’s target location. In this way, the operators did not 
have to leave their work station while the robot transport-
ed materials.

Figure 8(b) provides a UCBM COVID treatment center 
map with the trajectories executed by the robot during a 
disinfection procedure. As explained in the previous 
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Figure 8. A map of the UCBM COVID treatment center that the 
robot built. In (a), red points represent the targets the robot had 
to reach for the logistics scenario. The dashed blue lines indicate 
trajectories the robot performed during a day. In (b), the dots 
represent targets the robot had to reach for the disinfection 
scenario. The two dotted lines, in orange and blue, represent 
the robot’s paths to treat the entire hallway. In particular, the 
points where the robot stopped to treat the environment are 
highlighted with large dots.

Table 4. The results of the logistics scenario.
Scenario 1: Logistics 

Days of use 43 days

Mean time delivering materials 437.7 ± 28.2 min

Number of recharges per day 2.13 ± 0.74

Mean traveled distance 7,971.2 ± 44.1 m

Number of health-care operators 3

Usage indexes of the proposed robotic platform are reported as the 
mean value and the standard deviation.
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section, the disinfection scenario was composed of two 
sequential treatments. The first was composed of three 
PoIs, shown in Figure 8(b) and represented by an “a” 
marked by orange dots. The latter had only two PoIs, 
which are indicated by a “b” marked by blue dots. The 
increasing number represents the order in which the robot 
traveled to the stations. The executed trajectories are 
reported with orange and blue dashed lines, respectively, 
and the disinfection stations are indicated by large orange 
and blue dots. From Figure 8(b), it is possible to observe 
that the robot reached all the PoIs and, at the end of each 
procedure, returned to the charging station.

The metrics computed for the disinfection scenario are 
presented in Table 5. For the scenario, the estimated work-
ing time was roughly 2 h. The disinfection of the corridor 

was carried out at night, 
generally from 2 a.m. to 
4 a.m. for safety reasons, 
and it was performed 
35 times in two months. 
During the procedure, 
the robot traveled 85 m 
for the first phase and 30 m 
for the second one. The 
disinfection scenario 
was easier to be booted: 
only one health-care 
operator was involved. 
He or she had only to 
select the desired disin-
fection procedure and 

turn on the UV-C light. At the end of each phase, the robot 
returned to the charging station.

Introducing the robot into highly biohazardous envi-
ronments had multiple advantages in both scenarios. 
First, in the logistics scenario, the robot reduced the 
number of movements required by medical personnel 
among different environments. This led to a reduction in 
the biological risk to which the operators were subjected. 
In addition, the presence of the robot had significant psy-
chological benefits for patients forced to stay in the treat-
ment center and away from their families. The robot did 
not aim to replace the warmth and moral support of 
health-care professionals but enhanced their role and 
increased their benefits.

Despite this, using the robot had uncovered weakness-
es. The platform runs on battery power and needs to be 
periodically recharged. Medical personnel must be ade-
quately trained to properly work with the robot, which is 
not easy during a global pandemic. Finally, it is better to 
define the map before using the navigation algorithms. 
So, during the first installation, expert robotics users 
have to go through all relevant areas with the robot to 
record the map and manage the navigation and obstacle-
avoidance algorithms.

Conclusions
In this article, a two-month experiment studying the use of 
the UCBM COVID robotic system was described. The 
robot was used to assist health-care operators during their 
daily activities, in particular, for logistics and disinfection 
procedures. To accomplish such tasks, the robot had 
autonomous navigation capability. The robot was 
equipped with the Gmapping SLAM algorithm to provide 
robustness against a dynamically changing environment 
and facilitate the ease of implementation. A list of the 
parameters used to implement the navigation capabilities 
was provided as a guideline for further developments of 
autonomous robots for similar scenarios.

Preliminary tests conducted in laboratory settings 
were carried out to assess the robot’s autonomous naviga-
tion capabilities. The good results obtained in a con-
trolled environment enabled the robot to access the 
UCBM COVID treatment center. To address two scenari-
os with the same platform, a modular system was devel-
oped: the robot could be equipped with a box for 
delivering materials and with a UV-C lamp for disinfec-
tion. Furthermore, two web GUIs were developed so that 
users could easily and intuitively select commands for 
each of the two scenarios.

The introduction of the robotic system facilitated the 
parallelization of material transport inside the ward, and 
the proven effectiveness and ease of use led operators to 
exploit the robot throughout the work day. Users did not 
have to be expert to interact with the robot, thanks to the 
GUIs. During the night shift, the robot was exploited for 
disinfection purposes. The absence of health-care workers 
in the corridors made it possible to carry out this activity 
under safe conditions. The automation of the procedure 
enabled treating the entire area of interest without human 
intervention.

Future efforts will aim at increasing safety during the 
disinfection procedure and improving the interaction 
modalities between the health-care operators and the 
robot. In particular, software and hardware improve-
ments will be implemented to automatically detect peo-
ple entering an area that is being disinfected and turn 
off the UV-C lamp. Moreover, voice commands and 
control are being developed to improve the interaction 
modalities and communication between robot and 
health-care personnel.

The presence of the 

robot had significant 

psychological benefits for 

patients forced to stay in 

the treatment center and 

away from their families.

Table 5. The results of the disinfection scenario.
Scenario 2: Disinfection

Number of performed procedures 35

Mean time disinfecting 125.6 ± 3.4 min

Mean traveled distance 116.4 ± 7.2 m

Number of health-care operators 1

Usage indexes of the proposed robotic platform are reported as the 
mean value and the standard deviation.
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