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U
ltraviolet type-C irradiation (UV-C) is an effective 
no-contact disinfection procedure for surfaces 
and environments to reduce the spread of 
severe acute respiratory syndrome coron avirus 2  
(SARS-CoV-2), the virus that causes  COVID-19. 

This work evaluates the effect of the adoption of mobile 
robots for UV-C irradiation, compared to conventional 
disinfection methods based on static UV-C lamps. On-field 
evaluation was conducted to measure the energy dose 
delivered by a robot-based moving source of UV-C radiation 
at different locations in an indoor environment. The 
effectively released radiation dose was experimentally 
measured using distributed UV-C-sensitive detectors, 
considering all of the environmental factors involved. 
Moreover, this article proposes a novel trajectory planner 
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consisting of a genetic algorithm (GA) that explores the 
possible trajectories and disinfection outcomes of a robot 
moving in a tunable artificial potential field (APF) and is 
capable of maximizing the delivered UV dose based on 
ambient geometry. The experimental results show that, 
compared to a conventional trajectory, an optimized one has 
better performance in terms of both the coverage of the 
radiated energy in the environment and the time required to 
complete the disinfection task.  

Robotic Technology and UV-C Radiation  
The SARS-CoV-2 outbreak poses novel challenges and con-
straints to our everyday life, particularly in terms of concerns 
about safe access to public spaces, shared environments, and 
workplaces. As outlined in [1]–[3], robotic solutions, togeth-

er with artificial intelli-
gence and automation, 
can be effectively used for 
disinfection, delivering 
medications or food, and 
performing remote diag-
nosis, thus limiting the 
risk of human operators’ 
exposure to potentially 
contaminated environ-
ments. Regarding the dis-
infection of environments 
and surfaces, there are 
different contactless solu-
tions [4]. UV-C irradia-

tion is known to be very successful for virus inactivation 
and bacteria disinfection by reducing contamination on 
high-touch surfaces [5]–[7]. UV-C irradiation can also be 
particularly effective against SARS-CoV-2. In this context, 
disinfection procedures with UV-C irradiation having a 
wavelength in the range of 200–280 nm are the most effi-
cient since UV-C photons are absorbed by viruses at the 
level of nucleic acid bases. The scientific literature has 
already observed and quantified the virucidal effect of 

UV-C irradiation against SARS-CoV-2. In particular, a 
recent study has demonstrated how both replication inhibi-
tion and inactivation are achieved as a function of delivering 
equivalent doses of UV-C to 3.7 mJ/cm2 for reaching a 3-log 
reduction of the viral concentration and up to 16.9 mJ/cm2 
to achieve a complete virus inhibition [8].

The evolution of robotic technology combined with 
UV-C irradiation systems demonstrates a significant 
advantage compared to fixed UV-C-radiation sources. 
UV-C-radiation technology combined with autonomous 
robotic systems has been successfully adopted in both sci-
entific studies [9], [10] and commercially available prod-
ucts [Model C (UVD Robots, www.uvd-robots.com/
robots); PHS-M mobile robot (Klainrobotics, www.phs-uv 
.com/phs-m/); TMiRob (TMI Medical, www.tmirob.com/
solutions/19)]. Fixed UV-C sources are not capable of 
guaranteeing equivalent levels of UV-C doses at different 
distances from the source; in fact, the administered dose of 
UV radiation is a function of both the intensity of irradia-
tion and exposure time. To date, most of the existing stud-
ies refer only to systems with a fixed positioning of the 
emitting UV-radiation source. To our knowledge, there are 
no previous works analyzing how the use of a mobile 
source of radiation can be optimized according to the geo-
metrical properties of the environment to provide a suffi-
cient radiation dose on all surfaces. 

In this article, we experiment with the efficacy of UV 
robots for surface and environment disinfection, and we 
investigate how the robot path can be optimized to reach 
the maximum UV-irradiation performance based on envi-
ronmental geometry. In detail, this article presents the 
development of a new robotic autonomous system for the 
contactless ambient disinfection of air and surfaces via 
UV-C irradiation and a novel genetic-optimization algo-
rithm for robot-motion planning (see Figure 1 for a view 
of the system). On the basis of a physical irradiation 
model, it can optimize the delivered UV-C-radiation dose 
as a function of the geometric properties of the environ-
ment. Further, the experimental assessment of the disin-
fection efficacy of the robot was evaluated in two 
experiments. In the first, we performed a comparison of 
the effectiveness of a static versus mobile source of radia-
tion in a real indoor environment. In the second, we evalu-
ated the performance of the optimized robot-motion path 
generated by the proposed novel algorithm compared to a 
standard path.

System Description
The components of the developed robot are indicated in Fig-
ure 2(a) while the architecture of the overall robotic system is 
depicted in Figure 2(b). The upper part of the robot hosts the 
UV-C system consisting of four lamps, 0.8 m long, mounted 
at a height of 0.48 m from the ground, each with a nominal 
power of 75 W and a UV-C-radiation efficient power of 20 W 
(Sterilsan). In more detail, the lamps are low-pressure, mercu-
ry-vapor-based discharge lamps that emit light in the UV-C 

Figure 1. The experimental setting involving a UV-C-equipped 
mobile robot in a conference room at the Scuola Superiore 
Sant’Anna of Pisa.  

UV-C irradiation is known 

to be very successful for 

virus inactivation and 

bacteria disinfection by 

reducing contamination on 

high-touch surfaces.
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band, with a 254-nm wavelength peak emission. The high-
level control for a remote and autonomous condition hosts a 
Robot Operating System with a version of real-time appear-
ance-based mapping (RTAB-Map) [11] to obtain localization 
of the robot in the environment and to eventually perform 
simultaneous localization and mapping (SLAM). SLAM is 
used to perform an initial, supervised mapping of the area of 
operation, whereas, in the repeated use of the robot as a disin-
fection system, localization is envisaged to be enabled only to 
increase the robustness of the system. The implemented 
RTAB-Map parametrization makes use of red, green, blue 
depth (RGB-D) data, lidar, and wheel-odometry data, and it 
is constrained to planar localization and mapping. A 2D 
occupancy grid is generated through the lidar sensor.

Experimental Evaluation of the Efficacy of a Static 
Versus Mobile Source of UV-C Radiation
The first objective of this study was to investigate the efficacy 
of robot-carried sources of UV-C radiation compared to 

fixed-lamp solutions. In our study, we used low-pressure mer-
cury lamps (254 nm). The disinfection efficacy of single-
source UV irradiation has been widely studied in scientific 
literature, especially against Clostridium difficile bacteri-
um [12]. Moreover, the dependency of the disinfection per-
formance on the radiation dose has been studied in [13], 
including the strong influence of both irradiation time and 
irradiated energy on the reduction of bacteria concentration. 
The aim of the experiment was to assess whether, during a 
room-disinfection task, a robotic solution can perform better 
than a fixed-lamp solution in terms of irradiation time and 
irradiated energy distribution.

Methods
To experimentally measure the differences between a fixed 
UV-C-emitting device and a mobile one, a disinfection task 
was performed in a conference room at the Scuola Superiore 
Sant’Anna of Pisa, measuring about 60 m2. Twenty-one colo-
rimetric UV-sensitive markers (Intellego) were placed at 
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different locations and 
orientations in the room 
according to the map pre-
sented in Figure 3. In the 
room, there was a table 
and a set of six rows of 
chairs with a central corri-
dor. The robot could move 
along the central corridor 
and behind the first and 
last rows of chairs. The 
markers were placed on 
the table (H1) and its later-
al side (V2), both vertically 
and horizontally oriented 
(from H3 to H20) on the 
chairs, and on the entrance 
door (V21). The room was 
then exposed to UV irra-
diation in two different 
conditions: 1) static: UV 
irradiation with a fixed 
position of the lamp, locat-
ed at the center of the 
room; and 2) dynamic: UV 
irradiation from a mobile 
lamp mounted on the 
robot, moving continuous-
ly along a predetermined 
path. The robot was re -
motely guided at a con-
stant speed (0.2 m/s) by a 
human operator provided 
with visual feedback from 
the robot camera. Energy 
data was calculated by 
acquiring the markers’ 
colors through a digital 
scanner (Kyocera TaskAlfa 
3551ci) and extracting 
their RGB values. Accord-
ing to the reference chart in 
Figure 4, we used the green 
(G) channel to calculate 
the energy value for each 
marker, based on a least-
squares linear fit of the 
available colors. The rela-
tion used is ,E mG q= +  
where E is the energy, G is 
the marker’s color green 
value, and the coeffi-
cients are .m 0 769=-  
and . .q 182 7=  The ex -
perimental design was a 
two-way (2 × 5), repeated Fi
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measures analysis of variance (ANOVA) design study with two 
factors: irradiation condition (robot versus static for a total time 
of 30 min) and time (five levels with color sampling performed 
every 6 min).

Results
Figure 3 reports the distribution of irradiation at the end of the 
experiment in the room. After 30 min of exposure, log-3 
SARS-CoV-2 virus inactivation values (3.7 mJ/cm2 [8]) 
were reached by 100% of the samples in the dynamic 
condition and by only 52.38% of the samples (11/21) in the 
static condition (Fisher exact test, . ).p 0 0005=  The F-sta-
tistics associated with the two-way ANOVA experimental 
design revealed a significant effect for both factor time 
( ( , ) . ,1 4 33 51F =  ( )p e1 51 -  and the interaction factor “time 
× experimental condition” ( ( , ) . ,1 4 2 876F =  . ).p 0 028=  
Moreover, a difference in the treatment condition was ob -
tained, although still nonstatistically significant, at 0.05 level 
( ( , ) . ,1 4 3 455F =  . ).p 0 078=  The results clearly indicate 
that there is an interaction between time and experimental 
condition; the exposure to radiation was strictly dependent 
on time in the static condition (linear relation of released 
energy), and, when the robot worked near the static source 
location, its effect on the markers’ irradiation was close to 
the effect of the static source. 

Differences in the absorbed energy of nearby markers, 
especially in the static condition, evidence the effect of 
object shadowing (i.e., chair armrests and backseats) and of 
the different surface orientations. The contribution of indi-
rect radiation by light diffusion appears negligible in the 
explored exposition time. Figure 3 (c) displays the mean 
value of the delivered UV-C irradiation energy over time 
(the “Average Absorbed Energy” graph), computed as the 
mean of all detectors at each time, with higher values of 
irradiation delivered in the dynamic condition compared to 
the static one. As illustrated in Table 1, at 24 min a signifi-
cant difference in delivered irradiation energy (paired t-test 

. )p 0 051  was reached, with almost the same level kept at 
30 min. In fact, if the robot works mostly in proximity of 
the static lamp’s position during a time interval, the mean 
difference remains almost the same, as the two conditions 
overlap considerably.

In this experiment, the two limit conditions of a static 
source of radiation compared to a continuously moving 
one were tested. However, in a real application of a static 
UV-C lamp, a human operator could manually reposition a 
fixed radiation source several times to increase the unifor-
mity of the energy absorption. To better understand the 
effect of this operation, we have simulated the distribution 
of the absorbed energy along a vertical wall at an increasing 
number of repositionings of a radiating source held at a 
fixed distance from the wall. The results in Figure 5 present 
how the level of homogeneity of energy absorption depends 
on the number of repositionings and on the distance of the 
lamp from the wall. The peaks can be clearly observed in corre-
spondence to the fixed positions of the lamp [Figure 5(a)] 

while an almost flat profile with some boundary effects is 
achieved in the case of a moving source, obtaining an opti-
mal distribution of the irradiated energy along all of the 
surface. Correspondingly, in Figure 5(b) the simulation 
demonstrates how the 
required exposure time 
increases if the same 
minimum level of irradi-
ation energy is requested. 
In particular, when the 
geometry of a room, i.e., a 
rectangular or any asym-
metrically shaped room 
(such as a corridor), or 
obstacles within a room 
constrain the robot to be 
close to the surface, the 
time required by a fixed 
lamp must be a multiple 
of the time required by a moving one. If we consider the cost 
of the manpower needed to reposition the source, overall dis-
infection costs are then multiplied by a higher value.

A Motion-Planning Algorithm Based on 
Irradiation Physics

Overview
This first study demonstrated how robots can improve disin-
fection accuracy and reduce task-execution time by moving 
the radiation source, thus distributing energy more homoge-
neously in the environment. The disinfection problem can be 
seen as a special case of motion planning and navigation in 
dynamic environments, where the mission target is composed 
of a large number of variable target points, i.e., all of the 
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Figure 4. The reference chart provided by the manufacturer 
for the energy–density calculation from the G channel of the 
marker’s color.  

Table 1. The paired t-test of a UV-irradiation 
average dose, * p < 0.05.

Time Mean 
Standard  
Deviation p Value 

6 min 3.22 15.09 Not significant

12 min 7.22 23.66 Not significant

18 min 10.84 27.98 p = 0.091 

24 min 13.21* 28.42* p < 0.05

30 min 13.21 30.45 p = 0.061 

After 30 min of exposure, 

log-3 SARS-CoV-2 virus 

inactivation values  

(3.7 mJ/cm2) were reached 

by 100% of the samples in 

the dynamic condition.
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surfaces in the environ-
ment to be disinfected by 
exposure to the radiat-
ing energy. Each surface 
should receive at least a 
certain minimum suffi-
cient radiation dose, i.e., 
16.9 mJ/cm2 [8], which is 
dependent on both the 
exposure time and dis-
tance from the radiation 
source. Since the radiation 

dose received by each surface in the environment strictly 
depends on time, the problem must be formulated requiring 
that path planning and trajectory generation are coupled and 
simultaneously solved. Therefore, a specific approach to the 
problem formulation and solution needs to be devised. 

Navigation of mobile robots has already been deeply 
treated in the literature. Some of the proposed approaches 
where path planning and trajectory generation are solved 
simultaneously include APFs [14], harmonic potential 
functions [15], and navigation functions [16]. It has been 
thought that all of the previous methods have ensured 
that the robot can reach a given navigation goal without 
getting stuck into a local minimum of the potential func-
tion, yet they are not sufficient in their original formula-
tion to solve the required disinfection motion-planning 
strategy. To this aim, in this article, we propose a novel 
motion planner and trajectory-generator algorithm spe-
cifically for disinfection procedures, based on the follow-
ing three modules: 
1)  The first module is based on a time-varying APF that 

determines the robot velocity and guides it toward the sur-
faces to disinfect, depending on both the distance from the 
surfaces and the amount of energy already stored in them. 
The APF value is constantly modulated by the output of a 
second module. 

2)  The second module consists of a physical simulation of 
irradiation physics and robot motion in the environment, 
where the APF and amount of energy delivered to the sur-
faces are computed accordingly over time.

3)  Module three consists of an automatic optimization meth-
od to explore different possible solutions and to optimize 
the process based on a GA.
The generation of a suitable disinfection trajectory for 

a robot is not a straightforward task; there could be many 
valid alternative strategies that solve the problem. In this 
trajectory planner, we rely on the principle that, based on 
irradiation physics, the closer the robot gets to a surface 
to disinfect, the faster this surface will be disinfected. For 
this reason, an APF is defined in such a way that attracts 
the robot toward all of the surfaces that still need disin-
fection. A simulation of the environment, considering 
both irradiation physics and robot motion, calculates the 
amount of energy delivered to each surface and, then, 
accordingly computes the APF governing the robot 
motion. The output of the simulation is only a possible 
disinfection trajectory if the complete disinfection target 
is achieved. Otherwise, the simulation provides a nega-
tive outcome. As many possible trajectories could be 
explored, the APF has coefficients that can be adjusted to 
change the robot motion in a substantial way. Within this 
framework, the role of the GA is to explore all of the dif-
ferent possible values of these coefficients to obtain the 
best feasible disinfection trajectory. Of course, the prob-
lem is strongly dependent on the target environment’s 
geometry; the environment’s shape and extension, 
together with the arrangement and concentration of 
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obstacles, affect the APF in a significant way. Because of 
the high computational cost, the proposed trajectory 
planner was not implemented in real time; based on the 
environment map, offline computation was performed to 
plan the robot motion in advance.

Irradiation Model
Here, we present the equations governing the irradiation 
model used by the simulation module of the trajectory 
planner. Let us consider the problem described in Fig-
ure 6 involving a lamp of power P mounted on the robot, 
which can be modeled as a light source homogeneously 
distributed along a vertical line of length L. We define 
point A as the midpoint of the lamp installed on the 
robot and point B as a generic point of the lamp located 
at a distance l from A, along the lamp. The goal is to cal-
culate the irradiation intensity on a generic infinitesi-
mal surface dA, with normal ,nt  located at point C. Noting 
that ,x xB A=  ,y yB A=  and ,z z lB A= +  we can write that 

[ , , ],r x x y y z z lC A C A C A= - - - -v  and we can calculate 
the irradiation intensity I on the surface dA as

 ( , ) , ,I r n L
P

r
r n dl4 L

L

2
2

2

r

h
=

-
v t

v

v t^ h#  (1)

where h  is the optical efficiency, and it is given by

 , ,r n r
r n r n

r n0

0

0

$
$

$ 2

#
h =v t v

v t
v t

v t
^ h *  (2)

which also considers that the surface can actually be irra-
diated only by one side. We can calculate the energy 
stored in the surface by integrating the function ( ( ), )I r t nv t  
over time.  

APF
Let us suppose that a real environment can be modeled using 
3D discrete surfaces that generate an attractive potential 
on the robot that is dependent on the distance from the 
robot. Since the robot can move only on the floor in a 2D 
environment, if there are more surfaces at the same posi-
tion (x, y) with different heights (z), e.g., a wall, only the 
surface with the worst optical efficiency is considered in 
the computation of the potential. This is to avoid an unbal-
anced concentration of attractive charges at some coordi-
nates. Let us denote the 2D vector as ,ri  which goes from 
the robot to the surface. The attractive potential at the 
robot’s location is defined as

 ( , ) ( ) ,U r t k w t
r
1

i i
i i

n=- /  (3)

where k is a constant that sets the overall magnitude of the 
potential, n is a constant exponent that determines the 

influence of the distance, and ( )w ti  is the surface weight. If 
( )E ti  is the energy density already stored in the surface 

and E0  is the energy density needed to complete surface 
disinfection, the surface weight is defined as

 ( )
( ) ( )

( )
,w t m E

E t E t E
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0
0

0
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$
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where m is a coefficient that sets the maximum possible 
value of the surface weight. The surface weight has two 
goals: 1) it aims at preventing the robot from moving away 
from a surface without 
having completely disin-
fected it, and, 2) most 
importantly, when the 
surface has been com-
pletely  d i s i n f e c t e d 
[ ( ) ],E t Ei 0$  the surface 
weight is null so that the 
surface does not con-
tribute any more to the 
total potential energy. 
This feature makes the 
APF change over time, 
according to the out-
come of disinfect ion 
over time. The gradient of the potential function defines 
the velocity field in the map, considering the sum of the 
contributions of all of the surfaces left to disinfect, which 
can be written as

 ( ) .v U knw t
r

r
i

i
i

i
i

n
i

2d= - = - +
v ^ h/ /  (5)

However, for safety reasons, robot speed is limited to  
0.2 m/s. In fact, robot dynamics are not modeled, and 
the speed could be unbounded, with acceleration and 
deceleration that are not achievable by the robot. It is 
important to observe that the APF alone would not be 
sufficient to generate suitable trajectories; in fact, it does 
not handle the presence of obstacles and the environ-
ment’s boundaries. For this reason, each time the robot 
tries to trespass the environment or an obstacle’s 
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Figure 6. The irradiation model.

The role of the GA is to 

explore all of the different 

possible values of these 

coefficients to obtain the 

best feasible disinfection 

trajectory.
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boundary, the velocity is modified such that it has the same 
magnitude but its component normal to the boundary is 
null. In other words, the robot is constrained to sliding 
along the closest obstacle boundary. If this is not possible, a 
random suitable velocity is assigned to the robot. Finally, it 
is important to note that the three coefficients (k, n, m) 
have a fundamental role as they can drastically change 

the shape of the velocity 
field governing the ro -
bot’s motion.

Irradiation and 
Motion Simulation
Given the model of the 
environment and its sur-
faces, we could exploit 
the irradiation model 
described in the “Irradi-
ation Model” section to 
reproduce the evolution 
over time, using a dis-
crete time step of the 
energy density delivered 
by the robot during its 
motion. The simulation 

involves the execution of the following instructions at each 
time step:
1)  It involves computing the irradiation function and updat-

ing surfaces’ energy.
2)  It also involves computing the velocity field in the actual 

robot position.
3)  If E Ei 0$  for all of the surfaces in the environment, the 

disinfection is completed. Otherwise, the actual time value 
is increased by the time-step value, and the instructions are 
repeated starting from point 1.
The output of the simulation is the robot trajectory, 

generated as a sequence of coordinates over time that the 
robot should track during the disinfection task. As stated 

in the previous “Overview” and “APF” sections, different 
outcomes are possible by changing the APF coefficients. 
The irradiation and motion simulations allow us to verify 
whether a particular set of coefficients generates a trajec-
tory suitable for the disinfection of the environment and 
to calculate the total time needed to perform the task. At 
this point, what is missing is a method to explore different 
possible choices of the APF coefficients; this part is played 
by the GA.

GA
The GA has been chosen as the method to automatically 
explore the different possible trajectories that can be 
obtained using the proposed APF. This choice is motivated 
by the capability of the GA to explore the solution space in 
a stochastic way, allowing for variable values also outside 
of the starting range. Therefore, the three coefficients (k, n, 
m) are chosen as the genes of a given individual in the 
population while the cost function for the optimization is 
the total time needed for the disinfection task. We used 
MATLAB to run the GA, with the settings reported in 
Table 2. Once the optimized values are obtained, they are 
employed to run a final simulation that produces a raw 
optimized trajectory. The raw optimized trajectory is then 
subsampled to obtain a new, smoother one. The subsam-
pling process is automatic and iterative: deleted points are 
substituted by new ones obtained from linear interpolation 
on the points remaining. This new trajectory is checked 
again through simulation to verify whether the process 
had compromised the effectiveness of disinfection. In case 
of failure, the procedure is repeated with a decreased sub-
sampling period until a positive outcome is obtained.

Simulated Case Studies
The trajectory planner has been tested in different case stud-
ies, two significant ones among which we report (Figure 7). 
The first is a simple, convex environment with two square 
obstacles inside while the second is a nonconvex, H-shaped 
environment with four circular obstacles. Importantly, 
the trajectory planner could converge to a suitable solu-
tion, complying with the complete disinfection con-
straint, for several different values of the coefficients (k, 
n, m) in both cases and, thus, could choose the best solu-
tion in terms of time from a wide range of trajectories. 
Moreover, especially in the second case study, it can be 
observed how the APF output velocity is successfully 
modified to allow the robot to maneuver around the 
obstacles and go toward the surfaces to disinfect. Finally, 
we summarize the whole trajectory generation process in 
the flowchart in Figure 8.

Algorithm Evaluation Experiment
The goal of the second experiment was to evaluate the disin-
fection performance of the optimized trajectory-planning 
method described in the previous section. To this end, 
we used a meeting room [dimensions . .8 6 5 6 m#  (2D 

Table 2. The simulation and GA settings. 

Parameter Value Parameter Value 

Space  
discretization 

0.3 m Time step 0.5 s

Population size 30 Maximum  
generation 

300 

Function  
tolerance

10−7 Survivors 6 

Selection  
function

Tournament, 
4 m

Crossover  
function 

Intermediate 

Crossover  
fraction

0.5 Mutation  
function 

Gaussian 

Subsample  
period

2 s Initial k logsp(1e-2, 1e4)

Initial n linsp(1,3) Initial m linsp(0,20) 

It can be observed how 

the APF output velocity 

is successfully modified 

to allow the robot to 

maneuver around the 

obstacles and go toward 

the surfaces to disinfect.
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map and pictures in Figure 9)] in which the robot could 
have fewer constraints in movements compared to the room 
described in the first ex  periment. Therefore, the algorithm 
could choose among a wide variety of trajectories, and so it 
was possible to evaluate its capability of independently 

optimizing the path and traveling speed. We expected 
that the algorithm ensured the disinfection of all of the 
surfaces in the room and that the markers’ energy distribu-
tion had a lower standard deviation compared to a “stan-
dard” trajectory.

t = 0 s t = 210 s t = 420 s t = 630 s t = 840 s t = 1,050 s

t = 0 s t = 244.2 s t = 488.3 s t = 732.5 s t = 976.6 s t = 1,220.8 s

0

–200
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–800
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0
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(a)

(b)

Figure 7. The trajectory planner outcomes for two different environments. The potential function value is given by the color, 
according to the color bar on the right. The robot’s trajectory is described by the red markers’ sequence; black lines represent  
the environment’s boundaries or obstacles within the environment. (a) An 8×8-m, square-shaped environment with two tables  
(k = 0.13, n = 2.62, m = 19.81). (b) A nonconvex, H-shaped environment, 9×9 m, with four circular tables (k = 0.32, n = 1.55, 
 m = 10.26). 

Environment,
Robot

Initial Population:
20 Samples (k, n, m)

GA

Simulation
(Individual Score)

GA Exit
Conditions

Generate New Population

No

No

Yes

Yes

Raw Optimized
Trajectory
{x (t ), y (t )}

Postprocessing

Trajectory
Smoothing

Acceptability
Check

Subsampling
Decrease

Final Optimized
Trajectory x(t ), y(t )

Figure 8. The optimization flow chart. Given the robot, environment data, and an initial population of the three motion-strategy 
parameters, the GA searches for the best values by performing a simulation for each individual in the population. When the criteria for 
exiting the GA are satisfied, the disinfection simulation is performed again using the optimal values, and a raw trajectory is obtained 
and postprocessed to generate the optimized trajectory.
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Methods
The room was instrumented with 24 colorimetric UV-C-
sensitive markers with different positions and orientations, 
located on tables (1–4), on shelves (5–9, 11, 14, 22), on 
walls (10, 12), on the door (13), and on the floor (15–21, 
23, 24) (see Figure 9), and then it was exposed to UV-C 
irradiation. To have a benchmark for evaluating the algo-
rithm performance, it was necessary to define a compara-

t ive trajector y that 
ensured good coverage 
of the room area and, 
thus, offered a fair com-
parison. We then chose 
the simplest trajectory 
allowing the robot to 
move across the room at 
a constant distance from 
the objects to disinfect 
(we call it the “standard” 
trajectory), and the 
result is the path dis-
played in Figure 9(a), 
traveled at a constant 
speed. Then, we per-
formed the irradiation 

experiment in two different conditions: 1) the “standard” 
trajectory and b) a GA-optimized trajectory. The experi-
mental comparison was carried out with equal total irradi-
ation time for the two conditions (resulting also in equal 
total energy irradiated in the room). For this reason, we 
calculated the speed for the “standard” trajectory to match 
the total time needed for the GA-optimized trajectory: 594 
seconds. The energy data were evaluated with the same 
method described in the previous “Methods” section.

Results
Figure 9 displays the results of the experiments in the two 
different conditions. The bar plot of the markers’ energy–
density distributions shows that, in the “standard” condi-
tion, only 18/24 markers were successfully disinfected 
(energy density > 16.9 mJ/cm2) while, in the GA condition, 
the score was 24/24 (Fisher exact test . ).p 0 022=  Although 
the average delivered energy in the GA condition is higher 
than in the “standard” condition and the standard devi-
ation is lower in the GA condition than in the “standard” 
condition, the number of samples was not high enough to 
achieve a statically significant difference between the two 
conditions. Numerical results are reported in Table 3.

Discussion and Conclusions
This article presents 1) the performance evaluation of a 
UV-C-disinfection mobile robot, compared to conven-
tional disinfection based on static UV-C lamps, and 2) the 
evaluation of a new trajectory-planning strategy specifi-
cally for disinfection robots. The evaluation was per-
formed using UV-C-sensitive colorimetric detectors to 

measure the effective amount of absorbed energy; then 
data were elaborated to assess statistical significance. The 
static versus dynamic experiment results demonstrate 
that, in a wide environment, it is possible to improve the 
effectiveness and reduce the time of the disinfection by 
using a mobile source of UV-C irradiation. A significant 
statistical difference on the number of disinfected markers 
was achieved, which is the most important goal of the dis-
infection task. 

However, this on-field experience highlights the impor-
tance of rearranging an environment to make it suitable 
for robotic disinfection. The robot could not reach and 
disinfect some areas of the room because they were too 
distant or not sufficiently exposed. To improve the effec-
tiveness of robot disinfection, environments should be 
adequately prepar  ed. There should not be narrow pas-
sages or ob  stacles left on the floor, and the most likely 
contaminated objects or surfaces, such as handles, 
tools, and desks, should be directly ex  posed to radiations. 

Disinfection is a re  petitive, frequent, and time-con-
suming task, and, given the demonstrated importance of a 
mobile source of radiation, the development of mobile 
robotic platforms for disinfection is a straightforward 
solution. It can, alone, have a significant impact on the 
effectiveness, time, and resources needed for the disinfec-
tion procedure.

Still, the potential of a mobile robotic platform can go 
further than the movement of the source of UV-C radiation. 
It allows the development of optimized trajectories that, 
although more complex, can be followed with the same 
accuracy and repeatability. We explored this opportunity 
by developing a novel trajectory planner specific for the 
disinfection task based on an APF, an iterative simulation 
method based on irradiation physics, and optimization 
through GA to find the most suitable trajectory. The tra-
jectory planner has been tested in simulation, where it 
could produce a suitable solution ensuring the completion 
of disinfection for different test environments. 

Still, improvements are needed to address cluttered and 
complex environments, where the method could suffer 
from the presence of multiple obstacles or nonconvex 
boundaries. These environments can be addressed by 
dividing them into suitable subenvironments that can 
be handled by the proposed trajectory planner and by 
using high-level logic to switch from one subenviron-
ment to another. 

Finally, by means of our UV-C mobile robot, we 
experimented on the effectiveness of the trajectory plan-
ner in a real setting. Results, again, confirmed the 
importance of carefully choosing the trajectory to mini-
mize the time needed for disinfection. The proposed 
model scored a 100% disinfection success rate (24/24 
markers) against the 75% of the benchmark “standard” 
trajectory; the benchmark trajectory requires more 
time for completing the disinfection on all of the sur-
faces in the environment. 

Shared environments, such 

as conference rooms, public 

spaces, or workplaces, 

could benefit from robotic 

disinfection in terms of 

task accuracy, cost, and 

execution time.
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Figure 9. The results of the GA evaluation experiment. (a) The experimental setup. (b) Maps of the two experiments, which report 
the desired trajectory (shaded gray) and robot’s actual trajectory (black) and the markers’ positions and colors at the end of the 
experiment. The marker’s code starts with “H” if it is horizontal (e.g., if it lies on the floor) or “V” if it is vertical (e.g., if it is attached on 
the wall). (c) Bar plots of the energy–density distribution in the two different conditions.  
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On the other hand, no significant results were achieved 
in terms of the mean or variance of the energy–density 
distributions in the two conditions. A possible explana-
tion for this is the relatively low number of markers used 
to assess these variables. However, these results encourage 
the use of disinfection robots as a valid alternative to tra-
ditional disinfection methods. Shared environments, such 
as conference rooms, public spaces, or workplaces, could 
benefit from robotic disinfection in terms of task accura-
cy, cost, and execution time. This example of robotic 
application in this period of emergency strongly supports 
the idea that the knowledge and experience of the robotic 
community can be crucial in the fight against COVID-19 
and in the limitations the virus is imposing on us and 
our lifestyle.
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Table 3. The GA evaluation experiment results,  
*p < 0.05. 

Experiment 
Disinfection 
Markers Mean Energy 

Standard  
Deviation 

Standard 18/24* 25.93 mJ/cm2 14.63 mJ/cm2

GA-optimized 24/24* 27.93 mJ/cm2 10.67 mJ/cm2


