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T
o resemble the body flexibility of biological snakes, 
snake-like robots are designed as a chain of body 
modules, which gives them many degrees of 
freedom (DoF) on the one hand and leads to a 
challenging task to control them on the other. 

Compared with conventional model-based control methods, 
reinforcement learning (RL)-based ones provide promising 
solutions to design agile and energy-efficient gaits for snake-
like robots as RL-based methods can fully exploit the 
hyperredundant bodies of the robots. However, RL-based 
methods for snake-like robots have rarely been investigated 
even in simulations, let alone been deployed on real-world 
snake-like robots. In this work, we introduce a novel 
approach for designing energy-efficient gaits for a snake-like 
robot, which first learns a policy using an RL algorithm in 
simulation and then transfers it to the real-world testing, 
thereby leveraging a fast and economical gait-generation 
process. We evaluate our RL-based approach in both 

simulations and real-world experiments to demonstrate that 
it can generate substantially more energy-efficient gaits than 
those generated by conventional model-based controllers.

Introduction
Inspired by the versatile locomotion skills of biological snakes, 
researchers have designed many kinds of snake-like robots to 
mimic the structural and functional properties of their coun-
terparts in nature. With distinctive skills, snake-like robots are 
expected to be deployed in special task scenarios, where other 
kinds of robots are incapable to be used, such as disaster res-
cue, military surveillance, and pipeline maintenance in facto-
ries. As snake-like robots can only carry limited energy 
resources for field operations, it is essential to design energy-
efficient gaits to reduce the impact of the power constraints. 
An energy-efficient movement, on the one hand, can maxi-
mize the service time of a robot while maintaining its perfor-
mance. On the other hand, it can, in return, allow us to 
optimize the design of the robot by lowing its weight or add-
ing other hardware [1]. However, it is difficult to design ener-
gy-efficient gaits for snake-like robots due to their redundant 
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long mechanisms and complex dynamic interactions with 
their surroundings.

The most commonly adopted method for controlling a 
snake-like robot is to model its discrete body as a continuous 
curve with sideslip constraints in the planar environment, 
which is also widely known as the serpenoid curve [2]. This 
serpenoid curve, as a mathematical formation of the lateral 
undulation, parameterizes the angle of each body module to 
fit the shape of a sinusoidal curve and drives the robot for-
ward using the external force generated from the side con-
straints. This kinematic-based method is also extended to 
combine two parameterized sinusoidal waves that propagate 
along the lateral and dorsal planes for modular snake-like 
robots moving in 3D space [1], [3], [4]. This parameterized 
kinematic method, also known as the gait equation, allows for 
the emergence of complex behaviors from low-dimensional 
representations with only few key parameters, greatly expand-
ing their maneuverability and simplifying user control. With 
this method, researchers developed several biological gaits for 
snake-like robots to move in indoor and outdoor environ-
ments. However, these simplified kinematic models also pose 
limitations on designing agile and energy-efficient gaits as 
they are confined to those abstracted gait parameters; let 
alone the parameter tuning process is inefficient and time 
consuming.

Designing a gait can be regarded as a parameter optimiza-
tion problem, which aims at maximizing the objective func-
tions, such as velocity and power. For snake-like robots, it 
becomes even more challenging, and the gait equation meth-
od mainly suffers for two reasons [5]. The extrinsic challenge 
comes from the complex dynamic interaction between the 
ground and the redundant mechanism with many DoF. The 
intrinsic challenge is how to synchronize and coordinate all 
the body joints to exhibit a proper motion pattern integrally, 
which is expected to be both robust and efficient.

Conventional control algorithms for snake-like robots 
require not only complex manual engineering to carefully 
tweak the analytical models of the robot but also prior 
knowledge of the gaits for a specific robotic system. From a 
control perspective, conventional control methods often 
require accurate models of the system and expertise on 
other domain knowledge about the environment, which is 
usually complex, inaccurate, and difficult to be acquired in 
the real world. From an implementation perspective, spe-
cialized methods designed to control snake-like robots usu-
ally comprise complex software architectures, which are 
lengthy and error prone. Therefore, it is promising to devel-
op end-to-end learning methods that can greatly automate 
the gait-design process. Such end-to-end learning methods 
should be able to remove the need for accurate dynamic 
models or domain knowledge and can be applied to robotic 
systems without explicit system identification or too much 
manual engineering.

Instead of solving robotic tasks based on controllable kine-
matic or dynamic models, deep RL methods solve similar 
tasks by mimicking the natural learning process in the 

trial-and-error paradigm. Agents can learn to master diverse 
and imaginative motor skills by only trying to maximize the 
reward signals. Although some robots can be directly trained 
in the real world to learn motor skills, it is more feasible to 
learn complex skills from the simulation first as it can greatly 
assist the development of RL algorithms and leads to a fast, 
cheap, and safe approach by alleviating the need for expensive 
and tedious real-world experiments.

On the basis of our previous work [6], this article aims to 
explore the gait-generation approach by learning a neural net-
work (NN) controller via RL for snake-like robots and trans-
fer learned knowledge from simulations to real-world 
implementations. We largely extend our work from [6] and 
study our research in five steps. First, instead of using a sim-
plified snake robot, we design a new snake-robot prototype, 
both in the simulation environment and real world. Second, 
we design a reward signal that aims at encouraging energy-
efficient locomotion. This reward function takes both the 
velocity and power consumption into consideration and inte-
grates them after normalization. Third, instead of training 
only the controller using the proximal policy optimization 
(PPO) algorithm, we redesign the training pipeline by utiliz-
ing a dynamic randomization strategy, an informative predic-
tion network, and the PPO algorithm to train the NN-based 
controller. The randomization includes the observation space 
and some of the crucial physical parameters. And the infor-
mative prediction network can predict unobservable features 
using the observable information via supervised learning. 
Fourth, to show the effectiveness of the proposed method in a 
more general context, we perform simulation tasks with dif-
ferent robot designs (joint number) and physical parameters 
(friction coefficient). We demonstrate that the proposed 
method can successfully leverage the dynamics of the robot in 
a general context and generate energy-efficient gaits in diverse 
scenarios. Finally, we compare gait results from the NN-based 
controller with results from the model-based method, both in 
simulation and real-world experiments.

Our main contributions are summarized as follows. First, 
different from prior works that used RL-based methods to 
adapt the parameters of a low-level gait generator, our NN-
based controller takes full advantage of the flexible body of 
the snake-like robot and learns sophisticated gaits, simply 
from scratch. With the help of the reward signal and the itera-
tive RL scheme, this method offers a new alternative for 
snake-like robots to study complicated motor skills without 
requiring any prior knowledge. Second, with the dynamic 
randomization strategy and informative prediction network, 
our NN-based controller successfully learns robust and adap-
tive behaviors in both simulation and the real world, where 
some physical parameters and sensory measurements are 
either difficult to obtain or inaccurate. Existing solutions that 
are used for sim-to-real transfer, such as domain randomiza-
tion [7], can improve only the controller’s performance on the 
basis of a known and yet inaccurate domain. Our informative 
prediction network can predict observations that cannot be 
measured in a self-supervised manner. Third, by comparing 
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the results, we demonstrate the superiority of our RL-based 
method against model-based ones in terms of energy efficiency.

Related Work

Gait Optimization With Model-Based Methods
To mimic the body structure and motion functions of biologi-
cal snakes, snake-like robots are usually designed as a chain of 
body modules. These modules are used to interact with the 
environment to propel the robot, thereby resulting in a highly 
complex system with which to be controlled. A biomorphic 
approach, i.e., a gait equation [1], [2], is widely used to control 
the locomotion of snake-like robots as it can easily mimic 
snake-like motions by shaping its body as a sinusoid curve. 
The gait equation can be regarded as a process to simplify 
parametric representations of snake-like trajectories. Crespi 
and Ijspeert adopted a heuristic optimization algorithm to 
rapidly adjust the travel speed of an amphibious snake robot 
[8]. Tesch et al. used the Bayesian optimization approach to 
regulate open-loop gait parameters for snake robots, which 
made the robot move faster and more reliably [9]. However, 
all these works were confined by the parameterized gait-gen-
eration system and have a very limited effect on further 
improving the energy efficiency of a gait. Moreover, this 
open-loop method is also time consuming and inefficient 
[10] for fine-tuning gait parameters to achieve expected con-
trol objectives.

Gait Optimization With RL-Based Methods
As an intelligent trial-and-error learning method, RL brings 
new solutions for free gait-generation tasks without knowing 
precise models or prior knowledge. RL technologies were 
used to fine-tune parameters for motor skills in a model-
based manner, which can either be the controllable model of 
the system [11] or another abstracted gait generator such as 
the central pattern generator (CPG) [12]. Shi et al. [13] devel-
oped a simplified snake-like robot with two actuated joints 
and implemented a controller based on a deep Q-network 
algorithm. They demonstrated that their method could pro-
duce meaningful gaits. Similar to the concept in [14], Liu et al. 
proposed an RL-based controller to modulate the activity of a 
CPG controller for generating goal-reaching and tracking 
behaviors for a soft, snake-like robot in simulations [15]. 
Chatterjee et al. proposed a policy-improvement method to 
choose different control parameters for a snake-like robot 
with screw-drive units [16]. Sartoretti et al. presented an RL-
based approach to adapt the shape parameters of a snake-like 
robot in response to external sensing [17].

Sim-to-Real Transfer
To narrow simulation-reality gaps, researchers have attempted 
to improve simulation fidelity by building up accurate models 
and refine them using real data. For instance, to match the 
performance of the real system, an actuator can be modeled 
and refined using its real data [18]. Researchers have also 
worked on improving the robustness of a learned policy to 

variations of system properties and perception information, 
thereby enabling it to be feasible and adaptive in real-world 
systems [19]. The task to transfer a policy learned from simu-
lation to the real world is treated as an instance of domain 
adaption, where the source domain (simulation) is modeled 
as close as possible to the target domain (real world) [7]. 
Robotic arms are the most common agents to deploy learned 
policy from simulations as the kinematics and dynamics can 
be accurately modeled. Christiano et al. controlled a robotic 
arm using learned policy from simulation, of which the 
inverse dynamics (from observations to actions) of that robot 
was learned from the data generated by the forward dynamics 
(from actions to observations) in simulations [20].

Domain randomization is another technique for sim-to-
real transfer based on the introduction of higher variance in 
the domain-specific—but task-irrelevant—features of the 
training data. Peng et al. propose introducing variability in the 
dynamics of the simulation by sampling values for strategic 
features (e.g., friction, mass, and damping coefficients) during 
the training phase [21]. They argued that although modeling 
the simulation in accordance with the real environment is 
important for the sim-to-real policy transfer, a complete and 
accurate model is often impossible due to many reasons, such 
as unforeseen forces, left-out environmental characteristics, 
calibration issues, and so on. In the meantime, Wulfmeier et 
al. argued that an unfavorable domain in randomization can 
lead to poor performance of the policy that is transferred 
from simulation [22]. They proposed another idea to tackle 
systematic model discrepancies: aligning the distributions 
over visited states between the simulated and the real-world 
agent. They demonstrated their argument by performing 
experiments between two simulations with either different 
parameterizations or completely different simulation engines 
to create situations of misaligned and unknown system 
dynamics.

Robot and Model

Snake-Like Robot
Our planar snake-like robot adopts a modularized design 
manner, which consists of eight identical actuated body mod-
ules and one head module to slither forward (see Figure 1). 
Each module is connected to the adjacent module by an actu-
ated joint, which can rotate 90° in both the left and right 
directions. Each body module is composed of an actuation 
system, the control system, housing components, and a pair 
of passive wheels to imitate the anisotropic friction property 
of the snake skin. The actuation system consists of a servo, 
gearbox, and an angular sensor to feed back the angular posi-
tion of the output joint. The dc servo has a maximum torque 
of 12.8 Kg cm and drives a gearbox with a reduction factor of 
3.71. The angular sensor is a Hall effect encoder that is used 
to measure the angular position of the output shaft of each 
module. The control system is a customized STM32 micro-
controller. The STM32 runs three tasks: controlling the servo, 
reading the joint angle, and communicating with the other 
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modules. A real-time operation system is executed on the 
control system, and the control loop is set as 20 Hz. Table 1 
summarizes the technical specifications of the robot.

Simulation Model
We model the snake-like robot as close as the real-world 
counterpart and simulate it in Multi-Joint dynamics with 
Contact (MuJoCo). As the fundamental component of a 
motion’s behavior, the dynamic model plays a great role in 
narrowing the gap between the simulation and the real world. 
There are several key parameters that directly determine the 
accuracy of the dynamic model, such as the mass of the robot, 
inertia, friction, and other physical parameters.

Modeling Mass
The mass can be weighted exactly by measuring the mod-
ule of the prototype, while the moment of inertia is estimat-
ed from its CAD assembly, in which each component is 
given its material.

Modeling Actuation
The simulated servo system consists of a position-controlled 
motor, feedback signal of the joint position, and gear ratio. 
For the sake of simplicity, by setting the gear ratio to one, we 
directly map the motor position to the output position of the 
servo system. The torque is limited to a range of [ . , . ]4 6 4 6-  
in the Newton meter based on specifications of the servo.

Modeling Friction
To imitate this anisotropic friction property, each robot mod-
ule is equipped with two passive wheels. Those passive wheels 
enable a minimum friction in the direction of rotation and a 

high friction in the lateral direction (see Figure 1). To obtain 
realistic movements, we directly measured the friction coeffi-
cients for these two directions in the real world.

Energy-Efficiency Metric
We aim to design gaits that can make snake-like robots move 
energy efficiently and in the meantime keep a steady speed of 
the movement. In this work, we define the power efficiency 
metric to evaluate the performance of all gaits.

The total power P of the robot can be calculated by adding 
up the power of all the N joints, which can be calculated as 

,P i
N

i i1 x zR= = o  where izo  is the velocity of joint i. The torque 
jx  is the product of its applied force fi  and its gear constant 

parameter hi  (the length of the actuator). The model uses 
actuators with a limited force of fmax  as the maximum force 

Side View Top ViewJoint

54 mm
70 mm

100 mm 100 mm

PCB Board
Housing

Gears and Servo

Angular Sensor

Passive Wheels
Forward
Rotation

Lateral
Rotation

Figure 1. The snake-like robot and its module dimensions. PCB: printed circuit board.

Table 1. Technical details of the robot module.
Parameters Quantity 

Dimensions Width: 70 mm; length: 100 mm;  
height: 54 mm 

Mass Body: 202 g; one wheel: 2.2 g 

Servo Max torque: 12.8 kg·cm; max  
speed: 0.07 s/60°

Gearbox Gear ratio: 151:43 

Communication CAN bus 

Sensors AS5047D (resolution: 0.022°) 

Power Voltage: 24 V; max current: 10 A 

Control rate 20 Hz 

Max: maximum; CAN: controller area network.
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in both directions. With this property, the normalized power 
consumption Pt  is calculated as

.P N f h
f h1

max maxi

i i i

i

N

1 z

z
=

=

t
o

o
/

This normalized power consumption Pt  will be further used 
for reward definition.

With the power P and the velocity v, several efficiency 
metrics can be calculated. The usual way is to calculate the 
cost of transport, which is the power P divided by the mass m, 
the gravity g and the velocity v:

	 .mgd
E

mgv
PCOT = = � (1)

This unit-less measurement is able to compare the efficiency 
between different mobile systems. As the same robot and 
environmental properties are compared, those constants only 
scale the results and would not provide any additional insight 
for the comparison. Thus, a simplified metric calculates the 
averaged power per velocity (APPV) as ./P vAPPV =

Baseline Controller
In this section, we first introduce the widely used method for 
generating gaits for snake-like robots, which is the gait equa-
tion controller. Then we use the grid-search algorithm to 
explore energy-efficient gaits at different velocities by brutally 
searching the parameter space with fine steps.

Gait Equation Controller
As the most widely adopted method, the gait equation con-
trols the locomotion gaits of a snake-like robot by shaping its 
back curve as a moving sinusoid wave that propagates along 
the body. This method or similar ideas (e.g., CPG-based 
methods) have been used for decades by many kinds of 
snake-like robots to generate different gaits [2]. We utilize the 
gait equation from [9], which is modeled as

	 ( , ) ( ).sinn t N
n x y A t n$ $z ~ m= + +` j � (2)

( , )n tz  presents the joint-angle value at time t, where n is the 
joint index and N is the total joint number. m  and ~ are the 

spatial and temporal frequency of the movement, respectively. 
The spatial frequency represents the cycle number of the 
wave, and the temporal frequency represents the traveling 
speed of the wave. A is the serpentine amplitude and x and y 
are the constants for shaping the body curve.

Grid-Search Optimization
We take the grid-search algorithm to explore the parameter 
space, which can lead to optimum gaits as long as the search-
ing intervals are small enough. We use the grid-search meth-
od to generate a variety of gaits and determine those 
parameter combinations with the best power efficiency at dif-
ferent velocities. The grid-search method generates a Carte-
sian product from the parameters in Table 2, resulting in 
10,080 parameter sets. Then, each motion parameter set gets 
tested by running 1,000 steps in the simulation environment. 
For each run, the first 200 time steps are ignored and the 
remaining 800 time steps are evaluated for collecting experi-
mental data. It is because it has been observed that the snake 
robot needs approximately 200 time steps to accelerate and 
then moves at a steady speed.

NN-Based Controller

Observation Space
The full observation space consists of all the joint position ,jz  
the joint velocity ,

.
jz  the actuator torque ,jx  the head module 

velocity ,v1  and the target velocity .vt  The joint position jz  
and its joint velocity 

.
jz  are required to learn the locomotion 

and represent the proprioceptive awareness of the robot. The 
head module velocity v1  helps to sense its global velocity, 
which offers better movement awareness. To learn an energy-
efficient gait, the sense of energy consumption is necessary. 
Therefore, the actuator torque of each joint jx  is provided and 
can be interpreted in combination with 

.
jz  to determine the 

total power usage. The specified target velocity vt  is passed to 
the environment and can be changed, which is required to 
control velocity of the robot.

Action Space
The action space has 8 DoF with finite-continuous values in 
the range of [ . , . ],1 5 1 5-  which linearly translates to a corre-
sponding joint angle z  in the range of [ , ].90 90c c-  Each 
action represents eight actuator angle positions of the servo 
motors. In the real-world setup, the joint can turn around 
with the motor speed set as 0.07 s/60° and the gear ratio as 

: .151 43  The control frequency for the snake-like robot is set 
as 20 Hz. Thus, the maximum turning angle in 0.05 s is set as 
12° in the simulation. The simulation time step is also set as 
0.05 s. It should be noted that 20 Hz is selected to ensure real-
time calculation of the NN-based controller.

Reward Function
The objective of our task is to learn an energy-efficient gait for 
a variety of specified velocities. Therefore, the energy con-
sumption and the difference between the actual model 

Table 2. The gait parameters used for the grid 
search.
Parameters Descriptions Values 

~ Temporal  
frequency 

0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 
1.6, 1,8, 2 

A Amplitude (°) 30, 35, 40, 45, 50, 55, 60, 65, 
70, 75, 80, 85 

y Linear reduction 0.1, 0.2, 0.3, 0.4 

x Linear reduction (1−y) 

m Spatial  
frequency (°) 

40, 45, 50, 55, 60, 65, 70, 75, 
80, 85, 90, 95, 100, 105, 110, 
115, 120, 125, 130, 135, 140 
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velocity and the target velocity are the main criteria to find a 
successful behavior. The challenge is to combine the variables 
into one numerical reward and weigh them for each time 
step. Therefore, we first split the power efficiency and velocity 
criteria into two normalized reward function components.

First, a normalized reward is defined to maintain the spec-
ified velocity. The objective is to reach and maintain the target 
velocity vt  by comparing it with the head velocity .v1  The fol-
lowing function represents the velocity reward:

	 ( ) .r t a
v v1v
t a

1

1
1
2

= -
-c m � (3)

.a 0 21 =  influences the spread of the reward curve by defin-
ing the x-axis intersections with .x v at 1!=  .a 0 22 =  affects 
the changes of the curve’s gradient. If . ,v v 0 0t 1- =  the 
velocity reward rv  reaches the maximum value of one.

Second, the normalized value of the total power usage Pt  
in the “Energy-Efficiency Matrix” section is used to deter-
mine the power efficiency reward component ,rP  which is 
represented by

	 ( ) .r t r P1maxP
b1 2

= -
-

t � (4)

Here, rmax  is the maximum reward value, and .b 0 61 =  is the 
slope of the curve. Power efficiency is influenced by the 
desired target velocity. Thus, the normalized rmax  represents 
this influence by limiting the maximum value of .rP

Finally, rewards from the velocity rv  and the power effi-
ciency rP  are combined to form the overall reward r:

	 ( ) .r t a
v v P1 1t a b

1

1
2 1

2

= -
-

-
-

tc m � (5)

This equation replaces the rmax  in (4) with .rv  With that, the 
maximal power efficiency depends on the absolute value of 
the difference between the desired velocity and the robot 
velocity and total power consumption.

Network Architecture
Given the input (observation )oi

t  and output (action ),ai
t  we 

now elaborate the policy network mapping oi
t  to .ai

t  We 
design a fully connected two-hidden-layer NN as a nonlinear 
function approximator to the policy .ri  The input layer has 
the same dimension as the action space .oi

t  Both hidden lay-
ers each have 200 neurons and are each followed by a rectified 
linear unit layer. The final layer outputs joint position com-
mands for the robot. To train the network, the PPO algorithm 
adapted from [23] is used.

We train our policy network on a computer with an 
i7-7700 CPU and a Nvidia GTX 1080 GPU. A total of six mil-
lion time steps (roughly 7,500 episodes) are used for training. 
The maximum number of time steps in an episode is 2,000. 
With the environment settings of 50 ms per time step, the 
training takes approximately 42 h in total simulation time and 
2 h in wall-clock time for the policy to converge.

Sim-to-Real Transfer
We present two approaches that are designed for robust trans-
fer of the policy learned in simulation to the real world, 
namely, the parameter randomization and informative net-
work.

Parameter Randomization
Parameter randomization is an effective approach to improve 
the robustness of the system, especially taking the gap 
between simulation and real-world experiments into consid-
eration. By randomizing the physical parameters and obser-
vations during training, the learned policy can be more robust 
for deployment in real-world experiments.

Physical Parameter Randomization in Simulation
The physical parameters given in the “Robot and Model” 
section are either measured or estimated, which may lead to 
inaccuracy. And different settings of physical parameters will 
directly impact performance of the generated gaits. When 
the agent is trained in a stable environment with fixed 
dynamic parameters, it usually leads to an overfitting con-
troller, which will not work properly in the real-world envi-
ronment. We randomly sample physical parameters, as listed 
in Table 3.

Observation-Space Randomization
In a real-world setup, the joint angles cannot be perfectly 
measured due to several uncertain factors, such as the noise of 
the encoder and the data errors or delay caused by the com-
munication. To eliminate the impact of this inaccuracy, we 
add a Gaussian noise N ( , )n v  on every joint-angle position 
in the observation space during training, where  0 radn =  
and . .0 05 radv =

Informative Prediction Network
The observation space used in the simulation is only partially 
observable or measurable in the real world. To solve this 
problem, we propose an informative prediction network to 
predict the joint torque, joint velocity, and head velocity 
under the framework of supervised learning. We present 
three steps to construct such an informative prediction net-
work (see Figure 2).

Table 3. Technical details of the robot module. 
During simulations, these physical parameters 
are randomly selected from the randomization 
range of the baseline value of each parameter.

Parameters Baselines Unit 
Randomization 
Ranges 

Ground friction 0.6 — 90 ~ 100%

Mass 0.206 kg 90 ~ 100%

Armature inertia 0.01 kg · m2 80 ~ 120%

Motor damping 0.3 N · s/m 90 ~ 110%
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Compact Observation Space
In the real world, some of the observations are difficult to 
acquire, such as the joint velocity 

.
jz  and the joint torque .jx  

We can calculate the joint velocity by differentiating two con-
secutive joint positions at each time step. However, this is 
infeasible due to the noise of the joint position. To solve this 
issue, we also design a compact observation space that con-
tains only the joint position jz  and the target velocity .vt  The 
informative network is used to infer the corresponding joint 
velocity ,

.
jz  joint torque ,jx  and head velocity v1  according to 

the given joint position .jz  The input of the network is the 
joint position .iz  The informative network is trained using 
supervised learning, where the dataset is directly sampled 
from simulation.

Data Generation
With a well-trained NN-based controller, the agent is con-
trolled to slither in the simulation environment with a varying 
target velocity to sample training data. Each episode contains 
400 time steps, the target velocity starts from 0.05 m/s and 
slightly increases . e1 33 m/s3-  at each episode until 0.25 m/s. 
One logged data point contains the target velocity, joint posi-
tion of the timestamp, and values of the last action of the NN-
based controller. The generated data are shuffled and split, 
where 80% of the dataset is used for training and the other 
20% is used for testing.

Informative Network Model
Three observation features, namely, the joint velocity ,

.
jz  

joint torque ,jx  and head velocity ,v1  used for training the 
NN-based controller in the simulation are not available in 

the real world. Because each feature has its own characteris-
tic, we design three separate prediction models to predict 
them with the same architecture. For one prediction net-
work, the input consists of the action values and the joint 
positions for each joint in the last two time steps, together 
with the target velocity.

As explained in [24], dynamics of the actuators are inde-
pendent of each other and, accordingly, they trained their 
models for predicting actuator forces separately. However, for 
the snake-like robot, we believe that the action of one joint 
may affect other joints because the snake robot is a class of 
serially connected, active-cord mechanisms. Therefore, we 
adopted two approaches for sampling the input data: the 
jointwise and nonjointwise models. For a jointwise model, 
each value of the feature is strongly related to one’s specific 
joint index, e.g., the torque of the first joint is predicted using 
only the data from the first joint. The jointwise prediction 
models split the input features of the input layer by joint and 
process them separately. The processed values are concatenat-
ed at the output layer. Oppositely, the nonjointwise models 
process values from all the existing joints together at once as 
input and predict output features for all the joints at once. The 
main assumption of this is that a target feature depends on the 
entire kinematics of the snake-like robot.

In this work, prediction models with two layers of multi-
layer perceptron long short-term memory (LSTM), or a single 
Temporal Convolutional Network layer (which consists of 
multiple convolution layers) were tested. For the length of 
input sequences (the number of past time steps), two, four, 
and eight were used for training to observe how the input-
sequence length affects model performance. The 
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mean-square error was used as the loss function for training 
models, which is commonly used for regression tasks. We 
skip the training and testing details for choosing proper mod-
els or the length of input sequences and present the final setup 
for each feature in Table 4. To predict torque, we choose mul-
tilayer perceptron as the architecture of the prediction net-
work, which is trained via the jointwise style. The length of 
the sequential input is two. To predict the joint velocity, we 
choose LSTM as the network architecture, which is trained 
via the nonjointwise style. The input length is also two. To 
predict the head velocity, we choose LSTM as the network 
architecture as well. The input length of this prediction net-
work is eight. As the head velocity is one overall property of 
the robotic system, the jointwise or nonjointwise style is not 
applicable here. The inputs for predicting these three states 
are the joint position, action, and target velocity.

To enable learning of different velocities, the parameter vt  
is changed by iterating over 0.05, 0.1, 0.15, 0.2, and 0.25 for 
each episode while training. It should be noted that in theory, 
we can also select target velocity from a uniform distribution 
to train the network. But empirical results show that the train-
ing is much more successful and stable when using dis-
cretized target velocities. Meanwhile, to simplify the 
beginning of the learning process, the first 100 episodes are 
trained with a fixed target velocity of 0.1 m/s.

Simulation Results and Comparisons

Baseline Performances
The power consumption and corresponding velocity results 
from the grid-search algorithm are shown in Figure 3 as a 
point cloud of parameter sets using dot markers. The lowest 
points at different velocities in the point cloud have the high-
est energy efficiency. To reduce the number of equation 
parameters, we select five temporal frequencies to show the 
pattern of gaits generated by the gait equation as temporal fre-
quency is the most direct factor that impacts velocity. Second, 
instead of connecting the scatter points with lines, we show 
the confidence region of the gaits generated with each fre-
quency. We can observe that low frequency (0.25 Hz) leads to 
very slow gaits, while high frequency (2 Hz) leads to energy-
intensive gaits. The gaits with 1.5 Hz are more promising for 
generating energy-efficient gaits. We also demonstrate that 
the grid-search method suffers from being inefficient to 
search proper parameters for energy-efficient gaits as most of 
the parameter sets in the searching space are distributed in 
the low-velocity area ( . ).0 0 1m/s-  Note that we show all the 
gaits from the grid-search algorithm as we want to depict the 
inefficiency of the baseline method.

NN-Based Controller Performance
In this study, target velocities in the range of [ . , . ]0 025 0 25 m/s  
with a step interval of 0.005 m/s are used for the evaluation. 
The simulation results demonstrate that the NN-based con-
troller has succeeded in learning a series of gaits from scratch 
without knowing any prior locomotion skills.

First, the NN-based controller can perform very accurate 
locomotion gaits in terms of velocity even though the NN-
based controller is trained with only five target velocities 
(0.05, 0.1, 0.15, 0.2, and 0.25 m/s). As shown in Figure 4, the 

Table 4. Training configurations for prediction. 
The length of the input sequence means the  
number of past time steps.

Torque Joint velocity Head velocity 

ANN MLP LSTM

Input feature Joint position, action, and target velocity 

Input length 2 2 8 

Nonjointwise/
jointwise 

jointwise nonjointwise —

ANN: artificial neural network; MLP: multilayer perceptron.
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targeted velocities are represented by blue solid dots, and the 
measured velocities from the simulation are marked by red 
solid dots. We can observe that the measured velocities 
almost match the target velocities from 0.05 to 0.20 m/s with 
only very small errors close to zero. In the low-velocity range 
(less than 0.05 m/s) and high-velocity range (higher than 0.20 
m/s), measured velocities differ from target velocities. This is 
because under extreme conditions, the NN-based controller 
is difficult to maintain target velocities while keeping optimi-
zation of the power consumption. In the low-velocity range, 
the NN-based controller tends to move faster as a minor 
modification of the motion will lead to a speed change. In the 
high-velocity range, the NN-based controller is limited by 
physical configuration of the snake-like robot to reach target 
velocities.

Second, the power consumption results of the learned 
gait are marked with red points in Figure 3. The data depict 
a linear relationship between travel velocity and power 
consumption, which is in line with the physical law 

.Power Force Speed#=  There are only a few points with 
higher power consumption when the velocity is below 0.08 
m/s. Importantly, this also reveals the adaptability of the 
learning approach for generating gaits in a range of velocities. 
It can also be observed that the mean velocities do not exactly 
align with the specified interval of 0.005, especially at higher 
target velocities. The reason for this is the difficulty to achieve 
the exact ratio between holding the right velocity and per-
forming the corresponding power-efficient locomotion.

Comparison
We first have a look at the energy metric based on averaged 
power per velocity. After putting the power efficiency data of 

the gait equation controller (see Figure 3) and the NN-based 
controller together, we can clearly conclude that the NN-
based controller has a much better power efficiency at a range 
of velocities. As the velocity grows, the advantage of the NN-
based controller for saving energy is even more obvious.

To show that the proposed method can generate energy-
efficient gaits in a more general context, we also evaluated 
both controllers in different environments (friction coeffi-
cient) and with different robot designs (the number of body 
modules) in simulation. The results are visualized in Figure 
5. In Figure 5(a), we change the robot’s design by adding or 
reducing body modules to test the proposed method. For a 
snake robot with a joint number range from six to nine (the 
default number is eight), the proposed method shows con-
sistent performance superiority to generate many energy-
efficient gaits across different traveling speeds. In Figure 
5(b), we change the friction coefficient of the environment 
to test effectiveness of the proposed method. On one hand, 
results clearly show that the NN-based controller can gener-
ate gaits that consume less energy than the gaits generated 
from an equation-based controller. On the other, the NN-
based controller also shows a much more stable performance 
in generating energy-efficient gaits, while the equation-
based method exhibits fluctuating energy-consumption 
results.

The NN-based controller improves upon the traditional 
kinematic-based one in two ways. On one hand, the tradi-
tional gait equation controller is based on kinematics and 
describes the gait movement with no influence of physical 
forces such as friction or damping. It only extracts several 
critical parameters to represent the gait, while the interaction 
between the snake-like robot and the environment is highly 
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complex. Although the parameterized gait equation simplifies 
the control task, it inevitably brings difficulties for designing 
more sophisticated gaits despite using traditional optimiza-
tion technologies (the grid-search algorithm), especially when 
the parameter space will grow exponentially with the increas-
ing joint numbers. Conversely, the RL method shows its effec-
tiveness in its ability to solve this kind of complex control 
problem as it is trained directly in the dynamic environment. 
It is able to generate undulation gaits that not only imitate the 
movement of real snakes but also explore its limitations while 
continuing to improve its behavior under its hardware con-
straints.

Prototype Experiments

Sim-to-Real Transfer Framework
To make it feasible to transfer a learned policy from simula-
tion to the real world, we should design a framework to easily 
connect the NN-based controller to the simulation environ-
ment or the real world with the same configuration. As 
shown in Figure 6, the NN-based controller has an interface 
used to switch between the simulation and real-world envi-
ronments. For running both the simulation and real-world 
environments, the compact observations are the joint posi-
tions .zt  The compact observations are first fed into the infor-
mative network to predict the full observations .oi

t  Then, the 
NN-based controller outputs the actions to be executed either 
in the simulation or the real world. For real-world experi-
ments, the NN-based controller is computed on a desktop 
computer and the actions are sent to an Arduino DUE via 
Robotic Operating System (ROS) messages. Then, the Ardui-
no DUE serves as a host to transfer the ROS messages into 
CAN messages and sends them to the STM32 controller on 
each module via a CAN bus.

Experiment Setup
The power consumption can be calculated using its running 
current and voltage. In our experiments, we use a 24-V con-
stant voltage power supply to actuate the robot. The current 
can be acquired by measuring the voltage of a high-load resis-
tor ( / . ),50 W 0 1X  which is stringed into the circuit. Thus, 
power consumption of the prototype snake-like robot can be 
calculated as / ( ),( )P U R U24p p p= -  where .R 0 1p X=  and 

.U 24 Vp =  The voltage Up  is measured using an oscillo-
scope, which samples at 1,000 Hz.

Results
Due to time and hardware durability, we tested only five tar-
get velocities for the NN-based controller in our prototype 
experiments, namely, 0.05, 0.10, 0.15, 0.2, and 0.25 m/s. We 
controlled the robot to run for 10 s to measure power con-
sumption and actual velocity. The actual velocities for the 
gaits generated by the NN-based controller were 0.03, 0.05, 
0.08, 0.12, 0.15 m/s, approximately, which were all less than 
the target velocities. This is because of the reality gap between 
the simulated environment and the real world. For the same 
reason, the performance of the gait equation controller is also 
impacted by this reality gap. To fairly compare energy effi-
ciency, we chose parameters that lead to gaits traveling at 
these five actual velocities with the best energy efficiency in 
the simulation.

First, we present montages of the slithering gaits at 0.15 
m/s from the gait equation controller and the NN-based con-
troller (see Figure 7). To show a full cycle of the movement, 
seven video frames (25 frames per second) are selected to 
visualize the pattern of the gaits generated by both controllers. 
For the gait generated by the gait equation controller, frames 
89–119 show one full cycle of the gait. For the gait learned by 
the NN-based controller, roughly two motion cycles are 
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shown. As we can see, the body curve of the gait equation gait 
is shaped as a sinusoid wave. The body curve of the RL gait is 
slightly more slender than the body curve of the parameter-
ized gait. This slider-body curve can propel the robot more 
smoothly and avoid joint power consumption as much as 
possible, which is in accordance with the simulation results. 
We can also observe that the learned gait moves at a higher 
frequency than the parameterized gait and moves straight 
toward the forward direction, while the parameterized gait 
tends to deviate from the forward direction.

Second, we show results of the power consumption of the 
gaits from both the gait equation controller and the NN-
based controller, which are presented in Figure 8(a). All of 
the power consumption data were measured in 10 s for fair 
comparison. The solid line represents the exponentially 
weighted moving average of the power consumption, and the 
error bar depicts standard deviation of the raw power con-
sumption measured by the oscilloscope. Note that we first 
process raw data by the removing outliers that are outside the 
range of the five standard deviations. Note that the outliers 
are caused by the noisy measurement of the current signal. 
From the results of the gait equation controller, we can 
observe that the power consumption increases with move-
ment velocity, which ranges from approximately 21.5 to 28 
W. As the velocity of the gait generated from the gait equa-
tion controller is directly related to the frequency of the sinu-
soid wave, it moves much slower at a low speed and faster at 

a high speed, thereby consuming more power. We can see 
that the NN-based controller consumes more power at a low 
speed. This is because the controller generates a concertina 
gait, which only moves parts of the body to inch forward and 
those static joints require the locked-motor current, thereby 
consuming more power. Another potential reason is that the 
NN-based controller has difficulties maintaining low and 
accurate velocities. The small adjustments of each joint will 
impact the overall velocity observably and thus consumes 
more energy. Compared to the power consumption of the 
gait equation controller, we find that the NN-based control-
ler can increase energy efficiency by 5 to 10%, especially at 
intermediate and high velocities. For both controllers at one 
velocity, power consumption shows an obvious fluctuation, 
which can be interpreted as the periodic movement of the 
robot. Figure 8(b) depicts the power-profile comparison of 
the simulation and real-world results. We can find that there 
is still a performance gap between the simulation and 
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Figure 7. Montages of the snake-like robot performing slither gait 
at 0.15 m/s, controlled with the NN-based controller and the gait 
equation controller. The video was recorded at 25 frames per 
second.
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real-world experiment due to some potential reasons. For 
instance, it is challenging to simulate the environment with 
perfect fidelity, which therefore leads to the performance 
drop. Inaccurate sensory measurements or noisy observation 
stats can also cause the performance drop.

Conclusion
Designing energy-efficient gaits for snake-like robots remains 
a challenging task as they come with redundant DoF and have 
complicated interactions with the environment. The most 
widely used method for generating gaits for snake-like robots 
is the gait equation, which mimics the snake’s body shape 
using sinusoid-like curves. In this article, we presented a novel 
gait-design method based on RL. Compared with the opti-
mized gaits generated by the gait equation, the learned gaits 
show better energy efficiencies at medium and high velocities. 
Although the learned gaits perform similarly or slightly worse 
than the parameterized gaits at low speeds, the proposed 
method shows great efficiency in discovering energy-efficient 
gaits automatically and maximizing performance by remov-
ing the limitations of predefined models. Our work contrib-
utes to and serves as an exploration for designing 
sophisticated moving patterns for snake-like robots. Future 
work will aim at designing gaits using RL for snake-like 
robots without passive wheels.
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