
2 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MONTH 2022 1070-9932/22©2022IEEE

T
o resemble the body flexibility of biological snakes,
snake-like robots are designed as a chain of body
modules, which gives them many degrees of
freedom (DoF) on the one hand and leads to a
challenging task to control them on the other.

Compared with conventional model-based control methods,
reinforcement learning (RL)-based ones provide promising
solutions to design agile and energy-efficient gaits for snake-
like robots as RL-based methods can fully exploit the
hyperredundant bodies of the robots. However, RL-based
methods for snake-like robots have rarely been investigated
even in simulations, let alone been deployed on real-world
snake-like robots. In this work, we introduce a novel
approach for designing energy-efficient gaits for a snake-like
robot, which first learns a policy using an RL algorithm in
simulation and then transfers it to the real-world testing,
thereby leveraging a fast and economical gait-generation
process. We evaluate our RL-based approach in both

simulations and real-world experiments to demonstrate that
it can generate substantially more energy-efficient gaits than
those generated by conventional model-based controllers.

Introduction
Inspired by the versatile locomotion skills of biological snakes,
researchers have designed many kinds of snake-like robots to
mimic the structural and functional properties of their coun-
terparts in nature. With distinctive skills, snake-like robots are
expected to be deployed in special task scenarios, where other
kinds of robots are incapable to be used, such as disaster res-
cue, military surveillance, and pipeline maintenance in facto-
ries. As snake-like robots can only carry limited energy
resources for field operations, it is essential to design energy-
efficient gaits to reduce the impact of the power constraints.
An energy-efficient movement, on the one hand, can maxi-
mize the service time of a robot while maintaining its perfor-
mance. On the other hand, it can, in return, allow us to
optimize the design of the robot by lowing its weight or add-
ing other hardware [1]. However, it is difficult to design ener-
gy-efficient gaits for snake-like robots due to their redundant

© PHOTOCREDIT

By Zhenshan Bing  , Long Cheng  , Kai Huang  , and Alois Knoll

Learning Energy-Efficient Slithering Gaits for a Snake-Like Robot

Digital Object Identifier 10.1109/MRA.2022.3204237

Date of current version: 20 September 2022

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:18:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0896-2517
https://orcid.org/0000-0002-9993-0077
https://orcid.org/0000-0003-3347-204X

3MONTH 2022 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

long mechanisms and complex dynamic interactions with
their surroundings.

The most commonly adopted method for controlling a
snake-like robot is to model its discrete body as a continuous
curve with sideslip constraints in the planar environment,
which is also widely known as the serpenoid curve [2]. This
serpenoid curve, as a mathematical formation of the lateral
undulation, parameterizes the angle of each body module to
fit the shape of a sinusoidal curve and drives the robot for-
ward using the external force generated from the side con-
straints. This kinematic-based method is also extended to
combine two parameterized sinusoidal waves that propagate
along the lateral and dorsal planes for modular snake-like
robots moving in 3D space [1], [3], [4]. This parameterized
kinematic method, also known as the gait equation, allows for
the emergence of complex behaviors from low-dimensional
representations with only few key parameters, greatly expand-
ing their maneuverability and simplifying user control. With
this method, researchers developed several biological gaits for
snake-like robots to move in indoor and outdoor environ-
ments. However, these simplified kinematic models also pose
limitations on designing agile and energy-efficient gaits as
they are confined to those abstracted gait parameters; let
alone the parameter tuning process is inefficient and time
consuming.

Designing a gait can be regarded as a parameter optimiza-
tion problem, which aims at maximizing the objective func-
tions, such as velocity and power. For snake-like robots, it
becomes even more challenging, and the gait equation meth-
od mainly suffers for two reasons [5]. The extrinsic challenge
comes from the complex dynamic interaction between the
ground and the redundant mechanism with many DoF. The
intrinsic challenge is how to synchronize and coordinate all
the body joints to exhibit a proper motion pattern integrally,
which is expected to be both robust and efficient.

Conventional control algorithms for snake-like robots
require not only complex manual engineering to carefully
tweak the analytical models of the robot but also prior
knowledge of the gaits for a specific robotic system. From a
control perspective, conventional control methods often
require accurate models of the system and expertise on
other domain knowledge about the environment, which is
usually complex, inaccurate, and difficult to be acquired in
the real world. From an implementation perspective, spe-
cialized methods designed to control snake-like robots usu-
ally comprise complex software architectures, which are
lengthy and error prone. Therefore, it is promising to devel-
op end-to-end learning methods that can greatly automate
the gait-design process. Such end-to-end learning methods
should be able to remove the need for accurate dynamic
models or domain knowledge and can be applied to robotic
systems without explicit system identification or too much
manual engineering.

Instead of solving robotic tasks based on controllable kine-
matic or dynamic models, deep RL methods solve similar
tasks by mimicking the natural learning process in the

trial-and-error paradigm. Agents can learn to master diverse
and imaginative motor skills by only trying to maximize the
reward signals. Although some robots can be directly trained
in the real world to learn motor skills, it is more feasible to
learn complex skills from the simulation first as it can greatly
assist the development of RL algorithms and leads to a fast,
cheap, and safe approach by alleviating the need for expensive
and tedious real-world experiments.

On the basis of our previous work [6], this article aims to
explore the gait-generation approach by learning a neural net-
work (NN) controller via RL for snake-like robots and trans-
fer learned knowledge from simulations to real-world
implementations. We largely extend our work from [6] and
study our research in five steps. First, instead of using a sim-
plified snake robot, we design a new snake-robot prototype,
both in the simulation environment and real world. Second,
we design a reward signal that aims at encouraging energy-
efficient locomotion. This reward function takes both the
velocity and power consumption into consideration and inte-
grates them after normalization. Third, instead of training
only the controller using the proximal policy optimization
(PPO) algorithm, we redesign the training pipeline by utiliz-
ing a dynamic randomization strategy, an informative predic-
tion network, and the PPO algorithm to train the NN-based
controller. The randomization includes the observation space
and some of the crucial physical parameters. And the infor-
mative prediction network can predict unobservable features
using the observable information via supervised learning.
Fourth, to show the effectiveness of the proposed method in a
more general context, we perform simulation tasks with dif-
ferent robot designs (joint number) and physical parameters
(friction coefficient). We demonstrate that the proposed
method can successfully leverage the dynamics of the robot in
a general context and generate energy-efficient gaits in diverse
scenarios. Finally, we compare gait results from the NN-based
controller with results from the model-based method, both in
simulation and real-world experiments.

Our main contributions are summarized as follows. First,
different from prior works that used RL-based methods to
adapt the parameters of a low-level gait generator, our NN-
based controller takes full advantage of the flexible body of
the snake-like robot and learns sophisticated gaits, simply
from scratch. With the help of the reward signal and the itera-
tive RL scheme, this method offers a new alternative for
snake-like robots to study complicated motor skills without
requiring any prior knowledge. Second, with the dynamic
randomization strategy and informative prediction network,
our NN-based controller successfully learns robust and adap-
tive behaviors in both simulation and the real world, where
some physical parameters and sensory measurements are
either difficult to obtain or inaccurate. Existing solutions that
are used for sim-to-real transfer, such as domain randomiza-
tion [7], can improve only the controller’s performance on the
basis of a known and yet inaccurate domain. Our informative
prediction network can predict observations that cannot be
measured in a self-supervised manner. Third, by comparing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:18:40 UTC from IEEE Xplore. Restrictions apply.

4 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MONTH 2022

the results, we demonstrate the superiority of our RL-based
method against model-based ones in terms of energy efficiency.

Related Work

Gait Optimization With Model-Based Methods
To mimic the body structure and motion functions of biologi-
cal snakes, snake-like robots are usually designed as a chain of
body modules. These modules are used to interact with the
environment to propel the robot, thereby resulting in a highly
complex system with which to be controlled. A biomorphic
approach, i.e., a gait equation [1], [2], is widely used to control
the locomotion of snake-like robots as it can easily mimic
snake-like motions by shaping its body as a sinusoid curve.
The gait equation can be regarded as a process to simplify
parametric representations of snake-like trajectories. Crespi
and Ijspeert adopted a heuristic optimization algorithm to
rapidly adjust the travel speed of an amphibious snake robot
[8]. Tesch et al. used the Bayesian optimization approach to
regulate open-loop gait parameters for snake robots, which
made the robot move faster and more reliably [9]. However,
all these works were confined by the parameterized gait-gen-
eration system and have a very limited effect on further
improving the energy efficiency of a gait. Moreover, this
open-loop method is also time consuming and inefficient
[10] for fine-tuning gait parameters to achieve expected con-
trol objectives.

Gait Optimization With RL-Based Methods
As an intelligent trial-and-error learning method, RL brings
new solutions for free gait-generation tasks without knowing
precise models or prior knowledge. RL technologies were
used to fine-tune parameters for motor skills in a model-
based manner, which can either be the controllable model of
the system [11] or another abstracted gait generator such as
the central pattern generator (CPG) [12]. Shi et al. [13] devel-
oped a simplified snake-like robot with two actuated joints
and implemented a controller based on a deep Q-network
algorithm. They demonstrated that their method could pro-
duce meaningful gaits. Similar to the concept in [14], Liu et al.
proposed an RL-based controller to modulate the activity of a
CPG controller for generating goal-reaching and tracking
behaviors for a soft, snake-like robot in simulations [15].
Chatterjee et al. proposed a policy-improvement method to
choose different control parameters for a snake-like robot
with screw-drive units [16]. Sartoretti et al. presented an RL-
based approach to adapt the shape parameters of a snake-like
robot in response to external sensing [17].

Sim-to-Real Transfer
To narrow simulation-reality gaps, researchers have attempted
to improve simulation fidelity by building up accurate models
and refine them using real data. For instance, to match the
performance of the real system, an actuator can be modeled
and refined using its real data [18]. Researchers have also
worked on improving the robustness of a learned policy to

variations of system properties and perception information,
thereby enabling it to be feasible and adaptive in real-world
systems [19]. The task to transfer a policy learned from simu-
lation to the real world is treated as an instance of domain
adaption, where the source domain (simulation) is modeled
as close as possible to the target domain (real world) [7].
Robotic arms are the most common agents to deploy learned
policy from simulations as the kinematics and dynamics can
be accurately modeled. Christiano et al. controlled a robotic
arm using learned policy from simulation, of which the
inverse dynamics (from observations to actions) of that robot
was learned from the data generated by the forward dynamics
(from actions to observations) in simulations [20].

Domain randomization is another technique for sim-to-
real transfer based on the introduction of higher variance in
the domain-specific—but task-irrelevant—features of the
training data. Peng et al. propose introducing variability in the
dynamics of the simulation by sampling values for strategic
features (e.g., friction, mass, and damping coefficients) during
the training phase [21]. They argued that although modeling
the simulation in accordance with the real environment is
important for the sim-to-real policy transfer, a complete and
accurate model is often impossible due to many reasons, such
as unforeseen forces, left-out environmental characteristics,
calibration issues, and so on. In the meantime, Wulfmeier et
al. argued that an unfavorable domain in randomization can
lead to poor performance of the policy that is transferred
from simulation [22]. They proposed another idea to tackle
systematic model discrepancies: aligning the distributions
over visited states between the simulated and the real-world
agent. They demonstrated their argument by performing
experiments between two simulations with either different
parameterizations or completely different simulation engines
to create situations of misaligned and unknown system
dynamics.

Robot and Model

Snake-Like Robot
Our planar snake-like robot adopts a modularized design
manner, which consists of eight identical actuated body mod-
ules and one head module to slither forward (see Figure 1).
Each module is connected to the adjacent module by an actu-
ated joint, which can rotate 90° in both the left and right
directions. Each body module is composed of an actuation
system, the control system, housing components, and a pair
of passive wheels to imitate the anisotropic friction property
of the snake skin. The actuation system consists of a servo,
gearbox, and an angular sensor to feed back the angular posi-
tion of the output joint. The dc servo has a maximum torque
of 12.8 Kg cm and drives a gearbox with a reduction factor of
3.71. The angular sensor is a Hall effect encoder that is used
to measure the angular position of the output shaft of each
module. The control system is a customized STM32 micro-
controller. The STM32 runs three tasks: controlling the servo,
reading the joint angle, and communicating with the other

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:18:40 UTC from IEEE Xplore. Restrictions apply.

5MONTH 2022 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

modules. A real-time operation system is executed on the
control system, and the control loop is set as 20 Hz. Table 1
summarizes the technical specifications of the robot.

Simulation Model
We model the snake-like robot as close as the real-world
counterpart and simulate it in Multi-Joint dynamics with
Contact (MuJoCo). As the fundamental component of a
motion’s behavior, the dynamic model plays a great role in
narrowing the gap between the simulation and the real world.
There are several key parameters that directly determine the
accuracy of the dynamic model, such as the mass of the robot,
inertia, friction, and other physical parameters.

Modeling Mass
The mass can be weighted exactly by measuring the mod-
ule of the prototype, while the moment of inertia is estimat-
ed from its CAD assembly, in which each component is
given its material.

Modeling Actuation
The simulated servo system consists of a position-controlled
motor, feedback signal of the joint position, and gear ratio.
For the sake of simplicity, by setting the gear ratio to one, we
directly map the motor position to the output position of the
servo system. The torque is limited to a range of [. , .]4 6 4 6-
in the Newton meter based on specifications of the servo.

Modeling Friction
To imitate this anisotropic friction property, each robot mod-
ule is equipped with two passive wheels. Those passive wheels
enable a minimum friction in the direction of rotation and a

high friction in the lateral direction (see Figure 1). To obtain
realistic movements, we directly measured the friction coeffi-
cients for these two directions in the real world.

Energy-Efficiency Metric
We aim to design gaits that can make snake-like robots move
energy efficiently and in the meantime keep a steady speed of
the movement. In this work, we define the power efficiency
metric to evaluate the performance of all gaits.

The total power P of the robot can be calculated by adding
up the power of all the N joints, which can be calculated as

,P i
N

i i1 x zR= = o where izo is the velocity of joint i. The torque
jx is the product of its applied force fi and its gear constant

parameter hi (the length of the actuator). The model uses
actuators with a limited force of fmax as the maximum force

Side View Top ViewJoint

54 mm
70 mm

100 mm 100 mm

PCB Board
Housing

Gears and Servo

Angular Sensor

Passive Wheels
Forward
Rotation

Lateral
Rotation

Figure 1. The snake-like robot and its module dimensions. PCB: printed circuit board.

Table 1. Technical details of the robot module.
Parameters Quantity

Dimensions Width: 70 mm; length: 100 mm;
height: 54 mm

Mass Body: 202 g; one wheel: 2.2 g

Servo Max torque: 12.8 kg·cm; max
speed: 0.07 s/60°

Gearbox Gear ratio: 151:43

Communication CAN bus

Sensors AS5047D (resolution: 0.022°)

Power Voltage: 24 V; max current: 10 A

Control rate 20 Hz

Max: maximum; CAN: controller area network.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:18:40 UTC from IEEE Xplore. Restrictions apply.

6 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MONTH 2022

in both directions. With this property, the normalized power
consumption Pt is calculated as

.P N f h
f h1

max maxi

i i i

i

N

1 z

z
=

=

t
o

o
/

This normalized power consumption Pt will be further used
for reward definition.

With the power P and the velocity v, several efficiency
metrics can be calculated. The usual way is to calculate the
cost of transport, which is the power P divided by the mass m,
the gravity g and the velocity v:

	 .mgd
E

mgv
PCOT = = � (1)

This unit-less measurement is able to compare the efficiency
between different mobile systems. As the same robot and
environmental properties are compared, those constants only
scale the results and would not provide any additional insight
for the comparison. Thus, a simplified metric calculates the
averaged power per velocity (APPV) as ./P vAPPV =

Baseline Controller
In this section, we first introduce the widely used method for
generating gaits for snake-like robots, which is the gait equa-
tion controller. Then we use the grid-search algorithm to
explore energy-efficient gaits at different velocities by brutally
searching the parameter space with fine steps.

Gait Equation Controller
As the most widely adopted method, the gait equation con-
trols the locomotion gaits of a snake-like robot by shaping its
back curve as a moving sinusoid wave that propagates along
the body. This method or similar ideas (e.g., CPG-based
methods) have been used for decades by many kinds of
snake-like robots to generate different gaits [2]. We utilize the
gait equation from [9], which is modeled as

	 (,) ().sinn t N
n x y A t n$ $z ~ m= + +` j � (2)

(,)n tz presents the joint-angle value at time t, where n is the
joint index and N is the total joint number. m and ~ are the

spatial and temporal frequency of the movement, respectively.
The spatial frequency represents the cycle number of the
wave, and the temporal frequency represents the traveling
speed of the wave. A is the serpentine amplitude and x and y
are the constants for shaping the body curve.

Grid-Search Optimization
We take the grid-search algorithm to explore the parameter
space, which can lead to optimum gaits as long as the search-
ing intervals are small enough. We use the grid-search meth-
od to generate a variety of gaits and determine those
parameter combinations with the best power efficiency at dif-
ferent velocities. The grid-search method generates a Carte-
sian product from the parameters in Table 2, resulting in
10,080 parameter sets. Then, each motion parameter set gets
tested by running 1,000 steps in the simulation environment.
For each run, the first 200 time steps are ignored and the
remaining 800 time steps are evaluated for collecting experi-
mental data. It is because it has been observed that the snake
robot needs approximately 200 time steps to accelerate and
then moves at a steady speed.

NN-Based Controller

Observation Space
The full observation space consists of all the joint position ,jz
the joint velocity ,

.
jz the actuator torque ,jx the head module

velocity ,v1 and the target velocity .vt The joint position jz
and its joint velocity

.
jz are required to learn the locomotion

and represent the proprioceptive awareness of the robot. The
head module velocity v1 helps to sense its global velocity,
which offers better movement awareness. To learn an energy-
efficient gait, the sense of energy consumption is necessary.
Therefore, the actuator torque of each joint jx is provided and
can be interpreted in combination with

.
jz to determine the

total power usage. The specified target velocity vt is passed to
the environment and can be changed, which is required to
control velocity of the robot.

Action Space
The action space has 8 DoF with finite-continuous values in
the range of [. , .],1 5 1 5- which linearly translates to a corre-
sponding joint angle z in the range of [,].90 90c c- Each
action represents eight actuator angle positions of the servo
motors. In the real-world setup, the joint can turn around
with the motor speed set as 0.07 s/60° and the gear ratio as

: .151 43 The control frequency for the snake-like robot is set
as 20 Hz. Thus, the maximum turning angle in 0.05 s is set as
12° in the simulation. The simulation time step is also set as
0.05 s. It should be noted that 20 Hz is selected to ensure real-
time calculation of the NN-based controller.

Reward Function
The objective of our task is to learn an energy-efficient gait for
a variety of specified velocities. Therefore, the energy con-
sumption and the difference between the actual model

Table 2. The gait parameters used for the grid
search.
Parameters Descriptions Values

~ Temporal
frequency

0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4,
1.6, 1,8, 2

A Amplitude (°) 30, 35, 40, 45, 50, 55, 60, 65,
70, 75, 80, 85

y Linear reduction 0.1, 0.2, 0.3, 0.4

x Linear reduction (1−y)

m Spatial
frequency (°)

40, 45, 50, 55, 60, 65, 70, 75,
80, 85, 90, 95, 100, 105, 110,
115, 120, 125, 130, 135, 140

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:18:40 UTC from IEEE Xplore. Restrictions apply.

7MONTH 2022 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

velocity and the target velocity are the main criteria to find a
successful behavior. The challenge is to combine the variables
into one numerical reward and weigh them for each time
step. Therefore, we first split the power efficiency and velocity
criteria into two normalized reward function components.

First, a normalized reward is defined to maintain the spec-
ified velocity. The objective is to reach and maintain the target
velocity vt by comparing it with the head velocity .v1 The fol-
lowing function represents the velocity reward:

	 () .r t a
v v1v
t a

1

1
1
2

= -
-c m � (3)

.a 0 21 = influences the spread of the reward curve by defin-
ing the x-axis intersections with .x v at 1!= .a 0 22 = affects
the changes of the curve’s gradient. If . ,v v 0 0t 1- = the
velocity reward rv reaches the maximum value of one.

Second, the normalized value of the total power usage Pt
in the “Energy-Efficiency Matrix” section is used to deter-
mine the power efficiency reward component ,rP which is
represented by

	 () .r t r P1maxP
b1 2

= -
-

t � (4)

Here, rmax is the maximum reward value, and .b 0 61 = is the
slope of the curve. Power efficiency is influenced by the
desired target velocity. Thus, the normalized rmax represents
this influence by limiting the maximum value of .rP

Finally, rewards from the velocity rv and the power effi-
ciency rP are combined to form the overall reward r:

	 () .r t a
v v P1 1t a b

1

1
2 1

2

= -
-

-
-

tc m � (5)

This equation replaces the rmax in (4) with .rv With that, the
maximal power efficiency depends on the absolute value of
the difference between the desired velocity and the robot
velocity and total power consumption.

Network Architecture
Given the input (observation)oi

t and output (action),ai
t we

now elaborate the policy network mapping oi
t to .ai

t We
design a fully connected two-hidden-layer NN as a nonlinear
function approximator to the policy .ri The input layer has
the same dimension as the action space .oi

t Both hidden lay-
ers each have 200 neurons and are each followed by a rectified
linear unit layer. The final layer outputs joint position com-
mands for the robot. To train the network, the PPO algorithm
adapted from [23] is used.

We train our policy network on a computer with an
i7-7700 CPU and a Nvidia GTX 1080 GPU. A total of six mil-
lion time steps (roughly 7,500 episodes) are used for training.
The maximum number of time steps in an episode is 2,000.
With the environment settings of 50 ms per time step, the
training takes approximately 42 h in total simulation time and
2 h in wall-clock time for the policy to converge.

Sim-to-Real Transfer
We present two approaches that are designed for robust trans-
fer of the policy learned in simulation to the real world,
namely, the parameter randomization and informative net-
work.

Parameter Randomization
Parameter randomization is an effective approach to improve
the robustness of the system, especially taking the gap
between simulation and real-world experiments into consid-
eration. By randomizing the physical parameters and obser-
vations during training, the learned policy can be more robust
for deployment in real-world experiments.

Physical Parameter Randomization in Simulation
The physical parameters given in the “Robot and Model”
section are either measured or estimated, which may lead to
inaccuracy. And different settings of physical parameters will
directly impact performance of the generated gaits. When
the agent is trained in a stable environment with fixed
dynamic parameters, it usually leads to an overfitting con-
troller, which will not work properly in the real-world envi-
ronment. We randomly sample physical parameters, as listed
in Table 3.

Observation-Space Randomization
In a real-world setup, the joint angles cannot be perfectly
measured due to several uncertain factors, such as the noise of
the encoder and the data errors or delay caused by the com-
munication. To eliminate the impact of this inaccuracy, we
add a Gaussian noise N (,)n v on every joint-angle position
in the observation space during training, where 0 radn =
and . .0 05 radv =

Informative Prediction Network
The observation space used in the simulation is only partially
observable or measurable in the real world. To solve this
problem, we propose an informative prediction network to
predict the joint torque, joint velocity, and head velocity
under the framework of supervised learning. We present
three steps to construct such an informative prediction net-
work (see Figure 2).

Table 3. Technical details of the robot module.
During simulations, these physical parameters
are randomly selected from the randomization
range of the baseline value of each parameter.

Parameters Baselines Unit
Randomization
Ranges

Ground friction 0.6 — 90 ~ 100%

Mass 0.206 kg 90 ~ 100%

Armature inertia 0.01 kg · m2 80 ~ 120%

Motor damping 0.3 N · s/m 90 ~ 110%

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:18:40 UTC from IEEE Xplore. Restrictions apply.

8 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MONTH 2022

Compact Observation Space
In the real world, some of the observations are difficult to
acquire, such as the joint velocity

.
jz and the joint torque .jx

We can calculate the joint velocity by differentiating two con-
secutive joint positions at each time step. However, this is
infeasible due to the noise of the joint position. To solve this
issue, we also design a compact observation space that con-
tains only the joint position jz and the target velocity .vt The
informative network is used to infer the corresponding joint
velocity ,

.
jz joint torque ,jx and head velocity v1 according to

the given joint position .jz The input of the network is the
joint position .iz The informative network is trained using
supervised learning, where the dataset is directly sampled
from simulation.

Data Generation
With a well-trained NN-based controller, the agent is con-
trolled to slither in the simulation environment with a varying
target velocity to sample training data. Each episode contains
400 time steps, the target velocity starts from 0.05 m/s and
slightly increases . e1 33 m/s3- at each episode until 0.25 m/s.
One logged data point contains the target velocity, joint posi-
tion of the timestamp, and values of the last action of the NN-
based controller. The generated data are shuffled and split,
where 80% of the dataset is used for training and the other
20% is used for testing.

Informative Network Model
Three observation features, namely, the joint velocity ,

.
jz

joint torque ,jx and head velocity ,v1 used for training the
NN-based controller in the simulation are not available in

the real world. Because each feature has its own characteris-
tic, we design three separate prediction models to predict
them with the same architecture. For one prediction net-
work, the input consists of the action values and the joint
positions for each joint in the last two time steps, together
with the target velocity.

As explained in [24], dynamics of the actuators are inde-
pendent of each other and, accordingly, they trained their
models for predicting actuator forces separately. However, for
the snake-like robot, we believe that the action of one joint
may affect other joints because the snake robot is a class of
serially connected, active-cord mechanisms. Therefore, we
adopted two approaches for sampling the input data: the
jointwise and nonjointwise models. For a jointwise model,
each value of the feature is strongly related to one’s specific
joint index, e.g., the torque of the first joint is predicted using
only the data from the first joint. The jointwise prediction
models split the input features of the input layer by joint and
process them separately. The processed values are concatenat-
ed at the output layer. Oppositely, the nonjointwise models
process values from all the existing joints together at once as
input and predict output features for all the joints at once. The
main assumption of this is that a target feature depends on the
entire kinematics of the snake-like robot.

In this work, prediction models with two layers of multi-
layer perceptron long short-term memory (LSTM), or a single
Temporal Convolutional Network layer (which consists of
multiple convolution layers) were tested. For the length of
input sequences (the number of past time steps), two, four,
and eight were used for training to observe how the input-
sequence length affects model performance. The

Training Sim to Real

Randomize Parameters

Observations

Joint Position
Joint Velocity

Head Velocity
Target Velocity

Joint Torque

θ

τ
υ
υt

θ
.

B

θ
."

τ"

υ"

Informative Net

Compact Observations

O
bs

er
va

tio
n

R
an

do
m

iz
at

io
n

PPO

Joint Position
Command a

Policy Net

Motor
Friction

Mass
Inertia

Figure 2. The training pipeline for the sim-to-real transfer of the NN-based controller. There are three steps in this pipeline. First, the
physical parameters are randomized in each episode during training. Second, the observation space is used to train an informative NN
to predict the observations that cannot be acquired directly from real-world environments. Third, the randomized observations are fed
to the NN-based controller, which is trained using the PPO algorithm. Sim to Real: Simulation to Real.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:18:40 UTC from IEEE Xplore. Restrictions apply.

9MONTH 2022 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

mean-square error was used as the loss function for training
models, which is commonly used for regression tasks. We
skip the training and testing details for choosing proper mod-
els or the length of input sequences and present the final setup
for each feature in Table 4. To predict torque, we choose mul-
tilayer perceptron as the architecture of the prediction net-
work, which is trained via the jointwise style. The length of
the sequential input is two. To predict the joint velocity, we
choose LSTM as the network architecture, which is trained
via the nonjointwise style. The input length is also two. To
predict the head velocity, we choose LSTM as the network
architecture as well. The input length of this prediction net-
work is eight. As the head velocity is one overall property of
the robotic system, the jointwise or nonjointwise style is not
applicable here. The inputs for predicting these three states
are the joint position, action, and target velocity.

To enable learning of different velocities, the parameter vt
is changed by iterating over 0.05, 0.1, 0.15, 0.2, and 0.25 for
each episode while training. It should be noted that in theory,
we can also select target velocity from a uniform distribution
to train the network. But empirical results show that the train-
ing is much more successful and stable when using dis-
cretized target velocities. Meanwhile, to simplify the
beginning of the learning process, the first 100 episodes are
trained with a fixed target velocity of 0.1 m/s.

Simulation Results and Comparisons

Baseline Performances
The power consumption and corresponding velocity results
from the grid-search algorithm are shown in Figure 3 as a
point cloud of parameter sets using dot markers. The lowest
points at different velocities in the point cloud have the high-
est energy efficiency. To reduce the number of equation
parameters, we select five temporal frequencies to show the
pattern of gaits generated by the gait equation as temporal fre-
quency is the most direct factor that impacts velocity. Second,
instead of connecting the scatter points with lines, we show
the confidence region of the gaits generated with each fre-
quency. We can observe that low frequency (0.25 Hz) leads to
very slow gaits, while high frequency (2 Hz) leads to energy-
intensive gaits. The gaits with 1.5 Hz are more promising for
generating energy-efficient gaits. We also demonstrate that
the grid-search method suffers from being inefficient to
search proper parameters for energy-efficient gaits as most of
the parameter sets in the searching space are distributed in
the low-velocity area (.).0 0 1m/s- Note that we show all the
gaits from the grid-search algorithm as we want to depict the
inefficiency of the baseline method.

NN-Based Controller Performance
In this study, target velocities in the range of [. , .]0 025 0 25 m/s
with a step interval of 0.005 m/s are used for the evaluation.
The simulation results demonstrate that the NN-based con-
troller has succeeded in learning a series of gaits from scratch
without knowing any prior locomotion skills.

First, the NN-based controller can perform very accurate
locomotion gaits in terms of velocity even though the NN-
based controller is trained with only five target velocities
(0.05, 0.1, 0.15, 0.2, and 0.25 m/s). As shown in Figure 4, the

Table 4. Training configurations for prediction.
The length of the input sequence means the
number of past time steps.

Torque Joint velocity Head velocity

ANN MLP LSTM

Input feature Joint position, action, and target velocity

Input length 2 2 8

Nonjointwise/
jointwise

jointwise nonjointwise —

ANN: artificial neural network; MLP: multilayer perceptron.

50

40

30

20

10

0

To
ta

l P
ow

er
 (

W
)

0 0.05 0.1 0.15 0.2 0.25 0.3
Velocity (m/s)

2 Hz
1.5 Hz
1 Hz
0.5 Hz
0.25 Hz
RL Controller

Figure 3. This scatter plot directly shows the energy-
consumption results of the controllers at a range of velocities in
the simulation. The red points represent the performance of the
NN-based controller. For the gait equation controller, we select
five temporal frequencies w, namely, 0.25, 0.5, 1, 1.5, and 2 Hz.
We then run the grid-search algorithm with each frequency and
plot the scatters and its confidence region.

0.25

0.2

0.15

0.1

0.05

V
el

oc
ity

 (
m

/s
)

0 0.05 0.1 0.15
Target Velocity (m/s)

0.2 0.25

Target Velocity
Simulated Velocity

Figure 4. The actual velocities (red dots) measured from
simulations and the corresponding target velocities (blue
dots). The error interval of the red line represents the standard
deviation over the five random seeds.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:18:40 UTC from IEEE Xplore. Restrictions apply.

10 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MONTH 2022

targeted velocities are represented by blue solid dots, and the
measured velocities from the simulation are marked by red
solid dots. We can observe that the measured velocities
almost match the target velocities from 0.05 to 0.20 m/s with
only very small errors close to zero. In the low-velocity range
(less than 0.05 m/s) and high-velocity range (higher than 0.20
m/s), measured velocities differ from target velocities. This is
because under extreme conditions, the NN-based controller
is difficult to maintain target velocities while keeping optimi-
zation of the power consumption. In the low-velocity range,
the NN-based controller tends to move faster as a minor
modification of the motion will lead to a speed change. In the
high-velocity range, the NN-based controller is limited by
physical configuration of the snake-like robot to reach target
velocities.

Second, the power consumption results of the learned
gait are marked with red points in Figure 3. The data depict
a linear relationship between travel velocity and power
consumption, which is in line with the physical law

.Power Force Speed#= There are only a few points with
higher power consumption when the velocity is below 0.08
m/s. Importantly, this also reveals the adaptability of the
learning approach for generating gaits in a range of velocities.
It can also be observed that the mean velocities do not exactly
align with the specified interval of 0.005, especially at higher
target velocities. The reason for this is the difficulty to achieve
the exact ratio between holding the right velocity and per-
forming the corresponding power-efficient locomotion.

Comparison
We first have a look at the energy metric based on averaged
power per velocity. After putting the power efficiency data of

the gait equation controller (see Figure 3) and the NN-based
controller together, we can clearly conclude that the NN-
based controller has a much better power efficiency at a range
of velocities. As the velocity grows, the advantage of the NN-
based controller for saving energy is even more obvious.

To show that the proposed method can generate energy-
efficient gaits in a more general context, we also evaluated
both controllers in different environments (friction coeffi-
cient) and with different robot designs (the number of body
modules) in simulation. The results are visualized in Figure
5. In Figure 5(a), we change the robot’s design by adding or
reducing body modules to test the proposed method. For a
snake robot with a joint number range from six to nine (the
default number is eight), the proposed method shows con-
sistent performance superiority to generate many energy-
efficient gaits across different traveling speeds. In Figure
5(b), we change the friction coefficient of the environment
to test effectiveness of the proposed method. On one hand,
results clearly show that the NN-based controller can gener-
ate gaits that consume less energy than the gaits generated
from an equation-based controller. On the other, the NN-
based controller also shows a much more stable performance
in generating energy-efficient gaits, while the equation-
based method exhibits fluctuating energy-consumption
results.

The NN-based controller improves upon the traditional
kinematic-based one in two ways. On one hand, the tradi-
tional gait equation controller is based on kinematics and
describes the gait movement with no influence of physical
forces such as friction or damping. It only extracts several
critical parameters to represent the gait, while the interaction
between the snake-like robot and the environment is highly

1,400

1,200

1,000
800

600
400

C
O

T
 (

W
/m

)

0.05
0.1

0.15

0.2

Velocity (m/s) 6
7

8
9

Joint Number

1,400

1,200

1,000

800

600

400

C
O

T
 (

W
/m

)

0.05
0.1

0.15

0.2

Velocity (m/s) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Friction Coefficient

(a) (b)

Equation-Based Controller NN-Based Controller

Figure 5. The simulation results from generalized scenarios. (a) The cost-of-transport (COT) performance of gaits generated from
different robot design (body modules). (b) The COT performance of gaits generated from environments with different friction
coefficients. The solid line shows the gaits generated from the NN-based controller. The dashed line shows the gaits generated from
the gait equation controller. The error bars show the standard deviation of the energy consumption at each velocity.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:18:40 UTC from IEEE Xplore. Restrictions apply.

11MONTH 2022 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

complex. Although the parameterized gait equation simplifies
the control task, it inevitably brings difficulties for designing
more sophisticated gaits despite using traditional optimiza-
tion technologies (the grid-search algorithm), especially when
the parameter space will grow exponentially with the increas-
ing joint numbers. Conversely, the RL method shows its effec-
tiveness in its ability to solve this kind of complex control
problem as it is trained directly in the dynamic environment.
It is able to generate undulation gaits that not only imitate the
movement of real snakes but also explore its limitations while
continuing to improve its behavior under its hardware con-
straints.

Prototype Experiments

Sim-to-Real Transfer Framework
To make it feasible to transfer a learned policy from simula-
tion to the real world, we should design a framework to easily
connect the NN-based controller to the simulation environ-
ment or the real world with the same configuration. As
shown in Figure 6, the NN-based controller has an interface
used to switch between the simulation and real-world envi-
ronments. For running both the simulation and real-world
environments, the compact observations are the joint posi-
tions .zt The compact observations are first fed into the infor-
mative network to predict the full observations .oi

t Then, the
NN-based controller outputs the actions to be executed either
in the simulation or the real world. For real-world experi-
ments, the NN-based controller is computed on a desktop
computer and the actions are sent to an Arduino DUE via
Robotic Operating System (ROS) messages. Then, the Ardui-
no DUE serves as a host to transfer the ROS messages into
CAN messages and sends them to the STM32 controller on
each module via a CAN bus.

Experiment Setup
The power consumption can be calculated using its running
current and voltage. In our experiments, we use a 24-V con-
stant voltage power supply to actuate the robot. The current
can be acquired by measuring the voltage of a high-load resis-
tor (/ .),50 W 0 1X which is stringed into the circuit. Thus,
power consumption of the prototype snake-like robot can be
calculated as / (),()P U R U24p p p= - where .R 0 1p X= and

.U 24 Vp = The voltage Up is measured using an oscillo-
scope, which samples at 1,000 Hz.

Results
Due to time and hardware durability, we tested only five tar-
get velocities for the NN-based controller in our prototype
experiments, namely, 0.05, 0.10, 0.15, 0.2, and 0.25 m/s. We
controlled the robot to run for 10 s to measure power con-
sumption and actual velocity. The actual velocities for the
gaits generated by the NN-based controller were 0.03, 0.05,
0.08, 0.12, 0.15 m/s, approximately, which were all less than
the target velocities. This is because of the reality gap between
the simulated environment and the real world. For the same
reason, the performance of the gait equation controller is also
impacted by this reality gap. To fairly compare energy effi-
ciency, we chose parameters that lead to gaits traveling at
these five actual velocities with the best energy efficiency in
the simulation.

First, we present montages of the slithering gaits at 0.15
m/s from the gait equation controller and the NN-based con-
troller (see Figure 7). To show a full cycle of the movement,
seven video frames (25 frames per second) are selected to
visualize the pattern of the gaits generated by both controllers.
For the gait generated by the gait equation controller, frames
89–119 show one full cycle of the gait. For the gait learned by
the NN-based controller, roughly two motion cycles are

PPO

Rewards

Actions

Generative
Observations

Information
Prediction

Compact
Obs.

Interface

Arduino DUE

Joint Positions

ROS Messages

Joint Commands

Joint Commands

Prototype

Real-World Env

Simulated Env

Simulations

Joint Positions
Reward

MuJoCo+gym API

Init

Init

Figure 6. The software framework for transferring learned policy from simulations to the real-world controller. The left part of
the figure visualizes how the NN-based controller is trained, and the right part illustrates the concept of sim-to-real transfer. Env:
environment; Obs.: observations; ROS: Robotic Operating System; API: application programming interface.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:18:40 UTC from IEEE Xplore. Restrictions apply.

12 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MONTH 2022

shown. As we can see, the body curve of the gait equation gait
is shaped as a sinusoid wave. The body curve of the RL gait is
slightly more slender than the body curve of the parameter-
ized gait. This slider-body curve can propel the robot more
smoothly and avoid joint power consumption as much as
possible, which is in accordance with the simulation results.
We can also observe that the learned gait moves at a higher
frequency than the parameterized gait and moves straight
toward the forward direction, while the parameterized gait
tends to deviate from the forward direction.

Second, we show results of the power consumption of the
gaits from both the gait equation controller and the NN-
based controller, which are presented in Figure 8(a). All of
the power consumption data were measured in 10 s for fair
comparison. The solid line represents the exponentially
weighted moving average of the power consumption, and the
error bar depicts standard deviation of the raw power con-
sumption measured by the oscilloscope. Note that we first
process raw data by the removing outliers that are outside the
range of the five standard deviations. Note that the outliers
are caused by the noisy measurement of the current signal.
From the results of the gait equation controller, we can
observe that the power consumption increases with move-
ment velocity, which ranges from approximately 21.5 to 28
W. As the velocity of the gait generated from the gait equa-
tion controller is directly related to the frequency of the sinu-
soid wave, it moves much slower at a low speed and faster at

a high speed, thereby consuming more power. We can see
that the NN-based controller consumes more power at a low
speed. This is because the controller generates a concertina
gait, which only moves parts of the body to inch forward and
those static joints require the locked-motor current, thereby
consuming more power. Another potential reason is that the
NN-based controller has difficulties maintaining low and
accurate velocities. The small adjustments of each joint will
impact the overall velocity observably and thus consumes
more energy. Compared to the power consumption of the
gait equation controller, we find that the NN-based control-
ler can increase energy efficiency by 5 to 10%, especially at
intermediate and high velocities. For both controllers at one
velocity, power consumption shows an obvious fluctuation,
which can be interpreted as the periodic movement of the
robot. Figure 8(b) depicts the power-profile comparison of
the simulation and real-world results. We can find that there
is still a performance gap between the simulation and

Gait Equation
Controller

NN-Based
Controller

Frame 89

Frame 94

Frame 99

Frame 104

Frame 109

Frame 114

Frame 119

Direction 0.6 m

Fr
am

es

Figure 7. Montages of the snake-like robot performing slither gait
at 0.15 m/s, controlled with the NN-based controller and the gait
equation controller. The video was recorded at 25 frames per
second.

32

30

28

26

24

22

20

To
ta

l P
ow

er
 (

W
)

0.04 0.06 0.08 0.1
Velocity (m/s)

(a)

0.12 0.14

50

40

30

20

10

0

To
ta

l P
ow

er
 (

W
)

0.04 0.06 0.08 0.1
Velocity (m/s)

(b)

0.12 0.14

Equation-Based Controller
NN-Based Controller

NN-Based Controller
NN-Based Controller (Sim)

Figure 8. (a) A real-world power comparison of slithering
gaits from the gait equation and NN-based controllers. The
target velocities are [. , . , . , . , .]0 05 0 10 0 15 0 2 0 25 m/s. The actual
velocities are approximately [. , . , . , . , .]0 03 0 05 0 08 0 12 0 15 m/s. The
solid points represent the averaged power over 10 s, and the
error bars depict the standard deviation. Note that the standard
deviation is calculated based on the data over the duration of
the experiment (10 s). (b) Power comparison of the NN-based
controller in simulation (Sim) and the real world. In simulation,
the NN-based controller cannot achieve a gait of 0.03 m/s.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:18:40 UTC from IEEE Xplore. Restrictions apply.

13MONTH 2022 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

real-world experiment due to some potential reasons. For
instance, it is challenging to simulate the environment with
perfect fidelity, which therefore leads to the performance
drop. Inaccurate sensory measurements or noisy observation
stats can also cause the performance drop.

Conclusion
Designing energy-efficient gaits for snake-like robots remains
a challenging task as they come with redundant DoF and have
complicated interactions with the environment. The most
widely used method for generating gaits for snake-like robots
is the gait equation, which mimics the snake’s body shape
using sinusoid-like curves. In this article, we presented a novel
gait-design method based on RL. Compared with the opti-
mized gaits generated by the gait equation, the learned gaits
show better energy efficiencies at medium and high velocities.
Although the learned gaits perform similarly or slightly worse
than the parameterized gaits at low speeds, the proposed
method shows great efficiency in discovering energy-efficient
gaits automatically and maximizing performance by remov-
ing the limitations of predefined models. Our work contrib-
utes to and serves as an exploration for designing
sophisticated moving patterns for snake-like robots. Future
work will aim at designing gaits using RL for snake-like
robots without passive wheels.

Acknowledgment
This project/research has received funding from the Europe-
an Union’s Horizon 2020 Framework Program for Research
and Innovation under Specific Grant Agreement (SGA)
Number 945539 (Human Brain Project SGA3). This work
was also supported by the National Natural Science Foundation
of China (grant 61902442), Pazhou Lab PZL2021KF0020 and
Shenzhen Basic Research Grant JCYJ20180508152434975.
The corresponding author is Long Cheng.

References
[1] M. Tesch et al., “Parameterized and scripted gaits for modular snake
robots,” Adv. Robot., vol. 23, no. 9, pp. 1131–1158, 2009, doi:
10.1163/156855309X452566.
[2] S. Hirose, Biologically Inspired Robots: Snake-Like Locomotors and
Manipulators, vol. 1093. London, U.K.: Oxford Univ. Press, 1993.
[3] Z. Bing, L. Cheng, G. Chen, F. Röhrbein, K. Huang, and A. Knoll,
“Towards autonomous locomotion: CPG-based control of smooth 3d
slithering gait transition of a snake-like robot,” Bioinspiration Biomi-
metics, vol. 12, no. 3, p. 35,001, Apr. 2017, doi: 10.1088/1748-3190/aa644c.
[4] Z. Bing, L. Cheng, K. Huang, M. Zhou, and A. Knoll, “CPG-based
control of smooth transition for body shape and locomotion speed of a
snake-like robot,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp.
4146–4153, doi: 10.1109/ICRA.2017.7989476.
[5] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl, Snake
Robots: Modelling, Mechatronics, and Control. London: Springer Sci-
ence & Business Media, 2012.
[6] Z. Bing, C. Lemke, Z. Jiang, K. Huang, and A. Knoll, “Energy-effi-
cient slithering gait exploration for a snake-like robot based on rein-
forcement learning,” in Proc. 28th Int. Joint Conf. Artif. Intell., Macao,

China: International Joint Conferences on Artificial Intelligence Orga-
nization, Aug. 2019, pp. 1–7.
[7] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), Brisbane, QLD, Australia, May
2018, pp. 3803–3810, doi: 10.1109/ICRA.2018.8460528.
[8] A. Crespi and A. J. Ijspeert, “Online optimization of swimming and
crawling in an amphibious snake robot,” IEEE Trans. Robot., vol. 24, no.
1, pp. 75–87, Feb. 2008, doi: 10.1109/TRO.2008.915426.
[9] M. Tesch, J. Schneider, and H. Choset, “Using response surfaces and
expected improvement to optimize snake robot gait parameters,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Sep. 2011, pp. 1069–1074,
doi: 10.1109/IROS.2011.6095076.
[10] S. Ouyang and W. Wei, “Flexible adaptive control of snake-like
robot based on LSTM and gait,” J. Phys., Conf. Ser., vol. 1487, no. 1, p.
012049, 2020, doi: 10.1088/1742-6596/1487/1/012049.
[11] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural net-
work dynamics for model-based deep reinforcement learning with
model-free fine-tuning,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2018, pp. 7559–7566, doi: 10.1109/ICRA.2018.8463189.
[12] Y. Nakamura, T. Mori, M-a Sato, and S. Ishii, “Reinforcement learn-
ing for a biped robot based on a CPG-actor-critic method,” Neural
Netw., vol. 20, no. 6, pp. 723–735, 2007, doi: 10.1016/j.neunet.2007.01.002.
[13] J. Shi, T. Dear, and S. D. Kelly, “Deep reinforcement learning for
snake robot locomotion,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 9688–
9695, 2020, doi: 10.1016/j.ifacol.2020.12.2619.
[14] S. Fukunaga, Y. Nakamura, K. Aso, and S. Ishii, “Reinforcement
learning for a snake-like robot controlled by a central pattern genera-
tor,” in Proc. IEEE Conf. Robot., Autom. Mechatronics, 2004, vol. 2, pp.
909–914, doi: 10.1109/RAMECH.2004.1438039.
[15] X. Liu, R. Gasoto, Z. Jiang, C. Onal, and J. Fu, “Learning to loco-
mote with artificial neural-network and CPG-based control in a soft
snake robot,” in Proc. 2020 IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), pp. 7758–7765, doi: 10.1109/IROS45743.2020.9340763.
[16] S. Chatterjee et al., “Reinforcement learning approach to generate
goal-directed locomotion of a snake-like robot with screw-drive units,”
in Proc. 2014 23rd Int. Conf. Robot. Alpe-Adria-Danube Region
(RAAD), pp. 1–7, doi: 10.1109/RAAD.2014.7002234.
[17] G. Sartoretti, Y. Shi, W. Paivine, M. Travers, and H. Choset, “Dis-
tributed learning for the decentralized control of articulated mobile
robots,” in Proc. 2018 IEEE Int. Conf. Robot. Autom. (ICRA), pp. 3789–
3794, doi: 10.1109/ICRA.2018.8460802.
[18] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” in Proc. Robot.,
Sci. Syst., Freiburg, Jun. 2019, doi: 10.15607/RSS.2019.XV.011.
[19] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hut-
ter, “Learning robust perceptive locomotion for quadrupedal robots in
the wild,” Sci. Robot., vol. 7, no. 62, p. eabk2822, 2022, doi: 10.1126/sciro-
botics.abk2822.
[20] P. Christiano et al., “Transfer from Simulation to real world
through learning deep inverse dynamics model,” Oct. 2016,
arXiv:1610.03518 [cs].
[21] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in Proc.
2018 IEEE Int. Conf. Robot. Autom. (ICRA), pp. 3803–3810, doi: 10.1109/
ICRA.2018.8460528.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:18:40 UTC from IEEE Xplore. Restrictions apply.

14 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MONTH 2022

[22] M. Wulfmeier, I. Posner, and P. Abbeel, “Mutual alignment transfer
learning,” in Proc. Conf. Robot Learn., 2017, pp. 281–290.
[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization a lgorithms,” 2017, arXiv:1707.
06347.
[24] J. Hwangbo et al., “Learning agile and dynamic motor skills for
legged robots,” Sci. Robot., vol. 4, no. 26, p. eaau5872, Jan. 2019, doi:
10.1126/scirobotics.aau5872.

Zhenshan Bing, Department of Informatics, Technical Univer-
sity of Munich, Munich, 85748, Germany. Email: bing@
in.tum.de.

Long Cheng, College of Computer Science and Artificial Intel-
ligence, Wenzhou University, Wenzhou, 325035, China, and
Shenzhen Institute, Sun Yat-sen University, Guangzhou
543001, China. Email: chenglong@wzu.edu.cn.

Kai Huang, School of Data and Computer Science, Sun Yat-sen
University, Guangzhou 543001, China, and Pazhou Lab, Guang-
zhou, 543001, China. Email: huangk36@mail.sysu.edu.cn.

Alois Knoll, Department of Informatics, Technical University
of Munich, Munich 85748, Germany. Email knoll@in.tum.de.
�

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:18:40 UTC from IEEE Xplore. Restrictions apply.

