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Abstract— We present a decentralized algorithm to achieve
segregation into an arbitrary number of groups with swarms of
autonomous robots. The distinguishing feature of our approach
is in the minimalistic assumptions on which it is based.
Specifically, we assume that (i) Each robot is equipped with
a ternary sensor capable of detecting the presence of a single
nearby robot, and, if that robot is present, whether or not
it belongs to the same group as the sensing robot; (ii) The
robots move according to a differential drive model; and (iii)
The structure of the control system is purely reactive, and it
maps directly the sensor readings to the wheel speeds with a
simple ‘if’ statement. We present a thorough analysis of the
parameter space that enables this behavior to emerge, along
with conditions for guaranteed convergence and a study of non-
ideal aspects in the robot design.

I. INTRODUCTION

Group formation is one of the most fundamental mech-
anisms a robot swarm must exhibit [1]. Group formation
can occur in several forms to satisfy different requirements.
Segregation is a particular type of group formation in which
the focus is on creating local aggregates of robots that share a
common property. Segregation can be seen as a precursor to
object sorting, task allocation, or self-assembly. For example,
swarms may need to split into arbitrary groups to diffuse and
search different areas, or segregate by skill or capability in
order to form useful heterogeneous teams.

Segregation is an example of the broader class of spatially
organizing behaviors, whose purpose is to impose a structure
in the environment (e.g., object clustering [2], collective
construction [3]) or in the distribution of the robots (e.g.,
aggregation [4], pattern formation [5], self-assembly [6]).

A recent line of research in spatially organizing behaviors
focuses on the minimal assumptions a swarm of robots must
fulfill in order to perform the task. Johnson and Brown [7]
and Brown et al. [8] characterized the set of possible
behaviors that can be obtained using primordial control
strategies based on a simple ‘if/then/else’ structure, binary
sensors, and differential-drive robots. Gauci et al. provided
the specific conditions for the emergence of aggregation [9]
and object clustering [2], while St.-Onge et al. [10] studied
the emergence of circular formations. While more efficient
control strategies have been proposed to achieve these be-
haviors, studying the minimal assumptions required for their
emergence is an important step towards principled ‘swarm
engineering’ practices. In addition, these minimal behaviors
might offer last-resort solutions in case of sensor failures
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in remote environments such as in planetary exploration
missions.

This paper furthers this line of inquiry by studying the
minimal assumptions for N -class segregation to emerge from
local, decentralized interactions among robots. The term ‘N -
class’ refers to the creation of N spatially distinct groups.
We show that, for segregation to emerge, it is sufficient to
equip an ‘if/then/else’, differential drive robot with a ternary
sensor. This sensor detects the presence of a robot in range.
When a robot is detected, the sensor can distinguish whether
it is a kin, i.e., it belongs to the same group as the sensing
robot, or a non-kin, i.e., it belongs to a different group. When
multiple robots are in range, the sensor returns information
on the closest one of them.

The main contributions of this paper are (i) A study of
the parameter space that enables the emergence of N -class
segregation; (ii) A study of why convergence is guaranteed
for the best parameter choice found; and (iii) An analysis of
the robustness of the algorithm to non-idealities in the robot
design.

II. RELATED WORK

Segregation is a common behavior in nature, and it can
be observed across scales. For example, cell segregation is a
basic building block of embryogeneis in tissue generation
processes [11], [12]; while social insects, such as ants,
organize their brood into ring-like structures [13].

In robotics, segregation is a problem that has not received
considerable attention. The main methods that have been
proposed so far are based on some variation of the artificial
potential approach [14], which assumes that the robots can
detect each other and estimate relative distance vectors.

Groß et al. [15] proposed an algorithm inspired by the
Brazil Nut effect, in which the robots form regular layers
simulating gravity by sharing a common direction. This
study was later extended to work on e-pucks robots [16].
To simulate gravity, this approach requires the robots to
share a common target vector, which can be obtained through
centralized controllers or a distributed consensus algorithm.

Kumar et al. [17] introduced the concept of “differential
potential”, whereby two robots experience a different arti-
ficial potential depending on their being part of the same
class or not. The convergence of this approach is guaranteed
for two classes, but when more classes are employed local
minima prevent segregation from emerging.

Santos et al. [18] took inspiration from [17] to devise
an approach based on the Differential Adhesion Hypothesis,
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Fig. 1. A diagram of the ternary sensor in which classes are depicted as
colors. The left red robot detects a kin robot, so its sensor returns 1. The
middle red robot detects a blue robot, so its sensor returns 2. The right robot
detects no robot, so its sensor returns 0.

Algorithm 1 The segregation control algorithm.
if S = 0 then

set wheel speeds to vS=0
left , vS=0

right
else if S = 1 then

set wheel speeds to vS=1
left , vS=1

right
else

set wheel speeds to vS=2
left , vS=2

right
end if

which states that kin cells tend to adhere stronger than non-
kin cells. Hower, one limitation is the assumption that the
robots have global knowledge about the positions of other
robots.

To the best of our knowledge, this paper is the first to
propose a segregation algorithm that is not based on global
information nor on communication and sensing of multiple
neighbors.

III. METHODOLOGY

A. Problem Formulation

Motion model. We consider a set of robots executing
the same controller in a two-dimensional, obstacle-free en-
vironment. The robots are equipped with two wheels for
which [vleft, vright] denote their normalized linear speeds. By
‘normalized’ we mean that the speed values are in the range
[−1, 1]. Using normalized speeds allows us to reason in
a general way over the specific speeds attainable by any
robot. To transform from normalized speeds [vleft, vright] into
actual speeds [Vleft, Vright], we introduce a parameter Vmax that
denotes the maximum linear speed possible with a specific
robot and define

Vleft = Vmaxvleft (1)
Vright = Vmaxvright. (2)

The robots’ motion is modeled by the well-known
differential-drive equations [19]

x(t) =
l

2

Vright + Vleft

Vright − Vleft
sin

(
Vright − Vleft

l
t

)
y(t) = − l

2

Vright + Vleft

Vright − Vleft
cos

(
Vright − Vleft

l
t

)
θ(t) =

Vright − Vleft

l
t

(3)

where t is time, [x y θ ]T is the pose of the robot, and l is
the distance between the wheels.

Sensor model. The robots are also equipped with a ternary
sensor that is able to detect the presence of nearby robots
and their “kinness”. Two robots are kin if they belong to the
same class (denoted by color in our experiments); they are
non-kin otherwise. The sensor is assumed to have infinite
range (we consider non-infinite range in Sec. VI-D). As
depicted in Fig. 1, the sensor returns a reading S = 0 when
no robot is detected, S = 1 when a kin robot is detected,
and S = 2 when a non-kin robot is detected. We allow for
any number of classes, but the sensor need not distinguish
between different non-kin classes—it only detects whether a
nearby robot belongs to the same class or not.

Control logic. The control logic followed by the robots
is formalized in Alg. 1. It is a simple ‘if/then/else’ structure,
which maps the sensor readings S directly into normalized
wheel speeds [ vleft vright ]. The latter are the parameters
whose value we intend to study, and they can be encoded
as a six-dimensional vector

[ vS=0
left vS=0

right v
S=1
left vS=1

right v
S=2
left vS=2

right ].

Objective. The objective of our study is to find the values
of the speed parameters for which the robots group into
clusters, such that all the robots of the same class are packed
into one cluster with no non-kin robots.

B. Simulation Environment and Robots

Simulation platform. We utilized the ARGoS multi-
robot simulator [20] to search for controller parameters and
evaluate them. ARGoS offers accurate models for several
differential-drive robots, such as the foot-bot [21], the Khep-
era IV1, and the Kilobot [22].

Robot platform. For the simulated experiments we opted
to use the foot-bot, because of the possibility to utilize its
range-and-bearing communication system as a base for the
ternary sensor. The advantage of using the range-and-bearing
system is that its model is simple and, as a consequence, a
large number of simulations could be completed in a short
time. The range-and-bearing system allows two robots to ex-
change messages when they are in direct line-of-sight; upon
receiving a message, a robot can also estimate the relative
position of the sender. This sensor, in principle, receives
messages from all the nearby robots. To simulate the ternary
sensor, our robot controller kept the message of the closest
robot. The message payload was an integer that encoded the
id of the group to which the sender belonged. The range-
and-bearing sensor is simulated through ray casting. This
allowed us to assume that the sensor reading is infinitely thin,
a choice that simplifies the mathematical analysis presented
in Sec. V. However, in practical applications, the sensor can
be expected to cast a cone-shaped sensory range with non-
zero aperture angle. We explore the performance effect of
various angles in Sec. VI-C.

1https://www.k-team.com/khepera-iv



C. Grid Search

Trial setup. In order to exhaustively search the space of
possible controllers, we conducted a grid search of the 6-
dimensional parameter space. Due to limited computational
resources, we were only able to search with a resolution
of 7 values per parameter, which means in total we eval-
uated 76 = 117, 649 parameter sets. For each parameter
set, we tested 38 different initial configurations, with 100
simulated seconds for each trial. These initial configurations
consisted of uniformly random placement, clusters, and lines
of robots distributed throughout the environment. We chose
to include some structured configurations (clusters and lines)
because we discovered that they affected significantly the
performance with respect to uniform random configurations.
Hence, by explicitly evaluating diverse initial configurations,
we could better estimate the best parameter values in the
general case. Examples of these starting configurations can
be seen in our supplementary videos: https://goo.gl/z8UAuB.

Clusters. To define our cost function, we first establish
the notion of ‘cluster’, intuitively defined as an island of
connected kin robots. Denoting with r the radius of the body
of a robot, and defining pi(t) = [xi(t) yi(t) ] as the x and y
coordinates of the robot at time t, we consider any two kin
robots to be connected if

‖pi(t)− pj(t)‖ ≤ 2r + ε (i 6= j, ε ∈ R+).

In our experiments, we set ε = 5 cm. We find clusters by
first constructing an adjacency matrix and then performing a
depth-first search. Since we are interested in segregating the
robots in N classes, the final result of a trial is expected to
be a set of N distinct clusters composed of kin robots.

Cost function. To measure the difference between the
ideal, perfectly segregated result and any configuration
achieved by the robots over time, we first calculate, for every
class i, the number of robots in the largest cluster ci(t)
formed by robots of class i. Since, in principle, different
classes might involve different numbers of robots, in our
cost function we employ the ratio

γi(t) = −ci(t)
Ci

This ratio should be maximized, so the negative sign assigns
larger clusters a lower, more negative, cost. Here Ci is the
number of robots that belongs to class i. At each time step,
the cost is

γ(t) =
1

N

N∑
i=1

γi(t)

Our complete cost function is then

ctotal =

T−1∑
t=0

tγ(t) (4)

in which we denote the total trial time (100 seconds) with
T . The effect of multiplying γi(t) by t is to highlight the
emergence of clusters as the trial time proceeds: we cannot
expect large clusters to be present at the beginning of a

Fig. 2. Heatmaps that relate relevant pairs of wheel speeds.

trial, but good parameter settings should grow (and maintain)
clusters over time. In our experiments, we found that ctotal
correctly assigns cost in most scenarios, thus fitting well our
analysis purposes. However, this cost function considers a
straight line of robots to be a cluster, and as such it might
not be ideal for scenarios in which the clusters are required
to be tight.

IV. THE EMERGENT BEHAVIOR

Visualizing grid search. The results of grid search are re-
ported in Fig. 2. Because the search space is six-dimensional,
we chose to visualize it by plotting every pair of parameters
against each other. For example, we consider how the cost
changes as vS=0

left and vS=0
right change. As an example of reading

these plots, we can tell from the plot of vS=1
left and vS=1

right
that there were no good controllers where the left and right
wheel speeds were equal and negative (dark squares in the
upper left), and that the best controllers had slightly unequal
values close to 1 (lightest squares in the bottom left). These
plots also convey the presence of sharp discontinuities where
performance changes dramatically.

The emergent behavior. After running the grid search,
the parameters with the lowest mean cost across all 38
configurations was

[1,−2/3, 1/3, 1, 1, 0]. (C)

The resulting behavior is for a robot to turn away from kin,
but turn the opposite way when the robot sees nothing or non-
kin. This behavior amounts to robots zig-zagging in a line

https://www.youtube.com/playlist?list=PL9HqYJ1IkIKVX9EsT5BY9LnBsBPTjc5bB


Fig. 3. The segregation behavior found by grid search consists in the
formation of homogeneous rings or spiraling structures that keep spinning
over time. The rings tend to grow over time, disband, and reform.

towards their kin. As discussed in [10], when multiple robots
execute this zig-zag behavior, spinning rings are formed.
The remarkable aspect, in our case, is that spinning rings
of kin robots emerge, eventually segregating the swarm in
homogeneous groups. An example of this phenomenon as
observed in simulated experiments is reported in Fig. 3. We
also noted that occasionally the robots form spinning spiral
shapes, which can also be seen in Fig. 3.

Interesting phenomena. It is important to note that, al-
though we originally hoped that segregated clusters would be
tightly packed, none of the top scoring parameters according
to our cost function form tightly packed clusters. There are
parameters which achieve tightly packed segregation, but
they do so extremely slowly, and therefore our cost function
correctly penalized them heavily for being too slow to be
useful. In addition, we observed that the spinning rings
formed by the robots tended to expand over time, disband
into smaller structures, and eventually reappear. In addition,
if a ring is disturbed by non-kin robots passing through it,
the ring is disrupted but it eventually reforms. The growing
and self-repairing dynamics is compatible with the findings
in the work of St.-Onge et al. [10], in which ring formation
is decomposed in four simpler behavioral traits: scouting,
chaining, looping, and merging. This segregation behavior
follows the same phases, and it constitutes a further example
of structured space-time coordination arising from minimal-
istic assumptions on the capabilities of the robot. To better
appreciate the dynamics of this behavior, we invite the inter-
ested reader to watch the videos at https://goo.gl/z8UAuB.

V. BEHAVIOR ANALYSIS

Using the parameter settings (C) as a basis, we now
analyze the emerging behavior with the purpose of explaining
how and why it emerges. In particular, we discuss the
conditions under which segregation is guaranteed.

In the proofs, we employ the well-known equations that
govern the instantaneous radius of curvature R and rotation
speed ω of the path followed a differential-drive robot with

R

D

θ̄ICC

pi

qi

pj

Fig. 4. A diagram for the geometry of motion towards kin robots. The red
circle (pj ) depicts the detected kin neighbor; the blue circle indicates the
robot whose motion is being modeled (pi); the dashed green arc is the path
followed by the robot, up to the limit point qi. Beyond the latter point, the
blue robot ceases to move closer to the red robot.

l denoting the interwheel distance [19]:

R =
l

2

Vright + Vleft

Vright − Vleft
=
l

2

vright + vleft

vright − vleft

ω =
Vright − Vleft

l
=
Vmax(vright − vleft)

l
.

(5)

Theorem 1 (Scouting): When a robot i does not detect a
kin, it turns clockwise until it finds one.

Proof: The proof derives from the observation of the
speeds in (C). When S = 0 (no robot detected) and S = 2
(non-kin detected), the left wheel speed is larger than the
right one, producing a circular clockwise motion. Conversely,
when S = 1 (a kin is detected), the right wheel speed is
larger than the left one, and the robot turns counterclockwise.

Lemma 1 (Motion towards kin when kin detected): A
robot moves towards a kin robot if

Vmax∆t ≤ 3l tan−1

[√
3r

l

]
. (S1)

Proof: When a robot encounters a kin, it picks the
speeds vS=1

left = 1/3 and vS=1
right = 1. This corresponds to a

path that arcs counterclockwise, as reported in the diagram
of Fig. 4. We indicate the position of the moving robot as
pi and the position of the kin as pj . For robot i to move
towards j, its trajectory path must be an arc that does not
move past a limit point qi because, beyond this point, the
distance between i and j would increase. We can express
this condition as

|ω|∆t ≤ θ̄

where θ̄ is the angle of the arc connecting pi and qi.
Reasoning on the triangle formed by pi, pj and the ICC,

we can calculate
θ̄ = 2 tan−1 D

|R|
(6)

where we defined D = ‖pi−pj‖. The right hand side of this
inequality monotonically increases with D, hence to find the
most strict condition we need to consider the smallest value
of D possible. This value corresponds to the situation in

https://www.youtube.com/playlist?list=PL9HqYJ1IkIKVX9EsT5BY9LnBsBPTjc5bB


Fig. 5. A graphical proof that (S0) is the strictest condition. The graph
relates the length of the interwheel distance to the value of the conditions,
for a constant value of the robot body radius..

which i and j are tangent to each other; in this case, D =√
3r, where r indicates the robot radius (assumed identical

for both robots). Using (5) with the values of vS=1
left and vS=1

right ,
we obtain:

R =
l

2

1 + 1/3

1− 1/3
= l

ω =
Vmax(1− 1/3)

l
=

2

3

Vmax

l
.

Plugging these expressions in (6), we obtain the statement.

Lemma 2 (Motion towards kin when nothing detected):
Assume that a robot i saw a kin j at time t − 1, has
performed one step with vS=1

left and vS=1
right , and at time t it

detects no robot. Robot i moves towards the kin robot if

Vmax∆t ≤ 6

5
l tan−1

[
10
√

3r

l

]
. (S0)

Proof: This proof follows the same reasoning as in
Lemma 1 with the wheel speeds vS=0

left = 1 and vS=0
right = −2/3.

Lemma 3 (Motion towards kin when non-kin detected):
Assume that a robot i saw a kin j at time t − 1, has
performed one step with vS=1

left and vS=1
right , and at time t it

detects a non-kin. Robot i moves towards the kin robot if

Vmax∆t ≤ 2l tan−1

[
2
√

3r

l

]
. (S2)

Proof: This proof follows the same reasoning as in
Lemma 1 with the wheel speeds vS=2

left = 1 and vS=2
right = 0.

Theorem 2 (Chaining): A robot i eventually follows a kin
j if (S0) holds.

Proof: Because of Theorem 1, a robot that has not
detected a kin rotates clockwise until it finds one. After
this, the robot turns counterclockwise and, if (S1) holds, it
steps closer to the kin. When the robot cannot detect the kin
anymore it turns clockwise. If both (S0) and (S2) hold, then
it is guaranteed robot i moves closer to the kin. Eventually
robot i will see the kin again, and the cycle continues. This
reasoning can be repeated for any pair of robots, and a chain

Fig. 6. The average cost over 100 trials with N classes, 10 robots per
class.

self-sustains if the three conditions are satisfied at the same
time. This occurs when the strictest among them holds. As
shown graphically in Fig. 5, the strictest condition is (S0).

Theorem 3 (Looping): A chain of kin robots eventually
forms a loop.

Proof: When a chain is formed, the robot in front either
detects a kin, in which case it follows it (thus growing the
chain); or it does not detect a kin, in which case it moves
clockwise until it detects one of the kin robots that follow
it in the chain. Since every robot behind the front robot
performs the chaining behavior, this results in the chain
looping on itself until the tail is reached and the loop is
closed.

VI. EXPERIMENTAL RESULTS

A. Scalability Study

In this experiment we investigate how the segregation
behavior scales with the number of classes and the number
of robots in the environment. We varied the number of
classes from 1 to 25 and ran 100 trials with robots uniformly
randomly distributed.

Fixed number of robots per class. We studied the case
in which every class has 10 robots. The results of this are
plotted in Fig. 6. We observe that the cost increases with
the number of classes. This occurs because, as the number
of classes increases, the density of the robots increases too.
Hence, line-of-sight occlusions between robots are more
likely, navigation is more difficult, and the clusters do not
have a chance to coalesce.

Fixed total number of robots. We considered the scenario
in which a fixed number of robots is split into an increasing
number of classes. We set the number of robots to 100, so
with 25 classes 4 robots were still assigned to each class.
As reported in Fig. 7, the cost is high for small numbers of
classes but its value decreases fast and eventually oscillates
lightly. The initial high cost is due to the fact that, with
100 robots to divided among few classes, it is difficult for
every robot to join the same cluster. The clusters, instead,
tend to form large islands of kins. As the number of classes
increases, we conjecture that the oscillations are an artifact
of the random initial conditions of each experiment.



Fig. 7. The average cost over 100 trials with 100 robots divided into N
classes.

B. The Effect of Implementation Details of the Sensor

We observed that the implementation details of the sensor
have a significant effect on the behavior of the controller.

Initially, our method for determining sensor state from the
simulated range-and-bearing system was to consider all the
robots within some small angle in front of the robot and
pick the closest one. This is very similar to what would
be provided by a real-world camera that uses colored skirts
on each robot and picks the largest blob as the robot to be
detected. This sensor implementation works well and was
used in the grid search experiments. However, we found later
that, if the robots instead always prefer to react to kin over
non-kin, larger rings form more quickly and robustly. For
example, if there are two robots within the field of view
of a robot’s sensor and the non-kin robot is closer, the robot
would ignore it and execute the S = 1 logic, which drives the
robot towards the farther kin robot. Exploring exactly which
of the various implementation details have what effect on
cost is left for future work.

C. The Effect of the Beam Angle

On a real robot, there must be some finite beam angle
to the theoretically line-of-sight sensor. We ran 100 trials in
simulation with uniformly random initial distributions of 40
robots with various beam angles. Fig. 8 shows the results,
along with a diagram showing how we define beam angle.
The best beam angle we tested was 15°, and angles smaller or
larger became progressively worse. We found that at lower
beam angles, it was possible for a robot to become stuck
in groups of two or three, and the robots spent all their
time looking at each other instead of peeking around them
to find kin. At larger angles, we suspect the behavior fails
because larger beam angles cause the rings to enlarge faster,
which in turn causes the rings to be so large that they are
not considered a cluster anymore by our cost function.

D. The Effect of Beam Length

We consider what happens if the theoretically infinite-
range sensor has finite range. We use 15° half beam angle
and the same experimental setup as with the beam angle
experiments. We consider the maximum range of the sensor
as the diagonal length of the square in which the robot

β

Fig. 8. A 15° degree half beam angle is best for segregation. Lower cost
is better.

Fig. 9. Segregation is robust to small sensor beam ranges. The performance
at 35% of maximum range is indistinguishable from infinite range.

are initially distributed. In all our experiments, this square
was 5 m on each side, so we consider a range of 7.07 m
to be effectively unlimited. We report the costs for beam
ranges as a fraction of this maximum range. As shown in
Fig. 9, a beam range of 35% of the theoretical maximum
performs just as well as an infinite sensor. Below this,
the performance degrades. However, even a beam range of
7% of the maximum is more effective than zero range at
segregation.

VII. CONCLUSION

In this paper, we show how robots with only a ternary
sensor and a controller which maps sensor readings to wheel
speeds is capable of N -class segregation. This controller
is invariant to the number of classes, and using the best
found parameters we are able to construct formal guarantees
on the emergent behavior. We performed a grid search to
learn about the full parameter space, and we investigated
the effect of sensor implementation details and the number
of robots and classes on performance. Our findings indicate
that robust segregation with non-ideal sensors in reality is
possible, although not guaranteed.
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