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Abstract— Decentralized control in multi-robot systems is
dependent on accurate and reliable communication between
agents. Important communication factors, such as latency and
packet delivery ratio, are strong functions of the number of
agents in the network. Findings from studies of mobile and
high node-count radio-frequency (RF) mesh networks have only
been transferred to the domain of multi-robot systems to a
limited extent, and typical multi-agent robotic simulators often
depend on simple propagation models that do not reflect the
behavior of realistic RF networks. In this paper, we present
a new open source swarm robotics simulator, BotNet, with
an embedded standards-compliant time-synchronized channel
hopping (6TiSCH) RF mesh network simulator. Using this
simulator we show how more accurate communications models
can limit even simple multi-robot control tasks such as flocking
and formation control, with agent counts ranging from 10 up
to 2500 agents. The experimental results are used to motivate
changes to the inter-robot communication propagation models
and other networking components currently used in practice
in order to bridge the sim-to-real gap.

I. INTRODUCTION

Multi-agent systems are becoming more prevalent and inter-
connected with the emergence of low-cost radios and capable
robots [1], [2]. As agent count increases, the classification
of the research domain transitions from that of multi-robot
systems, up to about 10 agents, to one of swarm robotics,
with 10s, 100s, or even 1000s of agents [3]. Historically, the
most successful method for control with lower agent counts
has been centralized planning and optimization, with actions
sent to all agents simultaneously [4], [5]. Imperfect sharing
of information between agents in widely distributed systems
and the significant computation requirements for planning
with high agent counts are two major barriers to centralized
control approaches at the swarm level. Decentralized control,
where decisions are made locally per-agent by communicating
with one’s neighbors [6], is a common solution because it is
more readily scalable to higher agent counts. The success of
decentralized control, however, relies on the communication
between an agent and all of its neighbors, the success of which
in turn depends heavily on the number and density of agents,
data transfer rate, and communication network structure –
elements that are not typically studied at the scale of swarms
nor with the dynamical complexity of mobile robots. In this
work, we introduce a tool, BotNet, for studying the effects
of local radio frequency (RF) communication on multi-agent
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Fig. 1: System diagram for BotNet, a simulator for studying
the effects of accurate communications models on multi-
agent control. The simulator exchanges information between
a standards compliant networking simulator with a modular,
lightweight robotics simulator.

control, and use it to demonstrate how the challenges of
realistic communication can manifest during example tasks.

RF communication is a popular solution within the realm
of decentralized control due to its relatively high infor-
mation transmission rate, few restrictions on environment,
existing commercially-available communication hardware,
and more [7]. RF networks have been studied extensively,
especially in the context of stationary wireless sensor networks
(WSNs) [8], but directly translating findings for use in mobile
systems has proven difficult. Communication has proven to
be a limiting factor for deployment of novel multi-agent
controllers, as the dynamics of mesh networks can be difficult
to predict and change rapidly [9], [10], [11]. Challenges to
network reliability can come from environmental disturbances,
such as fixed or mobile obstacles, task related challenges, such
as large coverage areas, and from network-specific limitations,
such as transmission collisions. For example, in the recent
DARPA Subterranean Challenge [12], RF communications
were extremely unreliable in underground environments.
In disaster relief scenarios, the ad hoc wireless networks
established by first responders can quickly become saturated
and lead to decreased data throughput from teleoperated and
semi-autonomous robots [9].

Owing to the complexities of RF communications, many
robotics simulators do not include the option to evaluate
control with realistic communications models. The most
frequently used models for peer-to-peer links – including
line-of-sight, nearest neighbor communication, and perfect
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Fig. 2: Different propagation models used in wireless sensor
network and multi-agent control simulators. From left to right:
line-of-sight models allows agents to connect within their
field of vision; unit disk models connect with any agent within
a radius r; probabilistic disk models reduce RSSI uniformly
as distance increases from communicator; and experimental
randomness models are derived from logging RF connections
in real-world environments. The experimental randomness
model shows that there is a much weaker correlation between
position and connection than is often assumed.

communication within a certain radius – can limit effective
translation to the real world. Experiments show that many
RF networks can be realistically described by extending
the Friis free-space model (transmission power is inversely
proportional to radius) to an experimentally random model
for RF Received Signal Strength Indicator (RSSI) due to
the complicated dynamics of a given environment [13],
[14], [15]. Accurately determining who can communicate
with whom is only one of the many parts required for
translating simulated multi-agent controllers to systems with
real RF communication. Integration between the controller
design and the dynamics of information routing must be
considered in order to determine how precisely each agent
understands the intents of its neighbors and each agent in
the swarm understands progress towards the group’s task.
An accurate simulation of the network is important; if the
simulated network is too optimistic, the control tuning will
not necessarily translate to the real world. Conversely, if
the simulation is pessimistic and the controller is tuned to
accommodate a poorly performing network, it can result
in sub-optimal behavior such as slow or inefficient task
performance.

In this work we examine the effects that simulating accurate
communications has on canonical swarm robotics tasks. We
detail the construction and use of BotNet (framework shown
in Fig. 1), an extensible open source swarm robotics simulator
with an embedded RF networking simulator, which is scalable
to 1000s of agents with detailed logging and visualization.
Our experiments show that in decentralized formation control
and flocking, varying the assumptions on RF communication
(via the propagation model and scheduling functions) can
make conceptually simple tasks difficult to reliably perform.

II. BACKGROUND

In this section we detail the background needed for
understanding the interplay of network dynamics with multi-
agent systems.

Wireless sensor networks (WSNs) are connections between
many individual radios, referred to as motes or nodes. Two
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Fig. 3: Received signal strength from a 0dBm transmitter as
a function of different propagation models. The Friis free
space transmission loss model is an optimistic best case for
unobstructed transmission. In reality, environmental factors
lead to significant deviation from this ideal. The experimental
randomness model, which is based on empirical data, can
be used to approximate the behavior of signals in real world
environments. The lower bound of this experimental data,
approximately the Friis model prediction minus 40dBm, can
be used as a conservative estimate. The empirical model,
however, shows that the true signal strength will often be
better than this, providing opportunity for more optimistic
control patterns1.

motes have a Packet Delivery Ratio (PDR), denoting the
number of received packets out of the total sent, which is
often heavily influenced by the Received Signal Strength
Indicator (RSSI). In simulated networks, the relationship
between physical distance and RSSI or PDR is called a
propagation model. The algorithm controlling which mote is
speaking at a given time-step is called a schedule function. For
a more detailed review of sensor network behavior, see [13].

A. RF Propagation Models

Determining the RSSI between network nodes is crucial
to accurately simulating communication, as it is the primary
driver of PDR. Using theoretical abstractions for predicted
signal strength in simulators is necessary because RF signal
propagation is extremely difficult to model. Different propa-
gation models are visualized in Fig. 2: line-of-sight sets PDR
to be 1 for any agents with an unobstructed visual link, a unit
disk delivers all packets within a radius r, and a probabilistic
disk creates a lower bound on communication radius by
matching the lower bound of free path loss. Historically, the
RSSI, which underpins propagation models, is very hard to
model due to the complexities of electromagnetic propagation,
but recent work has shown the accuracy of an experimental
randomness model [13], [14], [15], shown in Fig. 3. In this
work we show the effects of different unit disk radii, but
focus on a radius of r = 10m because that is near to where
the PDR hits 0 for the lower bound in Fig. 3. Changing

1The connectivity traces were obtained from the http://wsn.
berkeley.edu/connectivity/project at the University of Cal-
ifornia, Berkeley. The data set used is “soda,” created by Jorge Ortiz and
Prof. David Culler.

http://wsn.berkeley.edu/connectivity/ project
http://wsn.berkeley.edu/connectivity/ project
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Fig. 4: Suboptimal schedule functions rapidly deteriorate
swarm performance. Below is a round robin scheduling
function (RRSF) grid for per-agent transmit or receive
behavior, where agents broadcast position to all agents within
range. Due to the asynchronicity of networked communication,
a delay in broadcasting can result in the position of the
important agents not being updated in a crucial timewindow.

communications hardware (e.g., to higher power transmitters
or more sensitive receivers) would correlate to a vertical shift
of the RSSI at a given distance.

B. 6TiSCH Networks

In this work we focus on 6TiSCH, a standards-compliant
RF mesh networking protocol which is designed to be
low-power, demand minimal computation overhead, and
able to integrate with existing internet services. Together,
these features make it well-suited for use in high agent-
count, low-cost autonomous systems. 6TiSCH combines
Time Synchronized Channel Hopping (TSCH) with Internet
Protocol version 6 (IPv6) [13]. Time Synchronized Channel
Hopping (TSCH) changes when and which channels are
used in wireless communications to provide more reliable
communications. A group of channel options combine to
form a slotframe, where a slot is a fixed time width interval
at a specified channel frequency.

C. Network Scheduling Functions

The control mechanism for who transmits (TX) and receives
(RX) during each slot in a slotframe is called the schedule
function. This schedule is necessary because multiple motes
transmitting on the same channel, or a mote designated
to transmit and receive simultaneously, regularly results in
dropped packets. When starting a task, the scheduling function
determines the initial communications network structure as
peers negotiate who will speak when. Different scheduling
functions have substantial variance in the amounts of time
to form and the resulting connection structures. How best to
form a network is an open avenue of research investigation
beyond the scope of this paper, and such structure changes
can be very important for the downstream task.

The 6TiSCH network protocol was designed with a Mini-
mal Scheduling Function (MSF) to negotiate connections over
time with stationary nodes. Our experiments show limitations
with using MSF for communication between mobile nodes,

namely because MSF is designed to slowly converge to a
slotframe schedule for static nodes based on negotiations,
transmission collisions, and PDR measurements over several
slotframes. For mobile nodes using this scheduling function,
communication links will frequently break down due to
rapid position changes of agents. This issue becomes further
exacerbated when scaling to larger numbers of agents because
there are only a finite number of slots where any given agent
can update its neighbors with its current position data.

To improve on network stability with the MSF, we have
implemented a round robin scheduler function (RRSF), shown
in the bottom of Fig. 4, where every new slot schedules one
mote to transmit while all other motes are in receive mode,
cycling through each mote over the course of a slotframe.
Compared to this new RRSF, the MSF is slower to converge
to an initial network topology because it entails peer-to-peer
negotiation over transmit-receive slots, and re-negotiations
make it substantially less stable to the changes in network
architecture which arise with mobile WSNs. Even with RRSF,
challenges in multi-agent control can arise when crucial agents
do not send a packet, resulting in link loss; this challenge of
communications in swarm control is shown in Fig. 4.

III. RELATED WORKS

A. Mobility in Wireless Networks

A typical wireless sensor network (WSN) is designed and
optimized as a stationary system. In networks composed of
mobile nodes, many events can result directly from physical
movement, including connection topology changes, removing
or adding of network members, unexpected node failures,
signal strength change, and more [16], [17]. Methods to
improve sensor network performance in the presence of
mobile nodes come at many layers of the communication
stack, but primarily can be characterized at the Medium
Access Control (MAC) layer – who communicates when
– and at the network layer when routing – determining
how to distribute information over multiple steps through
the network. Solutions at both of these layers are highly
application-specific and difficult to design and apply to the
general case. For example, tools at the MAC layer optimize
for mobility by being selective about which packets are sent,
for example by using tools for avoiding packet collisions [18],
[19]. Scheduling functions are used to control for transmission
timings and are also crucial for maintaining a network during
movement, so they can also be tuned for mobility, such as
efficient scheduling with delay constraints [20]. Multi-hop
routing for mobile WSNs is an open area of research, with
solutions investigating moving nodes to pass information
to another area of the network [21], but little work has
been performed optimizing specifically for multi-robot control
tasks.

Network node mobility can also be used in a complimentary
optimization problem, for example by incorporating network
maintenance and health directly into robotic task planning.
Route Swarm [22] adds a second optimization to a coordina-
tion problem in order to maximize information flow across a



network. Mobile nodes can also be used to ferry messages
between stationary nodes [23].

B. Communication in Multi-agent Robotics

Groups of robots can work together and accomplish
tasks unrealistic for a single unit, often by leveraging the
information shared by their neighbors [24]. The potential
of peer-to-peer communication is highlighted by progress
in decentralized control, but recent work has incorporated
only a limited study of realistic propagation models, schedule
functions, multi-hop behavior, and other real-world aspects
of complex networks. The simplest network abstractions used
in robotics studies focus on swarms as a graph structure,
using a model where the nearest neighbors can communicate
fully [25], [26]. Some work uses line-of-sight (LOS) instead
of purely geometric distance in order to determine which
agents can communicate [27], [28], but LOS is not an accurate
model for RF networks. The most common approach to
communications may be a radius of connectivity model, where
all neighbors within a radius can communicate [29], [30], [31],
[32], but this assumption uses inconsistent communication
radii rather than information inspired by real systems. More
advanced communications models used in the literature
include a Gaussian well model, where RSSI and PDR decrease
with increasing radius, but examples incorporating these
remain rare [33]. BotNet provides a tool that allows for simple
and modular manipulation of the propagation models to show
how the aforementioned communications assumptions change
behavior of multi-agent tasks. The different propagation
models common in the robotics literature and studied with
our framework are shown in Fig. 2.

C. Simulating Networked Swarm Robotics

Accurately simulating all aspects of a robotic swarm, in-
cluding the network, robots, and environment, is a challenging
task. Many tools for multi-agent simulation specialize at
one function – such as Gazebo [34] or AirSim [35] for
accurate robot dynamics, SwarmSim [36], SwarmLab [37],
or Scrimmage [38] for swarm control, and the OpenWSN
emulator [39] or the 6TiSCH Simulator [36] for realistic
communications models. There has been relatively little
development of simulation tools at the intersection of robotic
control and accurate network modelling. RoboNetSim [40]
and ROS-NetSim [41] are two frameworks designed to
mediate external simulators and synchronize data for ac-
curate communications in robotics. RoboNetSim acts as an
integration tool between any two robotics and networking
simulators. For example, RoboNetSim synchronizes time and
robot position between Network Simulator 2 (NS-2) [42] and
ARGoS [43], a popular multi-agent simulator. RoboNetSim
is no longer actively supported. ROS-NetSim performs a
similar function to RoboNetSim by creating a central Robot
Operating System (ROS [44]) node between the network and
robotic simulators. ROS-NetSim has promise for improving
sim-to-real transfer because many real systems are deployed
on ROS [44], but is not designed to handle high agent counts
nor standards compliant communication models, which is

(a) Robot dynamics visualizer.

(b) 6TiSCH network visualizer.

Fig. 5: BotNet is configurable to visualize continuous network
and/or robotic dynamics. A core component of the network
visualization, the connection graph, is shown in the bottom
left. Lopsided network configurations can make a swarm
sensitive to dropping members from the network during
complicated multi-agent tasks. For more details on the robotic
simulation, see [36], and for details on simulating 6TiSCH
networks, see [13].

helpful for transitioning to real WSNs. Our simulator, BotNet,
allows rapid experimentation and modularization by having
built-in network and robotic simulation, is written entirely in
Python for ease of development, and is scalable to 1000s of
agents.

IV. BOTNET: SWARMS WITH 6TISCH NETWORKS

In this section we describe the open source simulator
we have released, BotNet, which is suitable for studying
large numbers of mobile networked whileagents with real-
istic communications models. The simulator, visualized in
Fig. 1, uses the environment and agent abstractions from
SwarmSim [36] and simultaneously integrates a IEEE802.15.4
6TiSCH simulator [13]. In building the simulation framework,
we define an abstract class through which 6TiSCH can
interface with a multi-agent robotic simulator using remote
procedure calling (RPC). This allows for the transfer of the
minimal set of necessary data to guarantee time and state



synchronization between simulators. It can be extended to
transfer any type of useful information between the network
and physical layer simulators, for example allowing for
robotic and network routing control algorithms to depend on
one another, network failure information being exchanged to
take appropriate actions at the robotic controller level, and
for physical environment information to be communicated
to the network simulator to inform propagation modelling.
The code for the simulator and experiments can be found at
https://github.com/PisterLab/BotNet.

A. Design

Building on SwarmSim: The dynamics simulation for
BotNet extends SwarmSim’s minimal infrastructure [36].
To capture more realistic dynamics, we created an agent
structure VeloAgent that has continuous velocity-controlled
dynamics instead of the SwarmSim default with only posi-
tional dynamics. This extension can be abstracted further to
accommodate more realistic robotic simulations. We modified
the World class to pass arguments into the simulator
environment for configurable experimentation. Additionally,
we fixed multiple bugs preventing out-of-the-box examples
in SwarmSim from running.

World Dynamics: BotNet has a world consisting of two
portions: network and environment dynamics. The network
dynamics dictate which agents can communicate and what
information is passed between them. For example, with the
experimental randomness propagation model, when the robot
simulator moves an agent in space, the propagation model
updates its RSSI distribution per each mote-to-mote link as
a function of separation to determine the network dynamics.
The communications dynamics can be expanded to study how
data flows through multi-hop networks. The environment
dynamics controls how each agent moves through space,
and adds disturbances or constraints on motion. These can
be modified by further instantiating the class Scenario
(inherited from SwarmSim), such as for when the robotic task
is heavily dependant on the environment (e.g., indoor space
exploration). Finally, additional varieties of robot dynamics
can be encoded by adding subclasses of Agent.

Controllers: We expand the original SwarmSim architec-
ture of a controller class called Solution [36]. Agents
can be controlled using both the global environmental
information and via their internal belief states, for example
of who their nearest neighbors are based on networking
data. Alternatively, both the networking simulator and the
environmental simulator can send controls directly to agents
through their RPC endpoints in order to study event-driven
control.

Communications: The communications stack is designed
to study both low-level RF dynamics (who can communicate
with whom) and multi-hop network behavior (how to route
packets through the swarm). This paper focuses on the peer-
to-peer communication problem, dictating to each agent
which neighbors it has successfully transferred data with
in a given slotframe, but the 6TiSCH network simulator is
designed to be able to study multi-hop packet routing. The

low-level encoding of bits into packets and maintaining IPv6
standards are handled entirely within the 6TiSCH simulator.
The communications stack can interface with controller design
in multiple ways. For example, included in BotNet are
different options for when controls are updated with respect
to communication – including after each packet, after each
slotframe, or at a user-specified fixed slot-frequency. For
high agent-counts, network initialization is intractable with
simple scheduling functions (e.g., due to frequency of packet
collisions), so experiments can also be run only evaluating
the difference between propagation models.

B. Usage

Experimentation: The publicly available BotNet reposi-
tory includes many environment scenarios and control solu-
tions included at launch to foster use in multiple application
domains of multi-agent systems. The included scenarios and
solutions for flocking and formation control are easily used
with a different agent, world, or controller: all environments
and controllers are modular and changed via a configuration
file. A quickstart guide and instructions for running batched
experiments are included in the repository.

Visualization: The 6TiSCH network visualizer runs in the
browser and dynamically shows which agents are connected,
the schedule matrix, packet delivery over time, and more [13].
SwarmSim includes a OpenGL based video rendering tool to
show the physical dynamics in 2- or 3-dimensions [36]. With
the RPC server, we can synchronize and visualize these two
diagnostic tools simultaneously, as shown in Fig. 5. Currently,
only the dynamics visualization can be saved and exported as a
video, but all network and dynamic data are saved individually
after each experiment as compressed arrays in .dat files (the
frequency of saving and file type is configurable). Future work
will address simplifying and merging this logging system.

Scaling & Performance: BotNet is capable of scaling
to 100s of agents for rapid iteration on experiments with
different control tasks, communication models, and robots.
The simulator update period per dynamics step is shown
for different numbers of agents in Tab. I. To show the
challenge of network formation, we have shown the number
of timesteps it takes for the network to converge and indicate
which configurations do not converge with the 6TiSCH
simulator. For experiments where the network does not
converge within a reasonable time, we have included the per-
agent simulator scaling when running the dynamics engine
with only propagation models (assuming all agents can send
and receive packets simultaneously). Performance scaling
per-step degrades dramatically when using the real-time
visualization tool.

V. RESULTS

We have quantified and compared the performance of
multi-agent flocking and formation control over a set of
different communication paradigms (full connectivity, unit and
probabilistic disks, and the experimental randomness model).
The agents used for our experiments have simple point-mass
dynamics with a maximum velocity of 3.0× 101 ms−1. All

https://github.com/PisterLab/BotNet


Agent
Count

RRSF Network Formation
(Simulation Timesteps)

Full Network Simulation Speed
(Clock Time Per-step, ms)

Propagation Model Simulation Speed
(Clock Time Per-step, ms)

5 141.4± 21.8 6.255 8.5× 10−1

10 187.8± 71.4 2.145× 101 1.6
25 418.8± 488.2 1.272× 102 4.1
50 2485.4± 2221.4 4.955× 102 8.3
100 1.79× 101

250 5.52× 101

500 1.538× 102

1000 5.603× 102

2500 2.273× 103

TABLE I: BotNet performance characteristics. The mean and standard deviation of steps reported for network formation
are shown to highlight the variance of network formation with a set scheduling function. 10 trials per configuration were
executed with agents initialized in a line with 2m spacing. Due to the limitations of schedule functions with a full network
simulator, high agent count ( >100) networks failed to converge with the full network simulator and the RRSF regardless of
propagation model. Columns two and three indicate the mean period per dynamics step when running different numbers
of agents (the standard deviations of clock-times per step are extremely low and omitted). The Full Network Simulation
Speed is when using the full 6TiSCH simulator, but this does not scale well to high agent counts due to the challenges of
scheduling function design. To accommodate high agent counts, the simulator can instead run with a limited communications
module that can vary the propagation function (“Propagation Model Simulation Speed”), which is where experiments can
scale to 1000s of agents. These experiments are run with a 2.3 GHz 8-Core 9th-generation Intel Core i9.
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Fig. 6: Median and standard deviation flocking velocity for
different potential control connectivity radii (10 trials per
configuration, 10 agents per trial, RRSF). Average velocities
close to zero generally indicate that the flock fails to follow
the leader agent. The results show that using more realistic
propagation models in the networking simulation stack sets
bounds on the potential control flocking radius; at higher
radii, agents lose connection from the leader and potentially
their neighbors (depending on collision radius).

experiments use a round robin scheduling function (RRSF).
The reported performances are averaged over the timesteps
after networks are formed, which varies with different
scheduling functions, propagation models, and control tasks.

A. Flocking

Flocking is a common task in decentralized multi-agent
control where members of the group must co-align with their
neighbors and therefore maximize the average velocity in
a desired direction. In this section, we show how the task
can fail, either via the flock failing to form or moving with
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Fig. 7: Flock speed (median with maximum and minimum
across trials) versus number of agents with ideal vs real
communications models (10 trials per configuration, rflock =
10m, RRSF). There is a complicated relationship between
number of agents and agent separation that results in a large
variance in potential outcomes of flocking. A minimum of 0
is a trial where the agents failed to form a stable network,
prohibiting flocking from starting.

very low velocities, due to imperfect communications and
the resulting delayed or erroneous control updates. Given a
potential function, Vij , valuing a set distance between any
two agents, flocking can be formulated as an optimization
problem over the controls of each agent ui, given the velocity
~vi and position ~xi of each agent [45]:

ui = −
∑
j 6=i

(~vi − ~vj)−
∑
j 6=i

∇~xi
Vij (1)

Vij =
1

‖~xi − ~xj‖22
+

1

r2flock − ‖~xi − ~xj‖22
(2)
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Fig. 8: Example visualization and quantitative performance of decentralized line formation control with different
communications models and number of agents (16 trials per configuration and using propagation model only to avoid the
intractability high-agent count network formation; median and standard deviation are shown). (a) three time-snapshots from
an example run of the line-formation control task with BotNet’s built in visualizer. (b) the magnitude of error with different
communications models during line formation. This error arises when sub-groups of agents form multiple lines due to dropped
communication with their neighbors. (c) the time to completion of the task, i.e. when no agent is off their projected target at
a given time, varies more closely with the number of agents. Full connectivity in this example represents the minimum time
to completion and error for the randomly initialized agents, and the experimental randomness model maintains performance
at high agent counts.

The first term is for directional alignment and the second
term minimizes collisions (outward pressure) and maintains
network connectivity (inward pressure). In our simulations
with robots capable of high velocities, the discrete control
update often reached a singularity at the flocking radius
in Eq. (2) when agent separation increased beyond the
desired r2flock before a position update, leading to flock
divergence (even if connected). For this paper, we use a
modified, singularity-free flocking value function Vij to enable
flocking with discretized control inputs with varying network
connectivity:

Ṽij =
∑
j

Kcol.e
−
‖~xi−~xj‖

2
2

r2collision +Kconn.e
‖~xi−~xj‖

2
2

r2flock , (3)

where Kcol. = r2collision + rflock and Kconn. = rflock. Two
characteristic radii are important to flocking behavior: the
collision radius between agents, rcollision = 0.8m for all
experiments, and the maximum desired separation between
connected members, rflock, which we vary in experiments.
Even with the stabilized flocking gradient in Eq. (3), emergent
flocking failed to converge regularly when not using the full
connectivity propagation model. To create a more stable
flocking task, we set the initial magnitude and direction of
one master agent, ~v∗, and direct the remainder of the flock
to maintain connectivity with the following velocity-based
control inputs:

uk = ~v∗, ui = −
∑
j 6=i

∇~xi
Vij . (4)

When using over 10 agents, in order to maintain the flock, the
weighting of the leader’s velocity in the follower’s flocking
summation is increased by nagents

10 . With this new follow-the-
leader flocking, where we are testing a network’s ability to
dynamically maintain connectivity, we examine the mean

flocking velocity versus the desired flocking radius and
connectivity models. A higher flocking radius leaves the
agents less likely to collide, but makes agents more likely to
lose connection. The behavior of agents and stability of the
behavior is sensitive to the relative magnitudes of these radii.

The flock speeds with different maximum flocking radii
(i.e. the separation that agents are pressured to stay below) are
shown for the studied propagation models in Fig. 6. A similar
experiment varying the number of agents is shown in Fig. 7,
where the realistic propagation model again improves on a
disk model, though the relationship to flock velocity is noisy
and warrants further investigation. Mean velocity shows the
capability of all agents to follow the identified leading agent,
but it does not explicitly capture some emergent flocking
behavior such as oscillating agents towards and away from
the current swarm centroid (these mechanism do slow down
the mean velocity by directing movement of the agents to be
less co-aligned with the leader). The experimental randomness
model represents a substantial gain over unit disk models
designed for a conservative representation of communication
abilities. With the MSF, properly quantifying the performance
of flocking is difficult because the network often failed to
register an agent’s nearest neighbors, removing the separating
force of the potential function and collapsing the flock. While
this would result in a higher average velocity, it represents a
divergence from desired behavior.

B. Formation Control

A common area of study in multi-agent systems is that
of forming and maintaining pre-defined shapes through local
communication [5]. The experiments in this section only
use the propagation model to allow scaling to higher agent
counts (recall the challenge of network formation with
simple propagation models discussed in Sec. IV). When
communication is limited, the task can take more time to



converge or even fail, as without a global critic, local agents
do not know the success of their controller. In this paper,
we deploy agents that seek to organize themselves into a
single line, irrespective of any particular ordering of agents or
orientation of the line itself. The decentralized line formation
algorithm follows from [46]: at each timestep, every agent
locally applies least-squares to its own position and that
of all neighbors it is connected to; this produces a local
approximation of the optimal global line of convergence for
each agent, which it uses to update its next control input.
An example of the task is shown in Fig. 8a. When agents
drop from communication, consensus among desired planes
of convergence breaks down, and sometimes leads to multiple
sub-formations being formed.

We benchmark the effects of communication modeling on
this task through two metrics: convergence time and residual
error. Convergence time is defined as the number of timesteps
taken until all agents stop moving (i.e., until all agents
individually believe the line formation task has been achieved).
Note that this captures only the local belief state of the agents,
and not the true global quality or convergence of the agent
formation into a line. Residual error, calculated directly from
applying a standard line-fitting least square procedure over
the positions of all agents, shows the relative accuracy of a
given formation. During initialization, we randomly spawn
a given number of agents within an adaptive circular region
centered around the origin such that the density of agents
is approximately 5 agents/m2. The log residual error for a
group of n agents where the coordinates of each agent are
(xi, yi) is calculated as:

log

n∑
i=1

(
yi − (a0 + a1xi)

)2
, (5)

where (a0, a1) are the learned least squares parameters over
the n agents.

For formation control, the experimental randomness model
performs very closely to ideal communications, but simpler
models show a wider variation of performance. The log-scale
formation residual error is shown in Fig. 8b and the time taken
to converge to said formation is shown in Fig. 8c. Larger
effects on performance are shown between the uniform and
probabilistic disk models, where the lower communication
range has a strong effect on performance accuracy, but the
probabilistic model takes longer to converge as the agents
lose and re-establish communications with nearby agents in
the formation more frequently.

VI. DISCUSSION AND FUTURE WORK

Our experiments demonstrate the importance of the network
propagation model and schedule function on multi-agent task
performance and agent scaling. There are two ways to view
the results: first, if the prior network model is full connectivity,
introducing the more realistic model may seriously degrade

performance and require adapting existing controllers. On the
other hand, the experimental randomness propagation model,
as an improvement from the most conservative model using
the lower bound of RF path loss, can represent an increase
in potential task performance (e.g., average velocity while
flocking as shown in Fig. 6). This change also motivates
the need for refinement of network schedule functions, as
allowing agents previously represented by a conservative
unit-disc model to connect with more neighbors and move
through space with more velocity presents a higher likelihood
of losing connection with any given neighbor due to the
physical dynamics.

The experiments presented here operate at a high level
of abstraction, and do not necessarily point to specific
improvements to be made in applications of networking and
control. For example, this work has done little to optimize
the scheduling function or inform how these communications
models pose a risk for tasks where multi-hop connections
are needed to send data to a central node, such as routing
to a centralized controller during a search and rescue or
exploration task. Creating methods for networks to add and
drop members is also important, especially in the context of
realistic communications. BotNethas been designed in order
to help answer these, and other, questions in a more focused
way in the future.

Although other communication methods used in swarms
such as short-range infrared links or WiFi are not explored
here, the RPC-based synchronization scheme that links the
6TiSCH simulator to the agent physical dynamics could be
extended to include additional networking mediums in future
work exploring multi-modal communication.

VII. CONCLUSION

This work presents a framework for understanding the
performance and agent-count scaling of networked multi-
agent robotic systems by more closely studying the effects
of mobile RF communications. Although RF communication
has been used for many experimental and simulated robotic
tasks, improvements to the networking implementation using
findings from the mobile wireless sensor networks community
has been limited. Using our simulator, we have shown that
even relatively simple multi-agent control tasks become sub-
stantially more difficult when including realistic propagation
models and scheduling functions, and these difficulties are
compounded when increasing the number of agents. The
challenges we present in this paper will only be exacerbated
when transitioning to the real world, and we hope BotNet will
aid in designing new tools and techniques for networked,
multi-agent control that scale to large, flexible, robot swarms.
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