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Abstract— The tradeoff between accuracy and speed is
considered fundamental to individual and collective decision-
making. In this paper, we focus on collective estimation as
an example of collective decision-making. The task is to es-
timate the average scalar intensity of a desired feature in the
environment. The solution we propose consists of exploration
and exploitation phases, where the switching time is a factor
dictating the balance between the two phases. By decomposing
the total accuracy into bias and variance, we explain that
diversity and social interactions could promote accuracy of
the collective decision. We also show how the exploration-vs-
exploitation tradeoff relates to the speed-vs-accuracy tradeoff.
One significant finding of our work is that there is an optimal
duration for exploration to compromise between speed and
accuracy. This duration cannot be determined offline for an
unknown environment. Hence, we propose an adaptive, dis-
tributed mechanism enabling individual agents to decide in a
decentralized manner when to switch. Moreover, the spatial
consequence of the exploitation phase is an emergent collective
movement, leading to the aggregation of the collective at the
iso-contours of the mean intensity of the environmental field
in the spatial domain. Examples of potential applications for
such a fully distributed collective estimation model are spillage
capturing and source localization.

I. INTRODUCTION

The ability of a collective to estimate a quantity, called
collective estimation, has been considered as an example of
collective decision-making (CDM) [1]. The idea, that the av-
erage of many imperfect estimations can, under appropriate
conditions, be surprisingly accurate (even more accurate than
the estimation of individual experts) is the so-called wisdom
of crowds effect [2]–[4]. Researchers have shown that there
are some conditions needed to be satisfied in order to have a
“wise” crowd, and in the case of violation of such conditions
the collective intelligence may instead turn to “madness”
[5]–[7]. Although it is still an open question whether there is
any sufficient condition to make collectives intelligent, some
features, such as diversity, have been proposed as a promoter
to the wisdom of crowds [4], [8].
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In particular, the “diversity prediction theorem” states that
the heterogeneity of decision-makers makes the aggregated
estimation more accurate [9]. It is also known that, if the
estimation errors of individuals are unbiased (yet even large),
averaging the individuals estimations can cancel the errors
out and promote collective accuracy [10], [11]. On the other
hand, the effect of social influence, as a means to decrease
diversity, has been controversially discussed in the wisdom of
crowds context [10]–[12]. In this paper, we specifically focus
on the diversity of information available within the collective
prior to the social interaction, and show how the aggregation,
as a consensus mechanism, decreases the total estimation
error while keeping the collective estimation unbiased.

An increase in the accuracy of a decision-maker, whether
individually or collectively, typically comes at the expense
of a slower decision speed, which forms the well-known
speed-vs-accuracy tradeoff (SAT) [13]. This ubiquitous phe-
nomenon has been studied in a variety of systems, ranging
from animal decision-making (DM) [14], [15], to human
CDM [16], to neural systems [17]. Various factors modulate
the SAT; in natural systems, it has been shown that the
ability to modify individual responsiveness can have strong
impact on the group behavior, especially under predation
risk or environmental uncertainty [18], [19]. Similarly, in
the swarm robotic systems, the effect of different parameters,
such as neighborhood size, on the SAT has been studied [20],
[21]. In another study [22], the SAT was modulated by
algorithm parameters in CDM of 100 simulated Kilobots
with the chief objective to make binary decisions about a
feature in the environment. Changing the time for switching
from exploration to exploitation influenced the accuracy of
CDM for a swarm of simulated Kilobots in a best-of-n
problem [23].

Any system with the ultimate goal of searching must han-
dle the tradeoff between exploration and exploitation [24].
The exploration-exploitation tradeoff has been largely inves-
tigated in different CDM scenarios [23], including multi-
armed bandits [25], [26]. Although a clear definition of
exploration is context-dependent, in a spatial search for a
resource, one can identify “pure” exploration phase corre-
sponding to the accumulation of information about the envi-
ronment. It has been shown that in this case, the exploration-
exploitation tradeoff is analogous to the SAT [27]. We refer
to exploitation as the ability of agents to interact with each
other to exploit the available information within the collec-
tive. On the contrary, the exploratory behavior is considered
as any action that can possibly provide new information
to the collective from the environment and thus, increase
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the diversity of the available information. This is in line
with the definition that “exploration provides the agents with
the opportunity for obtaining information” [27]. Considering
spatial search for information in this paper, exploration has
the same meaning as diffusion of agents here. We would
like to note that diffusion typically refers to the stochastic
motion of individual particles/agents and both in physical and
biological sciences typically assumes independence between
different particles (see e.g. [28] and [29]).

The organization of the paper is as follows: in section II
we first define the problem and propose our exploration-
exploitation solution. In the simplest case, the switching time
from exploration to exploitation is a fixed parameter. We also
propose an adaptive mechanism for switching, where each
agent decides based on a simple experience-based heuristic
when to switch from exploration to the exploitation phase.
In section III, we introduce metrics to evaluate the collective
estimation performance and discuss the experimental setups.
The results are presented in section IV, before the conclusion
and future outlook.

II. METHOD

A. Problem Definition

We address the collective estimation of a group of agents
in an exploration-exploitation task. We assume that a col-
lective of N agents is meant to search the environment
and gather information of a specific, measurable, continu-
ous feature. The intensity of the feature is distributed in
the environment, and based on which the agents exchange
information and the collective arrives at a decision about the
average intensity within the specific, bounded region. The
cardinal objective of the task is to collectively decide whether
to take a specific action, based on the estimated intensity.
We also show that the proposed generic distributed process
maps to a concrete application to collectively identify and
self-organize towards (mean) isolines of a spatial variable
feature field, which may be of direct relevance for real-
world applications. Such a collective motion happens as a
result of the tendency of agents to move toward the locations
of consensus by incorporating only local social information
based on limited individual perception.

The exploration-exploitation task is decomposed into two
distinct phases, and in the following, we explain how agents
perform the sub-tasks in each phase. We also propose an
adaptive, decentralized mechanism for the agents to decide
when to switch from exploration to exploitation. The flow-
chart in Figure 2 depicts the whole method including the
proposed adaptive mechanism for switching to exploitation.

B. Exploration Phase

In the first phase of the task, agents explore the environ-
ment to reach uncovered areas in the arena by doing random
diffusion. In this phase, agents do their task completely
independent, and there is no need for information exchange
between agents, i.e. agents do “pure” exploration behavior
in this phase. Among the variety of potential exploration

methods, we modeled the random movement of agents as a
random walk, where an agent i at time step t turns a small
random increment and takes a step along its orientation ψti ,
according to

ψt+1
i = ψti + rψζti , (1)

where, ζti is a random number drawn from a uniform
distribution in the range [−π,+π], and rψ is a parameter
defining the rate of random orientation change. Once agents
update their orientation, they take a step of the fixed size λ.
The equation of motion for the update of the position vector
of agent i at time step t reads:

xt+1
i = xti + λ

[
cosψti
sinψti

]
. (2)

Agents continue to explore until they individually decide
to switch to exploitation phase. This decision can be made
by setting a fixed predefined switching time or, as we
propose later, using an adaptive mechanism in an online
manner. Therefore, the exploration phase only changes the
spatial distribution of the agents in the environment at the
onset of exploitation. We designed this model in order to
specifically investigate the role of information diversity for
collective estimation tasks, and how it can be influenced.
In our model, we consider a finite, rectangular environment
with reflecting boundary conditions. If an agent hits the wall
it turns randomly and continues the exploration. The fact that
agents do random walk enables them to eventually turn and
leave the wall even in the case that they are not able to detect
the collision.

C. Exploitation Phase

The aim of the exploration phase is to aggregate or to com-
bine the information distributed within the collective [30].

(a) (b)

Fig. 1: Snapshot of the arena showing the distribution of
the feature intensity in the environment. The yellow and red
points are the initial and final position of the agents, the green
and orange dotted lines are the initial and final intensity
contours of the collective mean, respectively. The yellow
rectangle depicts the initial placement patch of agents. The
cyan curves show iso-contours of the intensity at different
levels, and the black dashed one is the environment average
(ground truth); a: cone-shape, uni-mode function, b: multiple
peaks, multi-modal function.



The aggregation can be defined in two distinct domains,
the information space and the spatial (physical) domain. In
order to enable the agents to aggregate in both domains we
considered two different mechanisms. The first mechanism
is social interaction with local neighboring agents, which
promotes the aggregation of information, and the second one
is the motion of agents in the spatial environment in response
to the social information. Although the second mechanism
directly causes spatial aggregation, it can indirectly promote
information aggregation as well. During the exploitation
phase, agents constantly measure the intensity of the desired
feature in the environment. We assume noisy measurements
which is modeled via the following equation:

zts,i = g(xti, t) + σN (0, 1) , (3)

where agent i senses the intensity as zts,i, and g(x, t) is the
spatial distribution function of the intensity on point x at
time-step t. The second term represents the uncertainties in
perception, where N (0, 1) is a standard normal (white) noise
and σ is the noise coefficient.

The social interaction happening in this phase promotes
the wisdom of crowds effect [4], [31], by enabling the
agents to average their imperfect estimates of environmental
cues [24]. Agents locally exchange information if their
neighbors are close enough. The communication range d
defines neighborhood for agents. For a focal agent i, Ni
refers to the number of other agents j in its vicinity with
|xti−xtj | < d. We assume a restricted spatial region of interest
modeled by a rectangular arena with reflecting boundary
conditions, and a finite time budget for the collective decision
task. Note, that the consideration of a finite arena minimizes
the chance of the interaction network to collapse or fragment.
In open space, with increasing exploration time, a random
exploration behavior results in more and more agents getting
dispersed too far and getting disconnected, with a low
probability of getting reconnected. As a consequence, these
agents cannot participate in collective exploitation. Even in
a restricted arena, there is a finite probability to observe
disconnected clusters of agents during the experiment. This is
a consequence of the minimal model of independent random
exploration without any control on the connectivity of the
network.

Once an agent switches to the exploitation phase, it starts
to interact with local neighbors who are also in the ex-
ploitation phase, by exchanging information and accordingly
update its state (or opinion) about the environment. By
repeating these updates, agents gather more information from
the collective, and use their a priori data (the raw data
that they measured from the environment) to update their
posterior information. This updating of the opinion signal is
modeled as a weighted average of an individual opinion with
memory and a collective signal. To do so, at time step t, a
focal agent i collects the current local decision state ztcol,i
by averaging the votes of itself and its neighbors (Eq. 5),
which for a binary state space would result in a majority
rule. Agent i is able to communicate only with Ni neighbors
within its communication range d.

Then, agent i incorporates this instantaneous local col-
lective signal (collective signal, in short) ztcol,i and its own
memory ztm,i using a weighting factor α to update its mem-
ory. This interaction is inspired by the DeGroot model [32].
By observing the opinion of neighbors, agents revise their
own opinion in a way that their beliefs become more similar
to their social neighborhood [11]:

zt+1
m,i = αztm,i + (1− α)ztcol,i . (4)

The collective signal is calculated using the following voting
method:

ztcol,i =

zts,i +
∑
j∈Ni

ztm,j

1 +Ni
. (5)

By putting this signal into the base equation 4, three different
components show up, meaning that for an agent to make
a decision, three sources of information can be taken into
the equation: individual memory, individual perception, and
social impact. We obtain

zt+1
m,i = αztm,i +

1− α
1 +Ni

zts,i +
1− α
1 +Ni

∑
j∈Ni

ztm,j . (6)

The weighting between the three components is tuned by
α, and is influenced by the network structure. One can
generalize the model by increasing the degrees of freedom to
two, by adding an additional parameter, whereby the sum of
the weights of the three sources of information must equal
to one.

Start

No

Yes

Exploit
Measure the environment

Exchange information with neighbors

Finish

Yes:switch

Explore
Do random walk

Measure the environment

Calculate the reference signal

counter++

counter--

Move toward the locations of 
consensus

Yes

No

Adaptive Switching 
Mechanism

Termination 
condition reachedNo

Fig. 2: The flow-chart of the exploration-exploitation method
including the adaptive switching mechanism.



The second type of aggregation in physical space results
from individual agents moving towards others with sharing
a similar opinion (i.e. like-minded) about the environment,
the so-called assortative mixing, or homophily. To implement
such social movement, we define the objective function f ti ,
which is simply the difference between the current sensed
signal and the collective signal for agent i:

f ti =
1

2
(zts,i − ztcol,i)

2 . (7)

The minimum of the objective function lies where an agent
finds all of its neighbors signaling the same value as itself.
In other words, an agent assumes the true value to be the
collective signal, and tries to move to a location, where the
sensed signal matches best the collective signal. To do so,
agents need to find a (sub-)optimal step to take and update
their position according to:

xt+1
i = xti + λλλti . (8)

There are various approaches to determine the step vec-
tor λλλti that optimizes the corresponding objective function. A
classical approach is to apply a numerical pseudo-gradient
descent method. Throughout the paper, we assume that
agents have only access to local information, either from
their neighbors, or the environment at their position. Thus,
the pseudo-gradient methods that we propose do not involve
any absolute, global position of agents in the environment,
but only the last step that they took. In the following, two
variants of such a method are described.

1) Basic Pseudo-Gradient Descent Method: Agents di-
rectly evaluate the objective function by sampling the envi-
ronment while they are taking steps. The differentiation of
the objective function over the step, that an agent took in
the last time step, defines the slope of the objective function
at the position vector xti =

[
xti, y

t
i

]T
. An approximation of

the gradient is achieved by using a decaying memory of this
differentiation:

∇xf
t
i = β∇xj

t−1
i + (1− β)

∂ft
i

∂xt
i

∂ft
i

∂yti

 , (9)

∂f ti
∂xti
≈ ∆f ti
xti − x

t−1
i

,
∂f ti
∂yti
≈ ∆f ti
yti − y

t−1
i

. (10)

A random walk component is added with a weighting
factor β to the gradient of the objective function. Such
random components prevent the optimization to be greedy
and compensate for the exploration that still is needed for
optimizing the objective function. Overall, the step vector is
determined with the fixed size λ as follows:

λλλti = λ

(
−(1− rλ)

∇xf
t
i

|∇xf ti |
+ rληti

)
, (11)

in which, rλ and ηti are the weight of random walk in
the gradient descent, and a random variable drawn from a
uniform distribution in the range [−1,+1], respectively.

There are various sources contributing to the variability
of the gradient approximation. For instance, an agent in

a fixed spatial position, perceives a time-varying collective
signal as the neighboring agents are constantly updating their
estimations. In addition, the gradient is a spatial function
because not only the intensity function itself is a spatial
function, but also the neighbor set changes due to the motion
of the focal agent. So, as an alternative to the pseudo-
gradient descent method mentioned above, we propose an-
other method for approximation of the gradient that considers
these factors explicitly and makes the approximation more
reliable. Instead of directly approximating the gradient of
the objective function, it approximates the gradient of the
intensity function.

2) Extended Pseudo-Gradient Descent Method: An alter-
native of the previous gradient descent method for the same
objective function can be derived by applying some calculus:

∇xf
t
i ≈

Ni
Ni + 1

(zts,i − ztcol,i)∇xz
t
s,i , (12)

which means that each agent compares its sensed value to
the decision of its neighbors. According to the sign of this
difference decides to go either upward or downward on the
gradient of the intensity function.

D. Adaptive Switching Mechanism

For an agent to know when to finish the exploration and
switch to the exploitation phase requires a priori information
about the environment, which in most of realistic applications
is not available. In this part, we propose an adaptive, dis-
tributed method that enables agents to decide when to switch
by measuring the quality of their exploration. In other words,
the proposed mechanism quantifies the information gain of
the input, and provides an index for individual switching. In
order to explain the mechanism, we need to define signals
determining the exploration index.

The first signal is the average of lower and higher bounds
of the measured intensity that each agent has experienced
during the exploration phase. Agents need to keep track of
the min and max values of the measured signal to calculate
their average value ztavg,i as:

ztavg,i =
1

2
(min{zls,i|l ∈ {1, 2, ..., k}}+ (13)

max{zls,i|l ∈ {1, 2, ..., k}}) .

The second signal is a lag transformation of the average
signal, or alternatively called the exponentially decaying
average with factor βlag. Applying this operator on a signal
adds inertia, which makes it reluctant to change. Thus, the
resulting signal becomes more stable and converges to the
steady-state value more slowly. We refer to this signal as
ztlag,i given by:

zt+1
lag,i = βlagz

t
lag,i + (1− βlag)ztavg,i . (14)

The absolute difference between the two aforementioned
signals determines the information gain of the average signal
as:

ztref,i =
∣∣ztlag,i − ztavg,i

∣∣ . (15)



As soon as the reference signal is below a certain thresh-
old δprec the agent increments a time counter and once the
counter is above a threshold δmem it decides to switch to
exploitation; i.e. if the reference (gain) signal settles for
sufficiently long time close to zero, the agent switches to
the exploitation phase. The agent reduces the time counter
when the reference signal is above the precision threshold.
It is noteworthy that the switching from exploration to
exploitation is irreversible, i.e., it can happen only once per
agent.

III. METRICS AND SETUP

We asses the performance and speed of collective estima-
tion via different metrics to evaluate the performance of the
collective estimation process.

A. Accuracy Metrics

To define what is the exact meaning of accuracy of a
CDM, we consider the collective decision as multiple trials to
estimate a reference value, which is not easily measurable nor
observable. We need to assess how accurately these multiple
estimations can capture the reference value. There are three
terms that can represent the uncertainty of a CDM [10]. We
measure the lack of (collective) accuracy by defining metrics
that quantify the accuracy error. The following definitions
assume: the memory signal represents the agent’s estimate
ẑi = zm,i; the collective mean is the arithmetic mean of

agents’ estimates z̄col =
N∑
i=1

ẑi/N ; and the true value is the

average intensity in the environment zgt = z̄env.
1) Trueness Error: This metric indicates the overall bias

of the collective estimate with respect to the true value. To
calculate the trueness error ET, we need to know what is the
true value, which in real-world applications is hard to obtain.
Assuming the availability of such information, the trueness
error quantifies the distance of the collective mean to the true
value. We define:

ET = (z̄col − zgt)
2 . (16)

2) Precision Error: The closeness of agents’ estimations
(to each other) is described by precision error. It indicates
how diverse are the estimations (or opinions) within the
collective, thus the definition of variance quantifies the
precision in CDM. We define:

EP =
1

N

N∑
i=1

(ẑi − z̄col)
2 . (17)

3) Accuracy Error: The combination of the previous two
definitions, that is, the closeness of agents’ estimates to the
truth, is called accuracy or total error. Other terms such
as “effectiveness” of a predictor [33], or “generalization
error” [34] have been used for the same concept of accuracy
by researchers of different fields. The accuracy error EA is
formulated as:

EA =
1

N

N∑
i=1

(ẑi − zgt)
2 . (18)

4) Relation between accuracy metrics: Discriminating
between these three definitions in previous works on CDM
is rarely discussed. In estimation systems without a bias,
precision is exactly equivalent to accuracy. However, the
assumption of an unbiased system is questionable, especially
given the overall estimation uncertainties. The origin of
these errors are also different. The trueness error quantifies
the overall bias due to systematic estimation errors. The
precision error emerges from all sorts of effects that lead to
variability in individual estimates. In the context of collective
estimation, it can be regarded as the diversity of estimations.
Finally, the accuracy error is the total error representing
the estimation uncertainty that entails both errors. It can
be shown that by decomposing the total error into bias
and variance, the relation between accuracy, trueness, and
precision error reads [34]:

EA = EP + ET . (19)

This equation is fundamental to understand how diversity
of estimates is the key parameter controlling accuracy and
trueness. In the exploration phase, increasing the diversity
of estimates diminishes the trueness error by increasing the
precision error and decreasing the accuracy error (ET =
EA−EP). Whereas in the exploitation phase, decreasing the
diversity while keeping the trueness error low reduces the
accuracy error. Note that in some figures of section IV, we
used the square root of the errors to improve the visualization
of our results.

B. Speed Metric

This metric quantifying the speed of the decision process
is defined via the duration of the exploration phase. In the
pre-defined switching time setup, the decision time is the
same as the switching time. While, in the adaptive method,
this metric shows how long it takes on average for agents to
satisfy the switching condition.

C. Experiment Setup

The experiment setups are designed in a way that the
collective needs to explore in order to gather enough in-
formation from the environment, in other words, the initial
trueness error of the collective is non-zero. Initially, the
agents are distributed randomly in a small patch. Therefore,
to reduce the trueness error, agents need to explore and

TABLE I: Experiment Setup Parameters

Parameter Definition Value
N Collective Size 100
A Arena size [1.4×1.4]

A0 Initial placement patch [0.7×0.7]
d Communication range 0.30

rψ Change rate of random orientation 0.1
rλ Random walk coefficient 0.25
λ Step size 0.002
σ Intensity noise coefficient 0.025
α Weighting factor on memory 0.99
β Decaying factor for gradient descent 0.99
βlag Decaying factor for lag signal 0.9
δmem Time counter threshold 100
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Fig. 3: a) Relationship between trueness, precision, and accuracy error. The collective estimation can be considered as
multiple uncertain estimation of a true value, b) Time series of trueness error ET (solid blue line) showing the bias of the
collective estimation. The shade indicates the deviation over the individuals, i.e., the width of the upper half of the shade
equals to the precision error EP. The total accuracy error EA is the sum of trueness and precision errors (red dotted line).
Combining the previous metrics of trueness and precision, this definition of accuracy is informative enough to declare the
evaluation of the CDM performance. The dashed line denotes the switching time. All the reported variables here are the
average of 40 Monte-Carlo repetitions.

expand the diversity of estimations about the intensity of the
environmental feature. The general setup of the numerical ex-
periments is summarized in Table I. The limited requirement
for the agents supports the possibility of the method to be im-
plemented on real swarm robots with limited abilities, such
as Kilobot [35]. We use two different types of environmental
intensity fields or “benchmark functions”, a uni-modal and
a multi-modal one, in order to assess the capability of the
method for contour finding in various environments (Fig-
ure 1). The snapshots of two sample distribution functions
are depicted in Figure 1. Note that in the next sections, we
discuss about the results only for the uni-modal distribution.
Using equations 8, 11, and 12, we simulated the agents as
particles moving in a two-dimensional bounded environment.

IV. RESULTS AND DISCUSSION

A. Pre-defined Switching Time

Figure 3-b shows for the non-adaptive method in the
exploration and exploitation task. For small times, prior
to the switching time t = 2500 indicated by the vertical
dashed line, we observe two phenomena: 1) The approach
of the mean value perceived by the collective to the true
environmental average, and 2) an increasing diversity of the
collective information (shown by the shade.) These results
indicate that the driving force behind the reduction of the
trueness error is the increase in estimate diversity. Generally
speaking, the more evidence the agents gather from the
environment and contribute to the collective knowledge, the
less biased is the resulting collective estimation. During the
first phase, increasing the diversity (decreasing the precision
cf. Figure 3-a) increases the trueness of the estimation. Simi-
larly, the accuracy of the collective estimation also increases

(reducing EA) during the exploration. While the trueness
error converges asymptotically to zero, the accuracy error
stops to decrease and saturates at a finite value. Considering
the bias-variance decomposition of the total error (Eq. 19),
the remained accuracy error is due to the precision error. For
the collective to reduce the precision error, the agents start to
exploit the information by communicating and aggregating
the information.

In contrast to the exploration phase, where agents con-
tribute to enriching the collective wisdom by providing
diverse pieces of information, in the exploitation phase, it
is the collective wisdom that contributes to the estimation
of individuals. To elaborate more, consider the estimation
accuracy of a random agent at the end of the exploration
phase. It can be any random variable that is measurable in
the arena. However, at the end of the exploitation phase, each
individual’s estimation is roughly as accurate as that of any
other individual in the collective, which is also as accurate as
the estimation of the collective as a whole. With that in mind,
the second phase is where the agents are able to exploit the
potential information contained within the collective, which,
thanks to the exploration phase, is now less biased. Thus,
the exchange of the information increases the collective’s
precision and, as a result, increases the accuracy of the
collective estimation. The trueness error, however, remains
unchanged. Finally, it can be deduced that at the end of the
task, each agent can estimate accurately, as if it has access
to the full collective information. It means that if the agents
are meant to decide to do an operation based on the average
intensity of a feature in the arena, they are able to make the
decision accurately, and in a decentralized manner.



B. Switching-time vs Accuracy

Since having a priori knowledge about the switching time
is not practical or easy to obtain, it is essential to assess
how varying the switching time (tsw) affects estimation
accuracy. We evaluated the accuracy error of the collective
estimation for different switching times, while keeping the
overall duration of the experiments fixed (tf = 5000). As
shown in Figure 4, increasing the switching time from zero,
i.e. extending the time spent in the exploration phase, results
initially in a drastic decrease in accuracy error, which is a
consequence of the reduced bias of the collective estima-
tion. We associate this to the speed-vs-accuracy tradeoff in
decision making, stating that the collective has to sacrifice
the accuracy if individuals decide to switch early. Negative
effects of late switching become apparent when the time
budget for the whole task is limited. In this case, spending
too much time on the exploration restricts the time for the
aggregation both in information and spatial domains. This
again decreases the accuracy of the CDM (for tsw > 2500),
due to the higher values of precision error.

To clarify how this SAT affects the trueness, precision
and accuracy errors of the CDM we put the inset graph
showing the trueness error for the same experiments as the
main figure. Considering that the total error (EA) is the com-
bination of the precision and trueness error (Eq. 19), we can
deduce how the switching time can change the contribution
of the precision and trueness error on the total accuracy error.
These results reveal an important phenomenon in the SAT
paradigm of CDM. In contrast to individual decision-making,
where decision accuracy monotonically increases by time, in
CDM that is not the case. Because, by changing the balance
between exploration and exploitation, the share of the two
antagonistic/competitive components of the total accuracy
(trueness and precision) changes.

Moreover, we investigated three different arena sizes and
our results show that the arena size plays a significant role
in the SAT, especially with pre-defined switching time. This
study shows that for the collective to obtain a certain amount
of accuracy in larger arenas, it has to spend more time
exploring. The optimal switching time for the collective
increases with increasing arena size as expected.

C. Adaptive Switching Time

Given the difficulty to identify an optimal switching time
in unknown environments, we discuss here the performance
of the system with the individual-level adaptive approach as
introduced above. The results on the collective estimation
performance with the adaptive switching mechanism for
different arena sizes is illustrated in Figure 5. As for the fixed
switching time case, the initial agent positions are randomly
distributed in the same small patch in the differently sized
arenas. As a result, the initial estimation error is different for
each arena size; which is the reason why in larger arenas the
collective needs to spend more time in the exploration phase
for the same reduction of the bias error. The inset of that
figure shows that in larger arenas, on average, it takes more
time for the collective to switch to the exploitation phase.
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Fig. 4: Accuracy error versus switching time: Each curve
shows the steady-state accuracy error, averaged over 40
Monte Carlo simulations, for various switching time for
a given arena size. The solid and dotted lines are for
simulations where agents have perfect (σ = 0) and noisy
measurement (σ = 0.025), respectively. The black line: small
arena [1×1], the blue line: medium arena [1.4×1.4], the red
line: large arena [1.73×1.73].

To study the underlying speed-vs-accuracy tradeoff, we
varied the adaptive method parameter δprec and ran 40
independent Monte-Carlo simulations. The average decision
time and accuracy error were obtained for each parameter
value. In Figure 6, each symbol indicates the performance of
the collective with respect to speed and accuracy for a certain
value of the adaptive parameter δprec, with the increasing
lightness of the colored symbols representing lower values
of δprec. To explore the effect of limited time budgets, we
compare results for different termination (final) times tf of
the simulation. The green symbols depict the results for
tf = 5000, while for the purple symbols the time budget
for the complete scenario is increased by a factor of 10
by setting tf = 50000. Increasing δprec makes the agents
to switch earlier to the exploitation phase, which for small
δprec (tsw . 2000) results in a lower accuracy error. It is
qualitatively the same conclusion as in the fixed switching
case (Figure 4): Investing insufficient amount of time into
exploration leads to a larger collective bias, as measured by
the trueness error (see inset Fig. 4).

Comparing the performance curves (in Figure 6) for
different tf for small values of δprec (i.e., large average
switching times) shows a clear impact of limited time budget
on the SAT for the adaptive method. For low total simulation
time, we observe a U-shape curve with a strong decrease
in accuracy (increase in EA) for small δprec, corresponding
to long durations of the exploration phase. The trueness
error in this parameter regime is low independent of the
total simulation time (inset Figure 6). The source of this
overall increase in accuracy error for limited time budget
with decreasing δprec (tsw & 2000), can be traced back to an
increase in precision error due to the limited and decreasing
time available for the exploitation phase. As in Figure 4,



Fig. 5: The performance of the adaptive method with fixed
parameters in different arena sizes for δprec = 10−6. The
black, blue, and red lines correspond to small, medium, large
arena sizes, respectively. The shades show the deviation of
agents from the mean value, i.e., the precision error EP. The
dotted lines are the accuracy error EA, and the dashed lines
indicate the mean decision time of the collective. To make
the decision times more clear, the box plot of the inset is
provided.

the elevated tail of the speed-vs-accuracy graph highlights
the importance of aggregation time for collective decision-
making.

V. CONCLUSION

We have studied a collective estimation problem in a con-
tinuous spatial environment with moving agents. Agents have
the ability to measure a noisy signal from the environment
and communicate with their local neighbors by exchanging
their opinion about the intensity of a specific feature in the
environment. We propose a solution focused on exploration-
exploitation, where the switching time was considered as
a control parameter. The aim of the exploration phase is
to disperse the collective in the arena and collect diverse
measurements, while there is no exchange of information
during this phase. Avoiding agents to share their information
during exploration helps the collective by preventing the
spread of misestimation throughout the network. In contrast,
the collective aggregates during the exploitation phase, both
in the information and spatial domain. By decomposing the
total accuracy error into bias and variance (Eq. 19), we
discussed how diversity is the controlling factor, which itself
is modulated by either the random independent movements
or social interaction and collective motion.

We showed that the switching time plays an important role
in changing the balance between exploration and exploita-
tion, which directly affects the tradeoff between speed and
accuracy of the collective estimation. We highlighted the im-
portance of considering systematic bias and random variance
components of total error, especially when it comes to under-
standing the performance of the collective in the context of
a SAT. We also observed the SAT on different levels. During

the exploration and exploitation phases we observed decreas-
ing trueness and precision errors over time, respectively, and
we varied the switching time, which changes the exploration-
exploitation balance. This explains that in CDM, the SAT
pattern arises not only because of gathering more information
during the exploration phase [24], but also because consensus
is achieved by time. We stressed that the SAT paradigm in
CDM may exhibits higher complexity than in individual DM.
The difference is more critical when it comes to a limited
time budget for the whole scenario. The results proved that
making a decision slower (greater switching time) results in
a reduced trueness error of the collective estimation, while
increases precision error. By contrasting the precision and
trueness errors, we showed that aggregation of information
is a time-consuming process, and consequently, the precision
error, i.e. the error in spatial positioning, cannot be regulated
instantaneously, but is subject to spatio-temporal constraints
set by the individual movements.

Furthermore, the ability of agents to move in the spatial
domain, and the definition of the objective function, allows
the collective to move collectively and to capture the iso-
contours of the intensity distribution. There is a variety of
potential applications for such a fully distributed collective
behavior with spillage capturing and source localization [36],
being two examples. The proposed mechanisms, for the
interaction and motion, have the ability to deal with a
dynamic environment. We, however, limited our focus to a
static environment.
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