
Distributed Fair Assignment and Rebalancing for Mobility-on-Demand
Systems via an Auction-based Method

Kaier Liang and Cristian-Ioan Vasile

Abstract— In this paper, we consider fair assignment of com-
plex requests for Mobility-On-Demand systems. We model the
transportation requests as temporal logic formulas that must be
satisfied by a fleet of vehicles. We require that the assignment
of requests to vehicles is performed in a distributed manner
based only on communication between vehicles while ensuring
fair allocation. Our approach to the vehicle-request assignment
problem is based on a distributed auction scheme with no
centralized bidding that leverages utility history correction
of bids to improve fairness. Complementarily, we propose a
rebalancing scheme that employs rerouting vehicles to more
rewarding areas to increase the potential future utility and
ensure a fairer utility distribution. We adopt the max-min
and deviation of utility as the two criteria for fairness. We
demonstrate the methods in the mid-Manhattan map with a
large number of requests generated in different probability
settings. We show that we increase the fairness between vehicles
based on the fairness criteria without degenerating the servicing
quality.

I. INTRODUCTION

Mobility-On-Demand systems have been recognized as a
promising solution to reduce travel costs, traffic congestion,
and emissions [1], [2]. Passengers can specify their demands
and share vehicles with others, and it can greatly improve
transportation for people and goods. However, most research
in this area has been focused on the passenger’s perspective,
and less attention has been paid to the problem from the
driver’s perspective. The assignment objectives are usually
centered on minimizing the travel cost, which may not be
in accord with the driver’s preferences [3], [4]. Moreover,
within the vehicle fleet, due to competition, unfairness may
arise due to the uneven distribution of requests, resulting in
some vehicles being underutilized.

Furthermore, the vehicle assignment problem is usually
done via a centralized method, such as optimization [5]–
[7]. However, this method requires drivers to share a lot
of information with all other vehicles and adhere to the
assignment provided by the centralized solver. Although
fleets belonging to the same company may be willing to
follow the centralized assignment, it may not be suitable for
situations with numerous competitors or a large number of
independent drivers. As a result, using distributed methods
that require vehicles to share limited information with only
limited groups can be more favorable [8], [9].

Rebalancing policy is also studied to improve efficiency
and alleviate congestion problems [10]–[12]. Rebalancing
works by moving idle vehicles to another location based
on different criteria and purposes, e.g., directly serving
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other unassigned requests, avoiding congestion, increasing
the likelihood of picking up requests, and thus improving
performance. However, rebalancing can be also effective in
terms of fairness for the vehicles. As idle vehicles being
mobilized by rebalancing can also receive more utilities in
the future. In this paper, we use the rebalancing approach to
improve the fairness for drivers, specifically to balance their
collected utilities over a period of time.

Another aspect that has received increasing attention, is the
idea of moving from simple pick-up and drop-off requests
to more complex demands that do not require customers to
plan out trips for their tasks. This is especially important
for unmanned transportation. Moreover, requests may need
to share the same vehicle or use more than one. To accom-
modate these two problems, we use Linear Temporal Logic
(LTL) to model requests in the vehicle routing problem [13].
Temporal logics have been successful in specifying and
automating the synthesis of control and motion policies
for robots [14]–[17] and dynamical systems [18]–[20]. In
this work, we leverage automata-based techniques [21] to
compute small routing problems with LTL requests, and
employ a distributed auction algorithm to assign the requests
to vehicles.

The contributions of this work are the following: 1)
We define a distributed auction assignment algorithm with
temporal logic demands where all computation is performed
based on inter-vehicle communication and no vehicle has
a special role (e.g., centralized bidding), 2) We propose a
rebalancing scheme to move idle vehicles to more rewarding
locations that takes into account fair distribution of vehicles’
cumulated utility, 3) We show via case studies in a large
environment in mid-Manhattan with a large fleet of vehicles
and a number of requests that our distributed assignment
method does not degenerate the performance of the Mobility-
on-Demand system compared to a centralized approach.
Moreover, our algorithms significantly reduce the deviation
of utility and increase the minimum utility, which leads to
fairer distribution for vehicles.

II. PRELIMINARIES

In this section, we introduce the notation used in the paper
and review concepts in formal language and automata theory.

We denote the set of real and integer numbers as R and
Z, respectively. The real and integer numbers greater than a
are denoted by R>a and Z>a. Similarly, we have R≥a and
Z≥a for real and integer numbers greater or equal to a. For
a finite set S, we denote its cardinality and the power set as
∣S∣ and 2S .
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Definition 1 (Finite Automaton). A deterministic finite state
automaton (DFA) is a tuple A = (QA, qAinit,2Π, δA, FA),
where QA is a finite set of states; qAinit ∈ Q is the initial
state; 2Π is the input alphabet; δA ∶ QA × 2Π → QA is a
transition function; FA ⊆ QA is the set of accepting states.

An input word σ = σ0σ1 . . . σn over alphabet 2Π generates
the trajectory of the DFA q = q0q1 . . . qn with qinit = q0 and
qk+1 = δA(qk, σk), for all k ∈ {0, . . . , n − 1}. The trajectory
q is called accepting if qn ∈ FA.
Definition 2 (scLTL). A co-safe Linear Temporal Logic
(scLTL) formula over a set of atomic propositions Π is
defined recursively as:

ϕ ∶∶= π ∣ ¬π ∣ ϕ1 ∨ ϕ2 ∣ ϕ1 ∧ ϕ2 ∣◯ϕ ∣ ϕ1Uϕ2 ∣ ◊ϕ,
where ϕ1, ϕ2 are scLTL formulae, π ∈ Π is an atomic

proposition, ¬ (negation), ∧ (disjunction), and ∨ (conjunc-
tion) are Boolean operators, and U (until), ◯ (next), and ◊
(eventually) are temporal operators.

The semantics of scLTL formulae are defined over infinite
words with symbols from 2Π. Intuitively, ◯ϕ holds if ϕ
is true at the next position in the word; ϕ1Uϕ2 expresses
that ϕ1 is true until ϕ2 becomes true; and ◊ϕ expresses
that ϕ becomes true at some future position in the word.
The formal definition of the semantics can be found in [22].
Given a word σ over the alphabet 2Π that satisfies the scLTL
formula ϕ, we denote the satisfaction as σ ⊧ ϕ. A finite
word σ satisfies scLTL formula ϕ if for all infinite σ′ the
concatenated (infinite) word σσ′ ⊧ ϕ. The finite word σ is
minimal if none of its prefixes satisfies ϕ.

scLTL formulae can be translated to DFAs using off-the-
shelf tools such as scheck [23] and spot [24].
Definition 3 (Weighted Transition System). A weighted
transition system (WTS) is a tuple T = (S, sinit ,D,W,Π, L),
where S is a finite set of states, sinit ∈ S is the initial state,
D ⊆ S ×S is a transition relation, W ∶D → R≥0 is a weight
function, Π is a set of atomic propositions and L ∶ D → 2Π

is a labeling function.
The transition from the current state s at time t to the next

state s′ is reached at time t′ = t +W ((s, s′)) if (s, s′) ∈ D.
A trajectory of T is a finite sequence s = s0s1 . . . sn, such
that s0 = sinit, and (sk, sk+1) ∈D for all k ∈ {0, . . . , n − 1}.
The length of the trajectory s is n, and its total duration is
W (s) = ∑n−1

i=0 W ((si, si+1)). The output trajectory induced
by s is o = L(s0)L(s1) . . . L(sn). A finite trajectory s
satisfies a scLTL formula ϕ, denoted s ⊧ ϕ, if the induced
output trajectory o = L(s) satisfies ϕ.

III. PROBLEM FORMULATION

In this section, we formulate the fair mobility-on-demand
problem with requests expressed as scLTL specifications.
The objective is to sequentially generate assignments for
incoming scLTL requests to a fleet of vehicles, with the
goal of minimizing the total travel time and ensuring fairness
among the fleet of vehicles.
A. Vehicle, Environment, and Request Models

The fleet of vehicles V = {v1, v2, . . . , vp} is deployed in
a road network with intersections S and roads D ⊆ S × S.
The transition (s, s′) ∈D represents a road from intersection

s to s′. Each vehicle v ∈ V is initially located at sv,init ∈
S. All vehicles’ motion evolves in discrete time t ∈ Z≥0
synchronized via a global clock. The traversal duration of
road (s, s′) is W ((s, s′)) ∈ Z>0.

Vehicles are tasked with satisfying a finite set of request
R = {r1, r2, . . . , rm} that arrive sequentially over the horizon
time H ∈ Z>0. A request r ∈ R is defined as a tuple r =
(πpick,r, ϕr, treq,r, ρr,Ωmax,r,∆max,r), where
● πpick,r is a proposition marking the pick-up location;
● ϕr is the scLTL formula specifying the request;
● treq,r ∈ {0, . . . ,H} is the request’s arrival time;
● ρr ∈ Z>0 is the number of required seats;
● Ωmax,r ∈ Z>0 is the maximum waiting time, i.e., the

latest accepted pick-up time is treq,r +Ωmax,r;
● ∆max,r ∈ Z>0 is the maximum allowed delay.
The maximum transportation capacity of vehicle v ∈ V is

Capv ∈ Z>0, while the available capacity at time t is cv(t) ∈
{0, . . . ,Capv}. Vehicle v is available at time t if cv(t) > 0,
it is occupied if cv(t) = 0, and vacant if cv(t) = Capv . The
sets of available and vacant vehicles at time t are Va

t and
Vvac
t , respectively.
The delay ∆r is the difference between the actual and opti-

mal satisfaction duration. Formally, ∆r =maxv∈V tdrop,r,v −
treq,r − t∗r , where tdrop,r,v is the drop-off time of request
r by vehicle v, and t∗r is the optimal satisfaction time, i.e.,
the minimum duration to fulfill the request if a vehicle picks
up the request at t = treq,r and does not share with other
requests. We require that ∆r ≤∆max,r.

At current time t ∈ Z≥0, a request is active if treq ≤ t and it
has not been picked-up yet; a request is in progress if it has
been picked up and not completed. The sets of active and in
progress requests at time t are Ra

t and Rp
t , respectively.

An assignment Asgt ∶Ra
t → Va

t at time t = treq,r allocates
active requests to vehicles. If the assignment Asgt(r) = ∅,
then r is unassigned at time t. In case this holds for all
t ∈ {treq,t, . . . , treq,r + Ωmax,r}, r is unassigned. Requests
that are in progress cannot be reassigned, and vehicles need
to be available before picking up new requests. Between
request arrivals times, i.e., t ≠ treq,r, assignments do not
change. The travel duration for the vehicle v fulfilling request
r starts from the time tasgmt,r,v when r is assigned to v until
v is dropped off at time tdrop,r,v . Formally, we have

σv(r) = tdrop,r,v − tasgmt,r,v, (1)
Our objective is to minimize the total traveling duration

for all requests defined as
J = ∑

ri∈R

σvi(ri), (2)

where vi is the vehicle satisfying request ri.
This problem can be solved using centralized methods

such as optimization techniques [25], [26]. However, central-
ized approaches may not be able to handle disruptions well
in real-time, e.g., vehicles entering and leaving the system
and changes in the environment and requests. These issues
are compounded by the need to collect information into a
central node for decision making which may lead to delays.
Moreover, for vehicle-request problems, each vehicle usually
makes individual choices, and vehicles may not be willing to
disclose the information to others. Therefore, in this paper,



we seek distributed assignment methods that avoid the need
for centralized data collection.

We assume that all agents can communicate with each
other, e.g., via broadcasting to the entire fleet or a subgroup
of vehicles. In this paper, a distributed assignment Asgt at
time t is defined as a assignment function computed by each
vehicle based on messages exchanged with other vehicles,
and no vehicle takes a special role in decision-making and
coordination.

Problem 1 (Distributed Assignment). Given the set of vehi-
cles V deployed in environment T , and the set of requests
R = {r1, . . . , rm} arriving sequentially over time horizon H ,
compute distributed assignments Asgt at each sample time
t ∈ {0, . . . ,H} and routes sv for all vehicles v ∈ V such that
the total servicing time J is minimized.

B. Fairness

For vehicle assignment problems, the serving rate or cus-
tomer satisfaction is a crucial factor. However, it is equally
important to consider drivers’ viewpoints in terms of the
fairness of allocating requests. The utility for a vehicle v for
a given time period h is the sum of the onboard passengers:

Uv =
h

∑
t=0

(Capv − cv(t)). (3)

Vehicles’ utilities may vary greatly over the service horizon
H . Thus, it is important to ensure fair assignment of requests
while maintaining good overall performance of the fleet in
terms of the total travel time for requests satisfaction J .

There are different criteria to quantify fairness, such as
envy-free fairness, max-min fairness, and proportionality
fairness [27]. In this paper, we use the max-min utility and
deviation of utility as the two quantities to measure the
fairness of the vehicles.

The max-min fairness criterion emphasizes the maximiza-
tion of the least utility that a vehicle obtains, i.e., it captures
the lower bound or the worst case of utility. This criterion
is widely used in many applications [28]. The deviation of
the utility fairness criterion, on the other hand, captures the
utility distribution from the perspective of the entire group,
as it directly reflects the utility spread among all vehicles.

In the vehicle assignment scenario, multiple factors can
contribute to significantly uneven utility results. Vehicles’
location in the road network impacts their chances of picking
up requests due to spatial and temporal variations of requests’
arrival. Secondly, differences in utility between requests and
their limited number can lead to some vehicles servicing high
utility requests while others are assigned lower utility ones
or not at all. This may happen even in the case of a uniform
probability distribution of requests over space and time.

The first case, due to spatial and temporal variation, rebal-
ancing strategies can be used to mitigate the effects of request
arrival differences over the road network. Rebalancing works
by moving idle vehicles to another location to increase their
chances of being assigned requests.
Problem 2 (Fair Rebalancing). Given the set of vacant
vehicles Vvac deployed in environment T , compute the
rebalancing scheme such that the chances of idle vehicles
picking up requests in the future increase.

For the second case, due to requests’ utility differences,
we impose that assignments are distributed in a fair way in
the sense of max-min and deviation of utility criteria.
Problem 3 (Distributed Fair Assignment). Given the set of
vehicles V deployed in environment T , and the set of requests
R = {r1, . . . , rm} arriving sequentially over time horizon H ,
compute distributed assignments Asgt at each sample time
t ∈ {0, . . . ,H} and routes sv for all vehicles v ∈ V in such
that J is minimized and vehicles’ utilities are allocated fairly.

Summary of the approach.
For a fixed time sample interval, we conduct an auction for

each active request to available vehicles. First, we construct
product automata between the motion model (road network)
of a vehicle and the DFAs corresponding to the requests.
The route is then computed via the shortest path method
(e.g., Dijkstra algorithm) applied on the product automaton
graph and projection onto the motion model. If the maximum
waiting and delay time is permissible, we allow the vehicles
to generate the bid for the requests. After assigning the
requests to the vehicles based on the auction results, we
conduct a rebalancing for each idle vehicle to move vehicles
to more ideal locations.

IV. SOLUTION
A. Fair Auction Based Assignment Scheme

The auction algorithm is a widely used approach for
solving assignment problems in a distributed manner. The
algorithm consists of two phases: the bidding phase and the
assignment phase. During the bidding phase, each agent (in
our case, each vehicle) makes a bid for each item (i.e.,
request). Then, during the assignment phase, the item is
assigned to the agent with the highest bid. This process is
repeated iteratively until there is no change in the assignment.
The auction algorithm is known to be optimal and has a
polynomial runtime for assignment problems [29].

We modify the standard algorithm to account for fair
allocation in addition to optimizing an objective function.
In our specific setting, the objective is to minimize the total
traveling time, as defined by equation (2), with the requests
as the items for auction and the vehicles as the bidders. To
consider fairness, we add an intermediate Weight Correction
Phase between bidding and assignment. The auction algo-
rithm we use for our vehicle assignment problem is outlined
in Alg. 1. In the algorithm, we use two communication
primitives: (a) broadcasting function broadcast(msg,V )
that sends message msg to all vehicles in V , and (b) receive
function recv(v′) that returns the message sent by agent v′.
We assume that no packages are lost, and they are received
in the same order they are sent. Thus, the receive function
recv() is used in blocking mode.

To find the minimum of the objective function, the auction
algorithm is used in reverse. We use the travel time with
opposite sign to compute the first and second most rewarding
requests in lines 5-6 based on the utility value defined
in equation (3). Specifically, the vehicles prefer requests
that induce lower travel times. During the bidding phase,
each available vehicle places a bid for the most desirable
request. This utility value takes into account the constraints
of maximum waiting time and the delay time for the request.



The bid amount is calculated in line 7 and is the sum
of the request’s price, the difference between the first and
second most desirable request’s utility difference, and a slack
constant variable ϵ. This constant is typically set as 1

N
,

where N is the number of bidders. The price of a request
is initialized with the negative of the smallest travel time
of any request for the vehicle at line 3. Agents broadcast
their preferred request (line 8) to the fleet, and construct
the bidding group G of other agents interested in the same
request (line 9).

After the bidding phase, a weight correction phase is added
to promote fairness. The weight correction is computed using
equation (4), which adjusts the original travel utility based
on the difference between the vehicle utility and the average
utility of all vehicles in the same bidding group G. This
allows vehicles with low history utility to increase their
bids beyond their actual bidding capability, giving them a
greater chance of winning the auction. The weight correction
phase aims to balance the auction and prevent vehicles from
continuously dominating the auction process.
WeightCorrection(v,Uvavg,G) = α ⋅ (Uv −Uvavg,G), (4)

where α is a constant tuning parameter and G is a bidding
group of vehicles. Uvavg,G is the average history utility
for all v ∈ G. We employed the weight correction in our
previous integer linear programming (ILP) approach [26],
which requires all vehicles to send their history utility to a
central node. However, since our goal is to have a distributed
implementation, we restricted the weight correction to be
performed only within the same bidding group. This means
that vehicles that bid on the same request adjust their bids
only locally inside the group. This modification enables
us to maintain the distributed nature of our approach. The
communication between agents in the bidding group G is
captured in lines 10-11 of Alg. 1. Vehicles within G exchange
their utility histories computed using equation 3 to compute
the mean utility value of the group (line 12).

Finally, during the assignment phase, the request is al-
located to the vehicle that offers the highest bid (lines 14-
17), and the auction is executed iteratively. In the subsequent
rounds, other vehicles can increase their bids until the highest
bid and bidder remain the same. Note that the price of the
request is also updated at the end of each round at line 18.

It is important to note that even though the auction
algorithm restricts a vehicle to bid for only one request at
each round, we can still enable vehicle sharing by allowing
vehicles with cv > 0 to participate in the next auction, as long
as the total capacity does not exceed the maximum Capv [9].

B. Automata-based Route Planning
To conduct an auction in the bidding phase, we need

to determine which vehicles are eligible to bid for which
requests and what the utility (essentially the route) is for each
request. We obtain this information through the construction
of product automata.

The requests are represented as scLTL formula and ve-
hicles are represented as a WTS. Formally, we have the
Tv = (S, sinit ,D,W,Π, L) that captures vehicle v’s motion
in the environment. The set of propositions Π includes the
active requests’ pick-up propositions πpick,r.

Algorithm 1: Fair Auction Algorithm
Input: T – the road map, Va – available vehicles, R -

active requests
Output: Asgt – Assignment Function

1 foreach v ∈ Va do
// Initialization

2 Compute σv(r) for each r ∈R using Pr = T ×Ar

3 pj ← −minr∈R σv(r) // Set initial price
4 while Asgt changed do

// I. Bidding Phase
5 Uv,j ←maxrj∈R(−σv(rj)) // Find the

most rewarding Request j
6 Uv,k ←maxrk∈R∖{rj}(−σv(rk)) // Find the

second most rewarding Request k
7 Bv,j ← pj +Uv,j −Uv,k + ϵ // Initial bid
8 broadcast(rj , Va)

// Group of vehicles bids for rj
9 G← {v} ∪ {v′ ∈ Va ∖ {v} ∣ recv(v′) = rj}

// II. Weight Correction Phase
10 broadcast(Uv , G) // Broadcast to G
11 UG

v′ ← recv(v′),∀v′ ∈ G ∖ {v}
// Compute mean utility history
for G

12 Uvavg,G ← 1
∣G∣ ∑v′∈GUG

v′

// Update bid
13 Bv,j ← Bv,j +WeightCorrection(v,Uvavg,G)

// III. Assignment Phase
14 broadcast(Bv,j , G) // Broadcast bid to

G
15 Bv′,j ← recv(v′),∀v′ ∈ G ∖ {v}
16 v∗ ← argmaxv′∈GBv′,j

17 Asgt(rj)← v∗ // Assign request to
the largest bidder

18 pj ← Bv∗,j // update price

19 return Asgt

For every available vehicle v and active request r, we
construct a weighted product automaton Prv = Tv ⊗Ar. ⊗
is a product operation. Tv is the transition system for the
vehicle v with initial position sinit set as the vehicle’ current
position. If the vehicle already has an onboard passenger
r′, we construct the weighted product automaton Pv,r,r′ =
Tv ⊗ Ar ⊗ Ar′ to validate if the r can be served together
without violating the constraints for r and r′. After obtaining
the product automata, we use graph search methods such as
Dijkstra’s algorithm to compute an admissible path [30].

The formal definition of the product automaton is the
following.
Definition 4 (Weighted product automaton at time t). The
weighted product automaton P = T ⊗A1⊗. . .⊗Am of vehicle
v at time t is a tuple (QP ,Qinit,P , δP , FP ,WP), where
● QP ⊆ S ×QA1 × . . .QAm ;
● Qinit = {sj , q1,k,⋯, qm,k}, where sj is the current state

of vehicle v in the map;

qi,k =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

δi (πpick,i, L (sj)) if tpick,ri = t
δi (qi,k−1, L (sj)) if tpick,ri < t
qAi

init else,
,

where tpick,ri is the pick-up time for ri, k is the current
(event) step associated with time t, and qi,k−1 are the
states of the request at the previous step;

● δP ⊆ QP ×QP is a transition function:
((s, q1, . . . , qm) , (s′, q′1, . . . , q′m)) ∈ δP if and only if



(s, s′) ∈ R and (qi, L (s′) , q′i) ∈ δi;
● FP = {(s, q1,k, . . . , qm,k) ∣ qi,k ∈ Fi,∀i ∈ {1, . . . ,m}};
● WP : δP → R+ is the weight function given by
WP(((s, q1, . . . , qm) , (s′, q′1, . . . , q′m))) =W (s, s′).

A satisfying path q in P connects the initial state Qinit with
a reachable final state FP . If such a path exists, we project
it onto T by taking the first component of each state in the
state path q.
C. Fair Rebalancing

In real-life scenarios, the road map for request generation
is often non-uniformly distributed. For instance, certain areas
like the city center or airport have a higher probability
of generating requests than rural areas where requests are
infrequent. As a result, due to the maximum waiting time and
maximum allowed delay, there can be a significant difference
in utility among vehicles, leading to an unfair distribution of
utility for the vehicles. To address this problem, we propose
a rebalancing scheme that reduces these unfair effects. For
each node s ∈ S in the road map T at time t, we calculate
the potential utility Pt(s) as:

Pt(s) =
Prt(s)
1 +Nv,t

∗Uravg , (5)

where Prt(s) is the probability of a request arriving at
node s at a given time t; Nv,t is the number of nearby idle
vehicles at time t for a fixed distance range, and Uravg is
the average utility for requests arriving at s which can be
obtained from the history data. The term Nv,t + 1 is added
in the denominator to avoid division by zero. This formula
considers both the probability of a new request arriving
and the number of competing vehicles nearby, reflecting the
potential utility for a vehicle at location s and time t.

We simplify the problem by assuming Prt(s) is indepen-
dent of time and only related to locations. However, for a
large road map and a significant number of vehicles, simply
calculating the highest utility Pv,t(s) for every vehicle v and
rebalancing the vehicle to the corresponding location s can
be expensive and inadvisable for several reasons:
(1) The highest location can be the same for all vehicles,
which can be seen from the independence with respect to a
specific vehicle in equation (5).
(2) Rebalancing itself will require some cost as it will
require idle vehicles to move to another location. Therefore
the highest potential location that is far away may be less
attractive than a location with a smaller value but close.

To deal with these problems, we use a slack parameter and
a distance search window. The rebalancing target location is
calculated in Alg. 2:

To implement the rebalancing scheme, we first sort all
potential rebalancing locations based on their degree or
distance from the initial location, as specified in line 2 of
Alg. 2. The distance search window kw(v) is used for vehicle
v to ensure that the rebalancing search is not performed to a
location that is too far away preventing making unnecessary
searches. Then in line 5, starting from the first-degree nodes,
or the nearest nodes, we then find the maximum potential
utility node using equation (5). To ensure that vehicles take
account of both the distance and utility, we use a constant
slack variable ka > 1 in line 7 to increase the perceived cost

Algorithm 2: Fair Rebalancing Algorithm
Input: T – the road map, Vvac – available vehicles,

kw – Distance Search Window
Output: Rebt – Rebalance Function

1 foreach v ∈ Vvac do
2 Gv ← Neighbor(sv,init,T , kw(v))
3 Pv,t(sv,tar)← Pv,t(sv,init)
4 sv,tar ← sinit

5 foreach Ndeg,i ∈ Gv do
6 Pv,t(sv,max)←maxsj∈Ndeg,i Pv,t(sj)
7 if Pv,t(sv,max) ≥ Pv,t(sv,tar) ∗ ka then

sv,tar ← sv,max

8 Pv,t(sv,tar)← Pv,t(sv,max)
9 Rebt(v)← sv,tar

10 return Rebt

of rebalancing to outer degree nodes or farther nodes. The
vehicle will only choose to rebalance to a high degree node
if the potential utility is significantly greater than the current
target rebalancing node.

The auction and rebalancing are implemented sequentially.
At a given time sample frequency, an auction is conducted to
assign available vehicles to every unassigned request. Then
the rebalancing is conducted to move idle vehicles to move to
better locations. Therefore, vehicles are either in progress to
serve requests or in rebalancing to move to another location.

V. SIMULATION
In this section, we present the simulation results to demon-

strate the performance of distributed fair assignment and the
rebalancing scheme.
A. Simulation Specifications

The road map for the simulation is used as the Mid-
Manhattan map, which contains 184 nodes, and the weights
for every edge are acquired by real travel duration from
taxi driving data [25]. We varied the request generation
probabilities and the number of requests to evaluate the
fairness performance of the system. Three different maps
were used for the simulations, namely the center map, corner
map, and two peaks map, with request generation probabil-
ities as shown in Fig. 2. These maps are characterized by
high probability areas where requests are more likely to be
generated. So that it can reflect the uneven distribution of
requests in real-life scenarios.

The simulation duration is set to 1000 seconds with vary-
ing the number of vehicles and requests. The initial positions
of all vehicles are generated in a uniform distribution. The
scLTL formulas for the requests are generated from the
following scLTL pattern stochastically.

scLTL pattern:
ϕ̃1 (spick, s1, s2) = ◊(spick ∧ ◊ (s1 ∧ ◊ (s2))),
ϕ̃2 (spick, s1, s2) = ◊(spick ∧ ◊ ((s1 ∨ s2) ∧ s3)),

ϕ̃3 (spick, s1, s2, s3) = ◊(spick ∧ ◊ (s1 ∧ (s2 ∨ s3)))
where si are locations in the road map. The arrival time
is generated according to a uniform Poisson process. The
locations are chosen based on the corresponding probability
of request generation in the road map.

Throughout the simulation, we perform the auction and
rebalancing every 10 seconds. Additionally, we set the max-
imum waiting time and delay time to 40 and 100 seconds.



Fig. 1: Different settings for the Mid-Manhattan Map: the colors in nodes represent the probability of a new request arrival.

Fig. 2: rebalancing performance in different map settings

Fig. 3: Performance comparison for rebalancing and weight
correction (center map: 20 vehicles, 300 requests) from the
minimum utility, utility deviation and average utility

B. Simulation Results
In the simulation results shown in Fig. 2, we consider 20

vehicles and a varying number of requests from 200 to 400
to demonstrate the effect of the rebalancing strategy. Each
data point in the figure is the average result of 20 simu-
lations. The fairness is compared using the minimum and
deviation utility. Fig. 2 shows we can increase the minimum
utility and decrease the deviation utility consistently without
degenerating the serving rate in all three map settings.

Fig. 3 shows the comparison between the planning with
and without weight correction and rebalancing settings. We
can see the improvement of introducing rebalancing or the
weight correction from the two fairness criteria; the settings
that adopt the rebalancing or weight correction can increase
the minimum utility and decrease the deviation utility. And
the setting performs best when it uses the rebalancing and
the weight correction together.

In Fig. 3, we also notice that using balancing or weight
correction does not affect the average utility. This suggests
that although we cannot increase the total utility for the entire
system, we can adjust the utility distribution in a fair way by
increasing the minimum utility and decreasing the deviation.

Fig. 4: Comparison between ILP and auction without using
rebalancing and weight correction

Comparison with the centralized approach: here we
present the performance comparison between the auction
algorithm and centralized algorithm using ILP [26]. Al-
though both algorithms can obtain the optimal solution,
the algorithms’ implementations are different. First, the
ILP setting allows more than one request to be assigned
together at one step due to the optimization nature, whereas
the auction algorithm can only assign one request to one
vehicle at one-time. Furthermore, since both methods are
run continuously throughout the simulation, it is not possible
to obtain the global optimal solution. Therefore, the current
optimal solution does not imply the global property, as future
events cannot be predicted at the current time step.

For the comparison shown in Fig. 4, we compare the
auction and ILP methods for the setting with 20 vehicles
and a varying number of requests. While both approaches are
to minimize the traveling time, this is not easy to quantify
and compare directly. Thus, we evaluate the average utility
and the number of unassigned requests. The average utility
and the number of unassigned requests capture the running
quality from the requests and vehicles’ perspectives. For
the comparison, we used both the auction and ILP settings
without rebalancing and weight correction. We see that the
two approaches perform very similarly which is expected.

VI. CONCLUSIONS

In conclusion, this paper presents a novel approach to
the problem of fair assignment and rebalancing in Mobility-
On-Demand systems. Our proposed distributed assignment
method reduces the need for a central authority for coordi-
nation. The introduction of the rebalancing scheme leads to
a fairer distribution of requests for vehicles, as demonstrated
by an increase in the minimum utility and a decrease in
the utility deviation compared to the baseline. By modeling
requests using temporal logic formulas, our approach accom-
modates complex demand patterns. The results of our study
demonstrate the efficacy of the proposed method in achieving
fairer vehicle assignment in Mobility-On-Demand systems.
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