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Abstract— Autonomous flying robots, such as multirotors,
often rely on deep learning models that make predictions based
on a camera image, e.g. for pose estimation. These models can
predict surprising results if applied to input images outside the
training domain. This fault can be exploited by adversarial
attacks, for example, by computing small images, so-called
adversarial patches, that can be placed in the environment
to manipulate the neural network’s prediction. We introduce
flying adversarial patches, where multiple images are mounted
on at least one other flying robot and therefore can be placed
anywhere in the field of view of a victim multirotor. By
introducing the attacker robots, the system is extended to an
adversarial multi-robot system. For an effective attack, we
compare three methods that simultaneously optimize multiple
adversarial patches and their position in the input image.
We show that our methods scale well with the number of
adversarial patches. Moreover, we demonstrate physical flights
with two robots, where we employ a novel attack policy that
uses the computed adversarial patches to kidnap a robot that
was supposed to follow a human.

I. INTRODUCTION

With the help of Deep learning (DL) models, unmanned
aerial vehicles (UAVs) can detect and follow objects or
human subjects in their environment. Tracking subjects is
usually performed with estimations of the position and
orientation angle, i.e., the pose, of the subject. For pose
estimation, the UAVs are equipped with a camera, and the
camera images are then forwarded to a DL model predicting
the pose relative to, e.g., the UAV’s frame of reference. These
poses can be utilized to generate new desired waypoints for
the UAV, enabling the UAV to follow the subject.

It has been shown that DL models are susceptible to
adversarial attacks [1, 2]. Adversarial stickers or patches
have been widely applied in the autonomous vehicle domain
to effectively force false predictions of neural networks
(NNs) without the need to access the data or hardware [3–6].
This can pose risks in particular when DL models are applied
to control autonomous systems.

In this work, we propose to place adversarial patches in
the field of view of a victim multirotor’s camera to force it
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Fig. 1. The attack scenario of this work: a multirotor carries two adversarial
patches (printed one per side). The adversarial patches are able to prevent
the NN from predicting the relative pose of a human subject in the input
image, regardless of the human’s position in the image. Instead, the NN
predicts a pose previously chosen by the attacker policy that selects a patch
and the relative position of it with respect to the victim.

onto a new desired trajectory, i.e., kidnapping it, utilizing
at least one additional attacker multirotor. The computed
adversarial patches can be printed and affixed to the attacker
(see Fig. 1). Placing the patches in the environment in
this way allows for a more flexible and prolonged attack
scenario compared to the permanently placed patches of
the state-of-the-art methods. Specifically, the attackers can
directly control the placement of the patch by changing their
relative positions [7]. Additionally, we expect that multiple
adversarial patches allow for more controllability over the
victim. Switching between patches can be easily achieved
by exploiting the yaw degree of freedom.

We assume that an attacker multirotor is limited to carry
up to four patches (in which case they would be affixed on
the sides of a cuboid), due to limited payload capabilities
and to ensure that at most one of these patches is visible
for the victim UAV. If more than four patches are needed to
achieve the desired controllability over the victim, multiple
attacker multirotors can perform the attack.

In this paper, we focus on describing the optimization
of multiple adversarial patches and their position in the
input image and demonstrate with physical flights that the
computed patches can be used to kidnap an autonomous
drone.

The contributions of this work are as follows:

1) We present novel methods to optimize multiple ad-
versarial patches and their positions as a targeted
adversarial attack.

2) We apply our method to a publicly available, pre-
trained regular and quantized NN for UAVs.

3) We demonstrate our results in real-world experiments.
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II. RELATED WORK

Adversarial attacks can be grouped into two categories:
white-box attacks, when using the known network parame-
ters, and black-box attacks, where the network’s parameters
are unknown. Adversarial perturbations can be calculated to
be applicable on a single input image only or on a whole
image dataset, referred to as universal adversarial pertur-
bation (UAP) [8]. Typically, classic (universal) adversarial
perturbations are designed to be invisible to the human eye
to achieve a stealthy attack. In contrast, adversarial patches
are usually not hidden and appear like stickers or murals [5].

Adversarial patches are special universal adversarial per-
turbations that can be printed and placed anywhere in the
environment to be visible in the input images while main-
taining a severe negative impact on the NN’s performance.
Adversarial patches are, therefore, a versatile tool to manip-
ulate the prediction of a DL model without the need to alter
the input image on a pixel level.

So far, many adversarial attacks focus on autonomous
driving [5, 6, 9–11]. In the following, we focus on adversarial
attacks for UAVs.

Raja et al. [12] introduce a white- and black-box attack
algorithm to an image classification NN deployed onboard
of a UAV for bridge inspection. The NN’s task is to identify
regions prone to physical damage in the images. The output
of the NN, therefore, does not influence the control of the
UAV. The authors restrict the generated adversarial patches
to be placed on physical objects only. They search within the
whole image space for the optimal positions for the patches.

Tian et al. [13] introduce two white-box, single-image
adversarial attacks on the publicly available DroNet [14].
Both methods can impact the steering angle and collision
probability predicted by the NN. Their attacks force the
network’s predictions to differ as much as possible from the
ground-truth predictions–they perform a so-called untargeted
attack. In this case, the attacker has no control over the out-
come of the attack and might even improve the performance
of the NN.

Nemcovsky et al. [15] perform an adversarial patch attack
on the Visual Odometry system used for navigation in
simulation and real-world experiments. The patches were
placed at fixed positions in both environments utilizing
ArUco markers. In both examples, they were able to show
that the attacks had a severe negative impact on the predicted
traveled distance. Other than the previously described works,
they take the influence on a sequence of images and different
view angles into account.

Compared to current approaches, we introduce a targeted,
white-box adversarial patch attack, that enables a potential
real-world attacker to gain full control over a victim UAV.
Instead of fixing one patch to be placed at a a-priori defined
position, we optimize multiple patches to be applicable to
multiple positions in the camera images. Furthermore, our
method includes the optimization of these positions, as well
as an effective attack policy.

III. BACKGROUND

In the following, we introduce the NN we attack, PULP-
Frontnet [16], a DL model that tracks a human and has
been deployed on small multirotors. Moreover, we provide
an introduction to adversarial patch placement.

A. PULP-Frontnet

PULP-Frontnet is a publicly available DL model imple-
mented in PyTorch and developed for a nano multirotor–
the Crazyflie by Bitcraze1. The NN performs a human pose
estimation task on the input images, predicting a human
subject’s 3D position and yaw angle in the UAV’s frame.
This prediction is later used to generate new setpoints for the
UAV’s controller which are subsequently used to follow the
human subject. Therefore, the prediction of PULP-Frontnet
directly influences the UAV’s behavior. For the generation of
the adversarial patches of this work, we utilized the testset
provided in [16] together with our own data. The testset,
consists of images of size Ci ∈ R160×96 cropped at the same
vertical position and without further augmentations, unlike
the training dataset. These images are similar to a setting for
a real-world attack. Our dataset, referred to as C, contains the
4028 images provided by [16] and additional 2116 images
collected in flight in our lab to increase the robustness of the
optimized patches to a change of environment. The forward
pass of the NN fθ(·) can be defined as

p̂h = fθ(C) , (1)

where θ refer to the parameters of the NN, and the out-
put is the estimated pose of the human subject p̂h =
(x̂h, ŷh, ẑh, ϕ̂h)T in the UAV’s coordinate frame, where x̂h

determines the distance in meters (depth), ŷh the horizontal,
ẑh the vertical distance, and ϕ̂h the orientation angle around
the z-axis of the subject to the UAV. The predicted p̂h is used
to compute a setpoint that keeps the human in the center of
the camera view. Thus, the UAV will follow the human sub-
ject depending on the predicted p̂h. Therefore, manipulating
the neural network output will directly influence the motions
of the UAV.

B. Differentiable Adversarial Patch Placement

Thys et al. [17] introduce an adversarial patch attack that
prevents the detection of a human subject in camera images.
They perform their attack on YOLOv2 [18], a common
NN for object detection. It predicts bounding boxes and
classes for each object in an input image. Here, the main
goal of the attack is to minimize the classification and a
so-called objectness score for the subject. Minimizing the
class score causes the model to misclassify the subject as
another class. The objectness score indicates the likelihood
of an object in the detected region. Similarly to [12], they
restrict the patches to be placed on humans in the images. To
improve robustness towards different view angles, lighting
conditions, rotation, and scaling, they place and transform
their patches with a method inspired by Spatial Transformers

1https://www.bitcraze.io/products/crazyflie-2-1/

https://www.bitcraze.io/products/crazyflie-2-1/
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Fig. 2. We compute i) a set of optimal adversarial patches P∗ and ii) a set of optimal transformation matrices T ∗, such that an attacker can place all
optimal patches P∗ in any image from the dataset C and the error for the kth target position p̄h

k and the predicted pose p̂h
k under the attack is minimal.

Left: The inputs are the trainset S and the set of target positions {p̄h
1 , . . . , p̄

h
K}, with K = 3. Middle: P and T are optimized such that the expectation

E of the loss Lm,k = ∥p̄h
k − p̂h

m,k∥2 becomes minimal for all K target positions. The results are the optimal set of both patches P∗ and transformation
matrices T ∗. Right: During the optimization, we calculate the probability softmin(L1:M,k) for how likely a certain Pm will achieve the current p̄h

k
implicitly while computing the expectation. This enables the optimal assignment ρ : k 7→ m. The final placed patches in P∗ that are more likely to achieve
the targets are marked with green rectangles, the patches that are more unlikely are marked with red rectangles.

Networks [19]. The patches are placed and transformed
with an affine transformation from a randomly generated
transformation matrix. Additionally, they add random noise
to counter the influence of noise added by the printer, the
camera, and the lighting conditions.

The affine transformation matrix is defined as

T =

s cosα −s sinα tx
s sinα s cosα ty

0 0 1

 , (2)

where s is a scale factor, α is the rotation angle, and t =
(tx, ty)

T is the translation vector.
Let P ∈ Rw×h be a grayscale adversarial patch with width

w and height h. The patch can be placed in image C

C′ = place(C,P,T) , (3)

where place is the differentiable placement function and
C′ is the resulting modified image. Note that the whole
transformation process is differentiable.

We propose to additionally optimize the parameters of the
transformation matrix, e.g., the scale, rotation, and translation
vector instead of randomly choosing them during the training
process. These parameters implicitly define an attack policy,
thus optimizing them leads to a more effective and realistic
attack scenario. Furthermore, we optimize a set of adversarial
patches P resulting in more control over the DL models
predictions.

IV. APPROACH

The main objective of our method is to find i) a set of
adversarial patches and ii) a policy for the attacker. The
policy defines the attacker’s behavior based on the current
and the desired positions of the victim UAV with the goal to
move it towards the desired position. This can be achieved by
placing a selected patch with the best transformation matrix
from a set of optimized matrices. The placed patch changes
the NN output to the desired pose, such that the attacker
gains full control over the victim UAV.

We set the rotation angle of all transformations T to α =
0, because rotation angles α ̸= 0 would require specifying a
desired roll or pitch angle of the attacker UAV, which is not
a controllable degree of freedom for a standard multirotor.

We split the dataset into two disjoint parts C = S ∪ E for
training (S) and testing (E), respectively.

A. Problem Definition
Given the target prediction (p̄h) defined by the attacker

and the current position of the human subject (ph), our
goal is to obtain i) M patches P , and ii) a policy for the
attacker that computes the desired pose of the attacking UAV,
provided the current and desired positions of the victim:
p̄a = πa(ph, p̄h). The objective is to minimize the tracking
error of the victim between its current pose p̂v and the
desired pose p̄v , i.e.,

∫
t
∥p̄v(t)− p̂v(t)∥dt.

For optimizing the patches, we manually specify πa:
the attacker UAV moves such that one of the patches it
carries will be visible in the victim camera frame with a
computed transformation T (translation and scaling). Then
the above can be simplified as follows. Given are the K
target positions {p̄h

1 , . . . , p̄
h
K}. Our goal is to compute i)

a set of M patches P = {P1, . . . ,PM}, ii) M × K
transformations T = {T1,1, . . . ,TM,K} (one for each patch
and each target position), and iii) an assignment ρ : k 7→ m
that decides which patch to use for each target position. For
the assignment, we use a probabilistic formulation. Thus, the
objective is to minimize

L =
1

|S|
∑
C∈S

K∑
k=1

E(Lk), (4)

where E(Lk) is the expectation of the loss for the target
position k. We can approximate this expectation by using a
softmin function

E(Lk) =

M∑
m=1

P(Lm,k)Lm,k = softmin(L1:M,k) · L1:M,k,

(5)



Algorithm 1: Split Optimization
Input: N , M , K, R, S, E , fθ , {p̄h

1 , . . . , p̄
h
K}

Result: P∗, T ∗

1 Am,k ← True , ∀m ∈ {1, . . . ,M}, ∀k ∈ {1, . . . ,K}
2 foreach n ∈ {1, . . . , N} do

▷ Optimize Patch
3 L← 0
4 foreach C ∈ S do
5 E ← 0, a← 0
6 foreach m, k where Am,k = True do
7 Lm,k ← ∥p̄h

k − fθ(place(C,Pm,Tm,k))∥2
8 E ← E + Lm,k · e−Lm,k ▷ softmin(·) numerator
9 a← a+ e−Lm,k ▷ softmin(·) denominator

10 if a ̸= 0 then
11 L← L+ E

a
▷ sum expectation for all C

12 P ← ADAM(∇P
L
|S| ) ▷ update P

▷ Optimize Positions
13 foreach m, k where Am,k = True do
14 foreach r ∈ {1, . . . , R} do

15 T←
{
Tm,k if r = 1

randomT() else
16 Lr ← 1

|S|
∑

C∈S ∥p̄h
k − fθ(place(C,Pm,T))∥2

▷ loss for current T
17 Tr ← ADAM(∇TLr) ▷ update T

18 Tm,k ← argminTr
{L1, . . . , LR} ▷ choose best Tr

▷ Optimal Assignment
19 Cm,k ← 1

|E|
∑

C∈E ∥p̄h
k−fθ(place(C,Pm,Tm,k))∥2, ∀m, k

20 Am,k ←
{

True (m′ ∼ softmin(C1:M,k)) ∧m′ = m

False else

21 return P∗, T ∗

where L1:M,k is the vector [L1,k, . . . , LM,k] and Lm,k is
the prediction error when using patch m with respect to the
target position k as defined in Algorithm 1, Line 7.

In the following, we introduce three optimization algo-
rithms for calculating P and T .

B. Joint Optimization

One approach is the simultaneous optimization of the set
of adversarial patches and the corresponding transformation
matrices. Hence, P and T are updated after each iteration
using the gradient of the loss L, see (4), with respect to P
and T :

P, T ← ADAM(∇P,T L). (6)

Note that the parameters θ of the NN f are fixed and not
changed during the optimization. The optimization workflow
is displayed in Fig. 2. To increase the numerical robustness
of P and T , we add small random perturbations to each
image after the patch placement and to each Tm,k, using
a normal distribution. In (5), we compute the probability
P(Lm,k) ,∀m, k for how likely a certain Pm placed at Tm,k

will achieve the current target p̄h
k . Choosing the optimal

patch P∗
m∗ for each target k from the set of all optimal

patches P∗ can be selected such that m∗ = argminm L1:M,k,
allowing for the optimal assignment ρ : k 7→ m.

Algorithm 2: Attacker Policy
Input: T ,A, T̂a, T̂v , T̄v

Result: T̄a

1 foreach m, k where Am,k = True do
2 Tv(m, k)← ComputeFrontnetSetpoint(T̂v , p̄h

k)

3 m∗, k∗ ← argminm,k ∥p(T̄v)− p(Tv(m, k))∥2
4 Tp ← ComputePatchPose(Tm∗,k∗ ,m∗)

5 T̄a ← T̂vTp

6 return T̄a

C. Split Optimization

The joint optimization might lead to a local optimum
instead to the global solution for the optimal position of the
adversarial patches due to the local nature of the gradient-
based optimization and the highly non-convex function fθ.
Therefore, we propose to split the training algorithm into
three parts: We first only optimize the adversarial patches
P for a fixed set of transformations T . For a user-defined
number of iterations N , the patches are optimized for the
K desired positions {p̄h

1 , . . . , p̄
h
K}, while the transformation

matrices T are fixed, see Algorithm 1, Line 2 - Line 12. We
initialize A by assigning all M patches in P to all K targets
in Line 1.

Inspired by the coordinate descent algorithm [20], we
perform random restarts as a second step (from Line 13 to
Line 18). Not only are the current parameters of the matrices
in T optimized but, for R−1 restarts, chosen randomly and
trained for an iteration over S (Line 14 - Line 17). We then
choose the transformation matrix Tm,k that produces the
minimal loss over all restarts R (Line 18). These random
restarts aim to overcome local minima while searching for
effective transformation matrices.

As a third step, we randomly assign a patch m to a target k
by sampling m from the multinomial probability distribution
of the cost for the testset E (Line 20). This finds better
combinations of patches and their placement after the random
restarts.

D. Hybrid Optimization

The hybrid version of our method combines both the joint
and split optimization. The patches and the transformation
matrices are trained jointly for a fixed amount of iterations
over S. The parameters of the transformation matrices Tm,k

are then fine-tuned while the patches in P are fixed, anal-
ogous to the optimization described in Algorithm 1 starting
from Line 13. The optimal assignment is identical to the one
in the split optimization.

E. Attacker Policy

The attacker policy depends on the set of optimized
transformation matrices T , the binary matrix A representing
the assignment ρ, the current pose of the attacker UAV T̂a,
the current pose of the victim UAV T̂v , and the desired pose
of the victim UAV T̄v (all poses are in world coordinates).
The goal is to calculate the desired pose of the attacker T̄a,
such that the victim moves to its desired pose.
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Fig. 3. Resulting mean test loss for the proposed joint, split, and hybrid
optimization. The joint optimization calculates less effective P and T for
p̄h
1 compared to the split and hybrid optimization, resulting in a higher mean

test loss for the joint optimization. The hybrid optimization outperforms the
split optimization over both targets slightly.

base image initial patch fixed hybrid
0

1

2

Te
st

lo
ss

[m
]

Fig. 4. Resulting mean test loss for all C ∈ E (i.e. base images showing no
patch) per target. For comparison, the initial patches (i.e. patches showing
only random noise) are placed with the optimal T calculated with the hybrid
approach, the algorithm that achieves the lowest mean test loss over all
targets (see Fig. 3). Optimizing the adversarial patches P with the fixed
approach leads to a less effective attack compared to the other optimization
approaches.

The function ComputeFrontnetSetpoint(·) (see Algo-
rithm 2, Line 1 and Line 2) computes the setpoint the
controller of the victim UAV will output, assuming our
adversarial patches would achieve a loss of 0 and Frontnet
predicts exactly the specified targets p̄h

k for all m, k, where
Am,k = True. We then compute the optimal m∗ and k∗

that minimize the tracking error between the current and
desired victim pose (Line 3). In ComputePatchPose(·)
(Line 4), we compute the pose of the attacker relative to the
victim multirotor with the corresponding Tm∗,k∗ utilizing
the camera intrinsics, extrinsics, and distortion coefficients.
This function also takes the patch as input (m∗) and adjusts
the orientation of the attacker such that the correct patch is
visible in the victim’s camera. The attacker pose in world
coordinates is then calculated from the matrix multiplication
of T̂v and Tp (Line 5).

V. RESULTS

We now analyze all of our proposed approaches, described
in Section IV, and compare them to the method introduced
in [17], referred to as fixed optimization.

We implement our method in PyTorch, utilizing the Adam
optimizer [21] to perform the gradient-based optimization.
We compute all optimization approaches in parallel on
compute nodes with access to 4 cores of an Intel 12-Core
Xeon (3.0 GHz) CPU and a NVIDIA Tesla P100 GPU.

The learning rate for all approaches is set to 0.001,
regardless of which combination of parameters is optimized.
The trainset S contains 90% of the images from the dataset
C. Batches of size 32 are drawn uniformly at random from
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Fig. 5. Mean test loss per number of targets over five trials. The shaded
area depicts the variance of the test loss across the targets and trials. The
attack is significantly effective for 1 ≤ K ≤ 4. The variance increases as
soon as the target poses p̄h

k are included, which are underrepresented in the
trainset. The loss per target and the variance decreases with an increasing
number of optimized patches. The difference between the losses for M = 3
and M = 5 patches is not as significant as the difference between M = 1
and M = 3.

S in each training step, and we train on all batches for one
epoch.

The training process of K = 2 patches is repeated ten
times with random initial seeds, referred to as trials. For each
approach, P and T are trained for N = 100 iterations on the
trainset S. Before placing the patches in P , we add random
Gaussian noise with mean of 0 and a standard deviation
of 0.1 to all matrices in T . To simulate the aerodynamic
effects on the patches in flight, we add random perspective
transformations to the transformed patches after they are
placed with T . For the random perspective transformations,
we rely on the PyTorch function RandomPerspective with a
distortion scale of 0.2 and a probability of 0.9. Additionally,
we add Gaussian noise to the manipulated images C′ with
a standard deviation of 10.

To ensure that the patches are visible in C′, we restrict
the parameters of the transformation matrices in T . The scale
factor s is kept in [0.2, 0.4] and the translation vector t is
kept in (−1, 1). We perform R = 20 random restarts for
the split and hybrid optimization. We validate the negative
impact on the NN fθ with the mean of the loss defined in
(4) on the unseen testset E over the ten trials. The testset E
contains 10% of the images in C. We provide a supplemental
video for our real-world experiment.

A. Comparison of the Different Approaches

We compare the proposed joint, split, and hybrid optimiza-
tion introduced in Section IV to the fixed optimization. In
the latter, only the adversarial patches P are optimized–the
transformation matrices are initialized randomly and fixed
for all training steps. We use K = 2 and the two target
poses are p̄h

1 = (1,−1, 0)T and p̄h
2 = (1, 1, 0)T .

The computed P∗ and T ∗ utilizing the hybrid optimization
on average leads to a 14% lower loss compared to the joint
optimization and a 0.5% lower loss compared to the split
optimization on the testset and is, therefore, the best approach
for the described setup. The mean test loss over 10 trials for
p̄h
1 and p̄h

2 is displayed in Fig. 3. The fixed optimization



TABLE I
VALIDATION OF DIFFERENT TRAINING APPROACHES ON THE QUANTIZED NN. METHODS MARKED WITH (Q) WERE TRAINED ON THE QUANTIZED

NN, AND METHODS MARKED WITH (FP) WERE TRAINED ON THE FULL-PRECISION NN. LOWER IS BETTER.

Fixed (FP) Fixed (Q) Joint (FP) Joint (Q) Split (FP) Split (Q) Hybrid (FP) Hybrid (Q)
mean test loss 0.401 0.162 0.052 0.046 0.192 0.048 0.053 0.051
mean std 0.286 0.066 0.004 0.024 0.138 0.012 0.039 0.015

computes P∗ that are less effective on all images from the
testset compared to the other approaches, see Fig. 4.

Due to the high number of random restarts R performed
during the split and hybrid optimization, the computation
time on our hardware setup for 100 iterations over S roughly
takes 10 times longer than the joint optimization which is
therefore the preferred method.

B. Ablation Study

We investigate the scalability of our approach with respect
to the number of targets K and the number of patches M , see
Fig. 5. The first nine targets are set to p̄h

k = (1, y, z)T , where
y, z ∈ {−1, 0, 1}, representing predictions in the corners and
the center of the image C. The last target is set to p̄h

10 =
(2, 0, 0), representing a prediction in the center of the image
but further away from the victim UAV. The mean test loss per
target decreases significantly if three patches (orange) instead
of a single patch are utilized (blue). The loss decreases even
further if M = 5 but the difference to M = 3 is not as
significant. This demonstrates that multiple patches increase
the control over the DL model’s predictions and that even a
single attacker multirotor is sufficient in most cases.

The variance increases with the number of targets because
not all target positions can be equally easily achieved. The
loss increases as soon as target poses p̄h

k are included,
which are underrepresented in the original trainset of PULP-
Frontnet–especially z > 0.5 and z < −0.5. Additionally,
y < 0 is more challenging for the adversarial patch attack
since the human subjects included in the images of C are
primarily located at y > 0.

C. Effect on the Quantized NN

Since the quantized version of the network will be de-
ployed on the hardware (for details about quantization see
[16]), the calculated patches might not have the same effect
if optimized for the full-precision parameters of the NN
due to quantization errors. Therefore, the stored integer
values of the provided quantized NN are loaded into a
floating point PyTorch model of the same architecture as
the previously attacked Frontnet, now referred to as fθq

,
and the same experiment as in Section V-A is repeated but
for a single patch only, initialized showing a face from C.
We now compare the influence of the patches calculated on
fθ with the influence of the patches calculated on fθq

on
the quantized NN. In Table I, it can be observed that the
patches calculated on fθq

indeed have a lower loss on the
predictions of fθq . Here, the joint approach outperforms the
other introduced methods. It produces a 12% more effective
patch compared to the patch computed for the full-precision
NN.

D. Real-world experiments

For the real-world experiments, we trained M = 2 patches
for K = 5 targets. The desired trajectory for the victim is
to move along a smooth curve in y ∈ [−0.5, 0.5] m, while
x and z are fixed. The overall goal is to force the victim
UAV to follow the desired trajectory instead of performing
its original task, i.e., following a human subject.

We validate the behavior of the victim UAV in three
different experiments: i) only a human and the victim UAV,
ii) only the attacker and victim UAV, and iii) a human, the
attacker, and the victim UAV are in the flight space.

For the first experiment, we validate that our implemen-
tation of PULP-Frontnet2 is working, i.e., the victim UAV
is successfully following a human subject. While following
the human, the mean L2-error to the desired trajectory is
0.57m (std 0.25m). In the second experiment, we show that
the victim follows the attacker UAV. The attacker is able to
force the victim UAV onto the desired trajectory with a mean
L2-error of 0.47m (std 0.24m). For the third experiment, the
mean L2-error is 0.34m (std 0.22m). As observable in the
supplemental video, the human is able to distract the victim
UAV from following the attacker in the second half of the
experiment. Due to the trajectory the human is following in
that part, we were able to achieve a lower error to the desired
trajectory for the victim UAV. The tracking errors are high
overall, because we are unable to move the attacker at high
speeds since the attached patch causes significant drag. Still,
the presented patch was able to distract the victim UAV from
tracking the human.

VI. CONCLUSION

This paper introduces new methods for optimizing multi-
ple adversarial patches and their positions simultaneously, a
policy for an attacker UAV, and a demonstration in the real
world. Our empirical studies show that the described hybrid
optimization approach outperforms the joint and split opti-
mization for optimizing the patches and their positions. All
introduced approaches exceed the state-of-the-art method,
i.e., fixed optimization, for the described attack scenario.
The optimized patches presented to the victim UAV at
the optimized positions are able to successfully kidnap the
victim, i.e., force it to follow the desired target trajectory,
even when a person is visible in the camera images.

In this work, we only utilize a single attacker UAV. In
the future, the attacker policy can be enhanced to present
multiple patches with multiple UAVs, creating a team of
attacker UAVs.

2The pretrained NN is available but the firmware implementation is not.
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