
MARBLER: An Open Platform for Standardized Evaluation of
Multi-Robot Reinforcement Learning Algorithms

Reza J. Torbati, Shubham Lohiya†, Shivika Singh†, Meher S. Nigam, Harish Ravichandar

Abstract— Multi-Agent Reinforcement Learning (MARL)
has enjoyed significant recent progress thanks, in part, to the in-
tegration of deep learning techniques for modeling interactions
in complex environments. This is naturally starting to benefit
multi-robot systems (MRS) in the form of multi-robot RL
(MRRL). However, existing infrastructure to train and evaluate
policies predominantly focus on the challenges of coordinating
virtual agents, and ignore characteristics important to robotic
systems. Few platforms support realistic robot dynamics, and
fewer still can evaluate Sim2Real performance of learned
behavior. To address these issues, we contribute MARBLER:
Multi-Agent RL Benchmark and Learning Environment for the
Robotarium. MARBLER offers a robust and comprehensive
evaluation platform for MRRL by marrying Georgia Tech’s
Robotarium (which enables rapid deployment on physical
MRS) and OpenAI’s Gym interface (which facilitates standard-
ized use of modern learning algorithms). MARBLER offers
a highly controllable environment with realistic dynamics,
including barrier certificate-based obstacle avoidance. It allows
anyone across the world to train and deploy MRRL algorithms
on a physical testbed with reproducibility. Further, we introduce
five novel scenarios inspired by common challenges in MRS
and provide support for new custom scenarios. Finally, we
use MARBLER to evaluate popular MARL algorithms and
provide insights into their suitability for MRRL. In summary,
MARBLER can be a valuable tool to the MRS research
community by facilitating comprehensive and standardized
evaluation of learning algorithms on realistic simulations and
physical hardware. Links to our open-source framework and
videos of real-world experiments can be found at https:
//shubhlohiya.github.io/MARBLER/.

I. INTRODUCTION

With increasing demands for robotics to solve complex
real-world challenges, coordination of multiple robots is
becoming paramount. However, the complexity of exact solu-
tions to important problems (e.g., coverage control [1], path-
planning [2], and task allocation [3]) grows exponentially
as the number of robots increase [4]. Consequently, Multi-
Robot Reinforcement Learning (MRRL) [5] is emerging as a
promising alternative paradigm to address these challenges.

MRRL has proven useful for delivery robots [6], coordi-
nated robotic exploration [1], multi-robot communication [7],
[8], multi-robot path planning [9], multi-robot target localiza-
tion [10] and more [11]. However, despite being developed
for robotics, learning algorithms are rarely evaluated in
the real-world, with a few notable exceptions [12]–[15].
However, even the exceptions were tested on smaller teams
(2, 2, 3, and 4 robots, respectively) and on ad-hoc platforms,
rendering reproducibility time-consuming and difficult.

†Denotes equal contribution; This work was supported in part by the
Army Research Lab under Grants W911NF-17-2-0181 (DCIST CRA) and
W911NF-20-2-0036

Fig. 1: MARBLER enables users to train coordination policies
with an explicit emphasis on multi-robot teams by serving as
a bridge between the state-of-the-art in MARL algorithms (e.g.,
EPyMARL [18]) with that in multi-robot testbed (Robotarium [19]).

In contrast, Multi-Agent Reinforcement Learning (MARL)
algorithms tend to be evaluated in a systematic way in many
standardized simulated environments, such as the Multi-
Agent Particle Environment (MPE) [16] and the StarCraft
Multi-Agent Challenge (SMAC) [17]. While it might be
possible to use existing MARL environments to evaluate
algorithms developed for MRS, they lack realistic robot
dynamics which likely leads to a large Sim2Real gap.

In this work, we develop a holistic, open-source platform
that can enable seamless training of MRRL policies and their
evaluation on physical robots. Specifically, we contribute
Multi-Agent RL Benchmark and Learning Environment
for the Robotarium (MARBLER). MARBLER is a bridge
between the MARL community and the physical robots in
the Robotarium [19] that makes it easy to evaluate MRRL
algorithms and design novel scenarios. The Robotarium
is a remotely-accessible, publicly-available, and free-to-use
testbed for MRS that allows for up to 20 robots at once
in a highly-customizable environment. As such, MARBLER
enables machine learning researchers to develop and test
algorithms for physical robots, and control theorists to ex-
periment with state-of-the-art (SOTA) learning algorithms.
Our MARBLER platform has the following key benefits:

1) The simulated robots in MARBLER exhibit dynamics
similar to that of physical robots as it is built on top
of the Robotarium’s simulator. Further, MARBLER
includes support for barrier certificates to prevent col-
lisions, forcing algorithms to learn in realistic settings.

2) MARBLER inherits the open-access benefits of the
Robotarium, enabling anyone across the world to train
coordination algorithms and systematically deploy on
a physical multi-robot testbed with reproducibility.

3) MARBLER is compatible with any learning algorithm
that can be used with the OpenAI Gym interface.

4) MARBLER currently has 5 novel scenarios inspired

ar
X

iv
:2

30
7.

03
89

1v
4 

 [
cs

.R
O

] 
 2

2 
O

ct
 2

02
3

https://shubhlohiya.github.io/MARBLER/
https://shubhlohiya.github.io/MARBLER/


by common and challenging problems in MRS.
5) MARBLER is open-source and allows users to easily

add new scenarios or modify existing ones.

By creating an interface between MARL algorithms and
the Robotarium, MARBLER is the first publicly-available
environment that can evaluate Sim2Real capability in MRRL.
Further, MARBLER can serve as a benchmark to evaluate
learning algorithms in simulation with real-world constraints
and readily deploy them on physical robots.

In addition, we conducted detailed evaluations of exist-
ing MARL algorithms by leveraging Extended PyMARL
(EPyMARL) [18] within MARBLER. Our experiments re-
veal insights into how different characteristics of existing
algorithms (e.g., policy gradient vs. valued-based, parameter
sharing, etc.) impact performance in both simulated and
physical multi-robot systems.

II. RELATED WORK

A. MARL and MRRL Platforms

The Multi-Agent Particle Environment (MPE) [16] is a
popular framework for evaluating MARL algorithms, con-
sisting of cooperative and adversarial 2D tasks. In MPE,
agents apply forces to particles which can interact with
landmarks and other agents. This is a popular setup in MARL
environments and has been extended by platforms such as
VMAS [20]: a vectorized MARL platform that can use GPUs
for much faster training. However, particle simulators have
very different dynamics than real robots making them poor
choices to evaluate MRRL algorithms.

Another popular MARL environment is the StarCraft
Multi-Agent Challenge (SMAC) [17] which is considerably
more complex, requiring agents to handle partial observ-
ability over long horizons. However, the agent dynamics in
SMAC is still considerably different from real world robots,
again making it a poor choice to evaluate MRRL algorithms.

There are few frameworks that are designed to benchmark
MRRL algorithms and fewer still that are able to evaluate
Sim2Real performance of algorithms. SMART [21] is one
such environment. However, SMART is limited to scenarios
involving autonomous driving, it only supports up to four
robots, and neither their evaluation test bed nor their source
code is publicly available. Another MRRL environment
that allows for Sim2Real testing is MultiRoboLearn [22]:
an open-source framework that provides an OpenAI Gym
interface for easier integration. However it also only sup-
ports a maximum of 4 robots, and, like SMART, does not
have a publicly available testbed. Additionally, creating new
scenarios in MultiRoboLearn requires creating custom envi-
ronments in Gazebo [23], introducing significant overhead.

In contrast to existing environments, MARBLER’s simu-
lator closely mimics the constraints of physical robots and
allows researchers to evaluate Sim2Real capabilities in a
standardized and reproducible way. Therefore, MARBLER
is the first MRRL benchmark that has a realistic simulator
with a physical testbed that anyone can use.

B. MARL Algorithms

A variety of MARL algorithms have been proposed that
perform very well in simulated environments. PPO [24] is
an effective actor-critic policy gradient method for single
agent RL. MAPPO [25] is the multi-agent extension of
PPO where a single centralized critic is conditioned on all
agents’ observations to learn a joint state value function and
a separate actor for each agent learns the best action to take
conditioned only on the agent’s individual observations.

In contrast to MAPPO, QMIX [26] and VDN [27] are
value-based methods that decompose the joint state-action
value function into individual state-action value functions.
VDN learns to decompose the team value function agent-
wise while QMIX learns agent-specific Q networks and
combines them monotonically via hypernetworks.

In SMAC and MPE, MAPPO, QMIX, and VDN have
been shown to be three of the best performing MARL algo-
rithms [18]. However, while these algorithms have performed
very well in simulation, there is limited evaluation of their
real world performance. [21] evaluated VDN’s and QMIX’s
performance on robots and [12] and [13] evaluate different
versions of multi-agent PPO based algorithms on real robots.
However, these experiments only used at most four robots
and are not easily reproducible.

Another important design problem in MRRL is whether
robots should share parameters. When robots share parame-
ters, their networks all learn together which greatly reduces
the number of parameters required to be trained. However,
this leads to all robots learning the same behavior, render-
ing parameter sharing unsuitable in scenarios that require
heterogeneous behaviors from robots. A common solution
to combat this involves appending unique IDs to robots’
observations, but the level of heterogeneity enabled by this
approach has been shown to be limited [12]. Alternatively,
each robot can learn its own set of network parameters which
allows robots to learn truly heterogeneous behavior but limits
scalability as it greatly increases the number of environment
interactions needed for the robots to learn.

C. The Robotarium

The Robotarium [19] is a remotely accessible multi-robot
laboratory developed by Georgia Tech. It features a 12ft x
14ft testbed, 8 Vicon motion-capture cameras and allows up
to 20 GRITSBots [28] to operate at once. The Robotarium
has optional inbuilt control barrier functions (CBFs) [29]
which provide a provable guarantee of online collision
avoidance for the robots. The Robotarium also provides a
Python simulator that closely resembles the real Robotarium.
Once programs are working in simulation, the Robotarium
has a publicly accessible website where anyone in the world
can upload their programs for them to be run in the real
Robotarium on real robots.

III. THE MARBLER PLATFORM

Historically, evaluating MRRL algorithms using the Robo-
tarium’s simulator has been a challenging task. The lack of a
standardized framework for MRRL in the Robotarium means



Platform Robot-based
Dynamics

Collision
Avoidance

OpenAI Gym
Compatibility

Max
#Agents/Robots

Sim2Real
Capabilities

Public Testbed
Available

Custom
Scenarios

MPE [16] No Optional (elastic) Yes No limit No N/A Yes

VMAS [20] No Optional (elastic) Yes No limit No N/A Yes

SMAC [17] No No No 50 No N/A Limited (only
new maps)

SMART [21] Yes Yes No 4 Yes No Yes

MultiRoboLearn [22] Yes Yes Yes 4 Yes No Yes, but
Difficult

Robotarium [19] Yes Yes (CBFs) No 20 Yes Yes Yes, but
Difficult

MARBLER (ours) Yes Yes (CBFs) Yes 20 Yes Yes Yes

TABLE I: Comparison of MARBLER with other platforms. MARBLER is the only MRRL platform with Sim2Real
capabilities that allows for more than four robots and has a publicly available testbed.

that researchers have to create scenarios from scratch, design
the low level control algorithms to control the robots after
they select an action, control how the graphics are displayed,
and more. As a result, to the best of our knowledge, only [30]
has evaluated deep reinforcement learning algorithms with
the Robotarium, despite its open accessibility to researchers.
Addressing this limitation, MARBLER establishes a cohe-
sive and user-friendly API tailored specifically for MRRL
experiments. Researchers can design novel scenarios or em-
ploy the pre-existing scenarios to execute their algorithms,
thereby allowing reproducibility across studies.

After training and evaluating a policy in simulation, MAR-
BLER enables researchers to generate the required files for
deployment on the physical Robotarium with a single script.

A. Primary Components

MARBLER is comprised of four primary components:
Core: The Core component serves as the fundamental

building block of MARBLER, leveraging the Robotarium’s
python simulator. It encompasses critical functionalities nec-
essary for the environment, such as environment resets,
CBF setup, and discrete time step advancement. By utilizing
the capabilities of the Robotarium’s simulator and CBFs,
MARBLER incorporates realistic dynamics that emulate the
constraints encountered by real robots.

Scenarios: The scenarios module defines the environments
the robots interact in, the specific tasks they must accomplish,
and the robots’ observations and rewards.

Gym Interface: Each scenario in MARBLER is registered
as a Gym environment, enabling direct compatibility with
any algorithms and tools that support the Gym interface.

Test Pipeline: The Test Pipeline provides a streamlined
process for importing trained robots into the simulation
environment, giving researchers a way to visualize robots’
performance and collect test data. Subsequently, researchers
can execute a script to prepare their files for submission
to the Robotarium, which can then be uploaded to the real
Robotarium for evaluation in a real-world setting.

B. Scenarios

1) Existing Scenarios: To facilitate immediate testing and
evaluation using MARBLER, we introduce five scenarios
inspired by diverse MRRL problems. These scenarios are
designed to offer researchers a starting point for experi-
mentation and can be easily customized by modifying the
scenario’s associated configuration file. Parameters such as
the number of robots, communication methods, scenario
difficulty, and more, can be adjusted as needed. Complete
descriptions of these scenarios are available in the supple-
mentary material1 but we include brief descriptions here:

Simple Navigation (Fig. 2a): Robots navigate towards a
known destination point. This scenario is an easy starting
point for algorithms to learn in.

Predator Capture Prey (PCP) (Fig. 2b): Sensing robots
and capture robots must work together to capture the prey.
Sensing robots know the location of prey within their sensing
radius and must communicate this to the blind capture robots.
Inspired by the Predator Capture Prey scenario in [7].

Warehouse (Fig. 2c): Robots must navigate to their color
zone on the right to receive a load and then unload in their
color zone on the left while avoiding collisions; a Multi-
Robot Path Finding environment [31].

Material Transport (MT) (Fig. 2d): Robots with varying
speeds and capacities must collaborate to efficiently unload
two zones: one nearby with a large amount of material and
one further away with a small amount of material. This is a
task allocation problem [3] where the robots must collaborate
to unload the zones within a time limit.

Arctic Transport (AT) (Fig. 2e): Drones can move fast
over any tile and have a large sensing radius. Ice and water
robots have a limited sensing radius and move fast over some
tiles but slow over other tiles. Robots are rewarded based on
how far the ice/water robots are from the goal zone so the
drones must guide the ice/water robots. This is a Multi-Robot
Path Planning scenario [9] where the drones must find a path
to the goal zone and communicate it to the ice/water robots.

2) Creating New Scenarios: MARBLER provides a user-
friendly approach to create new scenarios, similar to MPE

1Supplementary material can be found here

https://shubhlohiya.github.io/MARBLER/assets/supplementary.pdf


(a) Simple Navigation (b) Predator Capture Prey (c) Warehouse

(d) Material Transport (e) Arctic Transport

Fig. 2: The existing scenarios in MARBLER. The top images show the robots running in simulation and the bottom images
show the robots running in the Robotarium.

and VMAS. Researchers can customize the action space, ob-
servation space, visualizations, and other relevant parameters
without needing to interact with the underlying Robotarium
code, allowing researchers to develop tailored scenarios that
align with their specific use cases. Our GitHub2 includes
comprehensive documentation on creating new scenarios.

IV. EXPERIMENTS

A. Experiment Setup

For all our experiments, we used the EPyMARL frame-
work to train our robots. Because the scenarios in MAR-
BLER have been registered as Gym environments, they are
directly compatible with EPyMARL. This allowed us to train
policies using the various learning algorithms available in
EPyMARL with no modifications.

2Our GitHub can be found here

Baselines: We compared MAPPO [25], QMIX [26], and
VDN [27] with parameter sharing. To investigate the effects
of parameter sharing, we also evaluated QMIX without
parameter sharing (QMIX NS).

B. Evaluation Protocol

We evaluated all algorithms in the PCP, Warehouse, MT,
and AT scenarios with 4, 6, 4, and 4 robots respectively.
Before training each algorithm, we ran a hyperparameter
search in the Simple Navigation environment in a manner
similar to [18]. Exact details on the hyperparameter search
along with the hyperparameters we used for each algorithm
can be found in the supplementary material.

We trained VDN and QMIX for a total of 5 million time
steps in each scenario. Given the conflicting evidence about
off-policy algorithms being more sample efficient than on-
policy algorithms due to their use of a replay buffer [18],

https://github.com/GT-STAR-Lab/MARBLER


Fig. 3: Evaluation returns for each algorithm during training. The lines are the mean rewards across the five seeds and the
shaded area is the 95% confidence interval. The remaining time steps for MAPPO can be seen in the supplementary material.

[25], we trained MAPPO for a total of 25 million time steps.
We trained five seeds for each algorithm.

Researchers control what happens if robots go outside
of the Robotarium’s boundaries or collide in simulation.
However, the real Robotarium immediately terminates an
episode if either event happens. To prevent frequent and
premature termination in the Robotarium, we used strict
CBFs such that, if the robots attempt to get within 20cm
from each other, their movement slows down to almost a
full stop. Like the real Robotarium, we penalize the robots
and end the episode if robots collide or drive out of bounds.

In all scenarios, robots had full communication. Exact
details about how the environments were configured for these
evaluations are included in the supplementary material.

C. Computational Requirements

We trained all models using CPUs; primarily with a Dual
Intel(R) Xeon(R) Gold 6226 [32] and an Intel(R) Core(TM)
i7-12700KF. It took 16084 CPU hours to train all models
(excluding hyperparameter searches).

V. RESULTS

To compare baselines, first we look at training evaluation
returns to evaluate sample efficiency and how much of an
impact different seeds make which can be seen in Fig. 3.
Then, we compared the best performing models for each
algorithm in each scenario. To do this, we took the model
that achieved the highest reward for each algorithm and
evaluated the model in simulation and on real robots to
compare performances. In simulation, we ran each model
for 100 episodes and on the real robots, we ran each model
for 10 episodes. The results can be seen in table II.

A. Value Based vs. Policy Gradient

VDN outperforms all other algorithms after 5 million time
steps for every scenario. After 25 million steps, MAPPO’s
best performing seeds approaches that of VDN’s in MT and
AT and surpasses it in Warehouse. However, all seeds for
MAPPO converge to lower performance in PCP than in
any of the value based methods. Additionally, MAPPO’s
performance is much more sensitive to the random seed
than any value-based method. This is contradictory to the
trends reported in [25]. We speculate this is because value

based methods (particularly VDN) may be more suitable to
physical robots than policy gradient methods.

B. Effects of Parameter Sharing

We find that the differences between models trained with
and without parameter sharing depend on the heterogeneity
of the environment. In the Warehouse scenario, where robots
are homogeneous except for their loading zone locations,
QMIX outperformed QMIX NS significantly. In MT, the
robots need to learn slightly different policies to ensure
that all zones are unloaded within the time limit, but the
optimal policies are similar. In AT, drones and ice/water
robots had fundamentally different optimal policies, yet
neither QMIX nor QMIX NS utilized the drones’ enhanced
sensing radius, resulting in similar policies for all robots.
In AT and MT, with limited heterogeneity, QMIX showed
a significant performance advantage over QMIX NS but
much less significant than in Warehouse. However, in the
PCP scenario, where very different policies were learned for
the Predator and the Capture robots, QMIX and QMIX NS
performed similarly. Thus, the benefits of parameter sharing
evaporate as heterogeneity increases. Indeed, as previously
reported [12], models trained without parameter sharing tend
to outperform models that share parameters in increasingly
heterogeneous environments.

Additionally, robots trained with QMIX NS went out of
bounds a total of 10 times in simulation and 6 times on
real robots. In contrast, robots trained with all parameter
sharing methods only went out of bounds once in simulation
and once on real robots. When a single robot goes out of
bounds, all robots are given a large negative penalty and the
episode ends. This suggests that, without parameter sharing,
it is much more difficult for robots to learn how to handle
events where a single robot’s actions can cause all other
robots to suffer a penalty.

C. Sim2Real Gap

As shown in table II, there are few notable differences
between the algorithms’ average performances in simulation
and in the real Robotarium. Additionally, the difference in
standard deviations can be partly attributed to the fact that
we have 100 simulated episodes, but only 10 real episodes.



Simulated Experiments Real-World Experiments
Scenario Metric MAPPO VDN QMIX QMIX NS MAPPO VDN QMIX QMIX NS

Predator
Capture

Prey

Reward 23.48±5.33 33.25±0.46 30.02±3.8 31.76±2.7 21.63±9.06 31.51±5.51 29.2±4.4 30.13±5.26
Steps 80.4±1.8 55±9.18 69.7±12.32 62.9±12.75 81±0 57.8±15.79 70±13.63 67.5±11.38
Prey Left 1.6±0.92 0±0 0.5±0.67 0.2±0.4 2±1.63 0.3±0.95 0.6±0.7 0.5±0.97
Collisions 0 0 0 0 10% 0 0 0
Out of Bounds 0 0 0 0 0 0 0 0

Warehouse Reward 36.6±1.8 28.7±1.49 27.4±1.02 1.8±1.25 35.1±2.47 26.2±0.79 26.89±1.76 -3.21±11.18
Collisions 0 0 0 0 0 0 0 0
Out of Bounds 0 0 0 5% 0 0 0 20%

Material
Transport

Reward 4.47±0.93 5.15±1.3 3.55±0.85 2.08±0.85 3.76±2.19 5.73±1.16 3.72±1.14 1.78±1.97
Steps 71±0 65.5±4.48 71±0 71±0 70.4±1.26 60.1±7.09 71±0 71±0
Material Left 8.4±4.41 0.1±0.3 9.4±4.59 28.70±12.74 8.7±13.51 0.1±0.32 14±10.14 32.6±12.36
Collisions 0 0 0 0 10% 0 0 0
Out of Bounds 1% 0 0 4% 0 0 0 10%

Arctic
Transport

Reward -7.23±1.61 -6.98±1.75 -7.13±1.59 -11.29±3.29 -7.91±1.66 -7.86±3.33 -12.15±9.8 -18.49±13.34
Steps 41.7±10.65 38.1±10.25 35.8±8.24 57±7.71 46.5±15.92 34.4±11.15 43.6±13.07 51.4±13.04
Collisions 0 0 0 0 0 0 10% 0
Out of Bounds 0 0 0 1% 10% 0 0 30%

TABLE II: The mean returns and standard deviations of each algorithm for every scenario. The simulated results were taken
over 100 episodes and the results from real robots were taken across 10 episodes. Collisions refer to the percent of episodes
terminated due to robots colliding, Out of Bounds refers to the percent of episodes terminated due to robots going outside
the boundary of the Robotarium. The steps for episodes that end due to a collision or a boundary violation is set to the
maximum. Best values for simulation and real in each row are bolded. Note that robots never collide in simulations.

These observations suggest the lack of a significant Sim2Real
gap. However, there is one key difference between the real
and simulated experiments: the robots never collide in sim-
ulation and the robots go out of bounds more than 6x more
often on real robots. The only time an algorithms’ metrics
were significantly worse on real robots vs. in simulation was
when the real robots collided or went out of bounds.

To further evaluate the Sim2Real gap, we compared our
VDN policies in PCP against a new version of VDN with
two crucial modifications that mimic the default safety
mechanisms of the Robotarium. First, we used CBFs that are
only effective at 17cm and do not slow the robots as much
when they are within the safety radii. Second, we did not
terminate the episode or penalize the robots for driving out of
bounds or colliding. We refer to this as VDN (Default CBF).
To ensure a fair comparison, we penalized the robots for
colliding or driving out of bounds during testing, even though
VDN (Default CBFs) was not penalized during training.

Scenario Metric VDN (Safe CBF) VDN (Default CBF)

Predator
Capture

Prey

Reward 33.25±0.46 30.34±4.63
Steps 55±9.18 63.20±12.39
Prey Left 0±0 0.10±0.30
Collisions 0 0
Boundaries 0 .03

TABLE III: Comparison of VDN (Safe CBF) against VDN
(Default CBFs) in simulation.

As seen in table III, there are no significant differences in
simulation between the performance of VDN (Safe CBFs)
and VDN (Default CBFs). When evaluated on the physical
Robotarium, no episode of VDN (Safe CBFs) resulted in a
collision. However, VDN (Default CBFs) resulted in colli-
sions 3 out of 10 episodes despite using the recommended
safety mechanisms. Note that 100 simulated episodes of

VDN (Default CBFs) had no collisions. These findings
suggest a significant Sim2Real gap when it comes to safety:
even if robots seem to learn safe policies in simulation, we
cannot assume safety in the real world. This observation
highlights another significant contribution of MARBLER:
it is the first open platform that can evaluate the safety of
learned MRRL policies directly in the real world.

VI. LIMITATIONS AND FUTURE WORK

MARBLER’s primary limitation is its training speed. On
an Intel i7-12700H, MPE trains ∼3.9 times faster than
MARBLER with CBFs and ∼2.8 times faster than MAR-
BLER without CBFs. Future work will focus on improving
MARBLER’s training speed. We also did not benchmark
MARBLER with GNN-based communication algorithms to
maintain a fair comparison with EPyMARL, which lacks
GNN support in its implementations. However, MARBLER
has already been employed in studies that use GNNs [33].
Finally, MARBLER hasn’t been evaluated with complex
observations (e.g., images) so future research should create
and analyze scenarios with more realistic observations.

VII. CONCLUSION

We introduced MARBLER, the first open platform with
Sim2Real capabilities, realistic robot dynamics, and the
ability to evaluate the safety of MRRL algorithms in the
real world. MARBLER environments are fully compatible
with the OpenAI Gym interface, providing an easy inter-
face for modern learning algorithms. We also created five
MRRL scenarios in MARBLER and utilized the EPyMARL
framework to benchmark popular MARL algorithms, both in
simulation and in the real-world. We hope MARBLER will
help researchers benchmark Sim2Real transfer capabilities of
MRRL algorithms in a systematic and reproducible way.



REFERENCES

[1] H. Zhang, J. Cheng, L. Zhang, Y. Li, and W. Zhang, “H2gnn:
Hierarchical-hops graph neural networks for multi-robot exploration
in unknown environments,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 3435–3442, 2022.

[2] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks
for decentralized multi-robot path planning,” in 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE,
2020, pp. 11 785–11 792.

[3] G. Neville, A. Messing, H. Ravichandar, S. Hutchinson, and S. Cher-
nova, “An interleaved approach to trait-based task allocation and
scheduling,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2021, pp. 1507–1514.

[4] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The
complexity of decentralized control of markov decision processes,”
Mathematics of operations research, vol. 27, no. 4, pp. 819–840, 2002.

[5] M. J. Matarić, “Reinforcement learning in the multi-robot domain,”
Robot colonies, pp. 73–83, 1997.

[6] Z. Zong, M. Zheng, Y. Li, and D. Jin, “Mapdp: Cooperative multi-
agent reinforcement learning to solve pickup and delivery problems,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 36, no. 9, 2022, pp. 9980–9988.

[7] E. Seraj, Z. Wang, R. Paleja, D. Martin, M. Sklar, A. Patel, and
M. Gombolay, “Learning efficient diverse communication for co-
operative heterogeneous teaming,” in International conference on
autonomous agents and multiagent systems, 2022.

[8] C. Sun, M. Shen, and J. P. How, “Scaling up multiagent reinforcement
learning for robotic systems: Learn an adaptive sparse communication
graph,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020, pp. 11 755–11 762.

[9] H. Bae, G. Kim, J. Kim, D. Qian, and S. Lee, “Multi-robot path
planning method using reinforcement learning,” Applied sciences,
vol. 9, no. 15, p. 3057, 2019.

[10] A. Alagha, S. Singh, R. Mizouni, J. Bentahar, and H. Otrok, “Target
localization using multi-agent deep reinforcement learning with prox-
imal policy optimization,” Future Generation Computer Systems, vol.
136, pp. 342–357, 2022.

[11] J. Orr and A. Dutta, “Multi-agent deep reinforcement learning for
multi-robot applications: A survey,” Sensors, vol. 23, no. 7, 2023.

[12] M. Bettini, A. Shankar, and A. Prorok, “Heterogeneous multi-robot
reinforcement learning,” arXiv preprint arXiv:2301.07137, 2023.

[13] C. Yu, X. Yang, J. Gao, J. Chen, Y. Li, J. Liu, Y. Xiang, R. Huang,
H. Yang, Y. Wu et al., “Asynchronous multi-agent reinforcement
learning for efficient real-time multi-robot cooperative exploration,”
arXiv preprint arXiv:2301.03398, 2023.

[14] J. Lin, X. Yang, P. Zheng, and H. Cheng, “End-to-end decentralized
multi-robot navigation in unknown complex environments via deep
reinforcement learning,” in 2019 IEEE International Conference on
Mechatronics and Automation (ICMA). IEEE, 2019, pp. 2493–2500.

[15] R. Han, S. Chen, and Q. Hao, “Cooperative multi-robot navigation
in dynamic environment with deep reinforcement learning,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 448–454.

[16] I. Mordatch and P. Abbeel, “Emergence of grounded compositional
language in multi-agent populations,” CoRR, vol. abs/1703.04908,
2017. [Online]. Available: http://arxiv.org/abs/1703.04908

[17] M. Samvelyan, T. Rashid, C. S. De Witt, G. Farquhar, N. Nardelli,
T. G. Rudner, C.-M. Hung, P. H. Torr, J. Foerster, and
S. Whiteson, “The starcraft multi-agent challenge,” arXiv preprint
arXiv:1902.04043, 2019.

[18] G. Papoudakis, F. Christianos, L. Schäfer, and S. V. Albrecht,
“Benchmarking multi-agent deep reinforcement learning algorithms
in cooperative tasks,” in Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks (NeurIPS),
2021. [Online]. Available: http://arxiv.org/abs/2006.07869

[19] S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote,
and M. Egerstedt, “The robotarium: Globally impactful opportunities,
challenges, and lessons learned in remote-access, distributed control
of multirobot systems,” IEEE Control Systems Magazine, 2020.

[20] M. Bettini, R. Kortvelesy, J. Blumenkamp, and A. Prorok, “Vmas: A
vectorized multi-agent simulator for collective robot learning,” arXiv
preprint arXiv:2207.03530, 2022.

[21] Z. Liang, J. Cao, S. Jiang, D. Saxena, J. Chen, and H. Xu, “From multi-
agent to multi-robot: A scalable training and evaluation platform for
multi-robot reinforcement learning,” 06 2022.

[22] J. Chen, F. Deng, Y. Gao, J. Hu, X. Guo, G. Liang, and T. L.
Lam, “Multirobolearn: An open-source framework for multi-robot
deep reinforcement learning,” arXiv preprint arXiv:2209.13760, 2022.

[23] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, 2004, pp. 2149–2154 vol.3.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[25] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. WU,
“The surprising effectiveness of ppo in cooperative multi-agent
games,” in Advances in Neural Information Processing Systems,
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
Eds., vol. 35. Curran Associates, Inc., 2022, pp. 24 611–24 624.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2022/file\/9c1535a02f0ce079433344e14d910597-Paper-Datasets
and Benchmarks.pdf

[26] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and
S. Whiteson, “Monotonic value function factorisation for deep multi-
agent reinforcement learning,” J. Mach. Learn. Res., vol. 21, no. 1,
jan 2020.

[27] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, “Value-decomposition networks for cooperative multi-
agent learning,” 2017.

[28] D. Pickem, M. Lee, and M. Egerstedt, “The gritsbot in its natural
habitat - a multi-robot testbed,” in 2015 IEEE International Conference
on Robotics and Automation (ICRA), 2015, pp. 4062–4067.

[29] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[30] R. N. Haksar and M. Schwager, “Distributed deep reinforcement
learning for fighting forest fires with a network of aerial robots,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 1067–1074.

[31] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. Kumar et al., “Multi-agent pathfinding: Defi-
nitions, variants, and benchmarks,” in Proceedings of the International
Symposium on Combinatorial Search, 2019.

[32] PACE, Partnership for an Advanced Computing Environment (PACE),
2017. [Online]. Available: http://www.pace.gatech.edu

[33] P. Howell, M. Rudolph, R. J. Torbati, K. Fu, and H. Ravichandar,
“Generalization of heterogeneous multi-robot policies via awareness
and communication of capabilities,” in 7th Annual Conference on
Robot Learning, 2023. [Online]. Available: https://openreview.net/
forum?id=N3VbFUpwaa

http://arxiv.org/abs/1703.04908
http://arxiv.org/abs/2006.07869
https://proceedings.neurips.cc/paper_files/paper/2022/file\/9c1535a02f0ce079433344e14d910597-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file\/9c1535a02f0ce079433344e14d910597-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file\/9c1535a02f0ce079433344e14d910597-Paper-Datasets_and_Benchmarks.pdf
http://www.pace.gatech.edu
https://openreview.net/forum?id=N3VbFUpwaa
https://openreview.net/forum?id=N3VbFUpwaa

	Introduction
	Related Work
	MARL and MRRL Platforms
	MARL Algorithms
	The Robotarium

	The MARBLER Platform
	Primary Components
	Scenarios
	Existing Scenarios
	Creating New Scenarios


	Experiments
	Experiment Setup
	Evaluation Protocol
	Computational Requirements

	Results
	Value Based vs. Policy Gradient
	Effects of Parameter Sharing
	Sim2Real Gap

	Limitations and Future Work
	Conclusion
	References

