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Abstract— Control barrier functions (CBFs) enable guaran-
teed safe multi-agent navigation in the continuous domain. The
resulting navigation performance, however, is highly sensitive
to the underlying hyperparameters. Traditional approaches
consider fixed CBFs (where parameters are tuned apriori),
and hence, typically do not perform well in cluttered and
highly dynamic environments: conservative parameter values
can lead to inefficient agent trajectories, or even failure to
reach goal positions, whereas aggressive parameter values can
lead to infeasible controls. To overcome these issues, in this
paper, we propose online CBFs, whereby hyperparameters are
tuned in real-time, as a function of what agents perceive in
their immediate neighborhood. Since the explicit relationship
between CBFs and navigation performance is hard to model,
we leverage reinforcement learning to learn CBF-tuning policies
in a model-free manner. Because we parameterize the policies
with graph neural networks (GNNs), we are able to synthesize
decentralized agent controllers that adjust parameter values
locally, varying the degree of conservative and aggressive
behaviors across agents. Simulations as well as real-world
experiments show that (i) online CBFs are capable of solving
navigation scenarios that are infeasible for fixed CBFs, and (ii),
that they improve navigation performance by adapting to other
agents and changes in the environment.

I. INTRODUCTION
Multi-agent systems are ideally suited to tackle spatially

distributed tasks, for which safe and efficient motion plan-
ning is a key enabling foundation [1]–[3]. In the context
of multi-agent navigation, model-based approaches often
assume full knowledge of the environment and system dy-
namics, and require designing explicit objective functions
and well-tuned hyper-parameters prior to agent deployment.
Data-driven approaches are able to work with partially ob-
served environments and complex system dynamics that are
difficult to model, but often sacrifice safety and convergence
guarantees. This work aims to find a middle-ground that
leverages the advantages from both approaches.

In this paper, we focus on designing decentralized con-
trollers for multi-agent navigation with dynamical con-
straints. Different from classic path-finding problems [4]–[6],
we generate feedback control inputs and perform collision
avoidance in continuous space. Specifically, the problem of
multi-agent navigation with convergence and safety guaran-
tees can be formulated as a sequence of real-time optimiza-
tion problems by using control barrier functions (CBFs) and
control Lyapunov functions (CLFs), where the former allow
agents to move safely without collision and the latter guide
them towards target states. The combination of CBFs and
CLFs has been widely used for safety-critical controls [7],
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[8]. Although CBFs provide safety guarantees, traditional
approaches require manually setting parameters within CBF
constraints [7]–[10]. This may yield overly conservative
trajectories with strong CBF constraints or overly aggressive
trajectories with relaxed ones, both of which could lead
to controller infeasibility, i.e., no admissible control exists,
and agents are hence unable to steer to their destinations.
Moreover, such issues occur more frequently when the envi-
ronment is cluttered with moving agents and an increasing
number of obstacles, because the number of CBF constraints
scales with that of agents and obstacles. Many existing works
preset CBF parameters before deployment and fix the latter
throughout the navigation procedure [11]–[13]. This requires
resetting CBF parameters in each new environment, and
makes multi-agent systems incapable of operating in dy-
namic environments where agent configurations and obstacle
constellations vary across time. Hence, we aim to develop
methods that capture time-varying environment states and
tune CBF parameters in real time as a function of these states.

Instead of hand-tuning and fixing CBF parameters at the
outset, we propose a methodology that tunes the latter based
on agent and obstacle states in a real-time and decentralized
manner. The goal is to find an optimal sequence of time-
varying CBF parameters that adapts to new environment
configurations, and that varies the degree of conservative
and aggressive behaviors across agents (striking a balance
that aids in trajectory deconfliction). Due to the challenge
of explicitly modeling the relationship between CBFs and
navigation performance, we parameterize the CBF-tuning
policy with graph neural networks (GNNs) and learn the
latter with model-free reinforcement learning (RL). Thanks
to the inherently distributed nature of GNNs [14]–[17], the
resulting policy allows for a decentralized implementation,
i.e., it can be executed by each agent locally with only
neighborhood information, yielding an efficient and scalable
solution.

Related work. There are two main groups of CBF-based
techniques in multi-agent control: model-based [18]–[21] and
data-driven approaches [22]–[24]. Model-based approaches
require full knowledge of the environment and fix CBF
parameters a-priori. The CBF constraints are affine in the
control variable, to formulate a quadratic program (QP) con-
troller, which provides safety guarantees for navigation. In
contrast, data-driven approaches directly approximate CBFs
with neural networks [25]–[27]. However, these approaches
sacrifice safety guarantees in the process. The work in [28]
combines model-based and data-driven approaches by learn-
ing a backup CBF to enhance the safety. For the feasibility
of CBFs, [29] designs a feasibility guaranteed controller
for traffic-merging problems. The work in [30] studies the
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feasibility of a CBF-based model predictive controller (MPC)
in a discrete time setting, while [12] introduces a decaying
term paired with CBFs to improve the feasibility of the
MPC. Moreover, [31] extends the class K function of CBFs
for forward invariance in continuous time. A more closely
related work, [11], develops an SVM classifier to filter out
infeasible CBF parameters and reduce the search space to
find optimal CBF parameters. However, it considers single-
agent scenarios and the selected CBF parameters are fixed
during navigation. To the best of our knowledge, none of the
aforementioned works update CBF parameters online based
on changes in the agents’ locally perceived environment.

Contributions. Our contributions are as follows:
1) We propose an online safety-critical framework that

adapts CBFs to dynamic environments in a decentral-
ized manner. It inherits safety guarantees from tradi-
tional CBFs and facilitates the feasibility of the con-
troller, due to the online tuning of CBF parameters.

2) We parameterize the CBF-tuning policy with GNNs and
conduct training with model-free RL. The former allows
for a decentralized implementation, while the latter
overcomes the challenge of explicitly modeling the
relationship between CBFs and navigation performance.

3) We validate our approach with numerical simulations
and real-world experiments in various environment con-
figurations. The results show that online CBFs can han-
dle navigation scenarios that fail with fixed CBFs (even
when we perform an exhaustive parameter search).

II. PRELIMINARIES
We introduce preliminaries about system dynamics, CLFs

and CBFs in decentralized multi-agent navigation.
System dynamics Consider a multi-agent system with N
agents A = {Ai}Ni=1 in a 2-D environment with M static
obstacles {Oj}Mj=1. The agent dynamics take the form of

ẋi = f(xi) + g(xi)ui, (1)

where xi ∈ Rn is the internal state, ui ∈ Rm the control
input, ẋi the derivative of xi w.r.t. time t, and f(xi), g(xi)
the flow vectors for i = 1, ..., N . Each agent Ai has a sensing
range σ ∈ R+ that provides partial observability of the entire
environment, i.e., the states of the other agents {xj}j∈Ni

and the positions of the obstacles {pℓ,o}ℓ∈Ni
within the

neighborhood of radius σ where Ni is the neighbor set of
Ai – see Fig. 1. We consider decentralized control policies

πi

(
ui

∣∣∣xi, {xj}j∈Ni
, {pℓ,o}ℓ∈Ni

)
, for i = 1, . . . , N (2)

that drive agents from initial X(0) := {x(0)
i }Ni=1 to target

states Xd := {xd
i }Ni=1 with local neighborhood information.

Control Lyapunov function (CLF). A CLF is designed to
encode the goal-reaching requirement, i.e., the satisfaction
of CLF constraints guarantees that agents converge to their
target states. We define the exponentially-stabilizing CLF
that ensures an exponential convergence as follows [32].

Definition 1: Given the system dynamics (1) of agent
Ai, a positive definite continuously differentiable function
Vi(xi) : Rn 7→ R is an exponentially-stabilizing CLF if there
exists a positive constant ϵ ≥ 0 such that for any xi∈Rn,

infui∈Ui
[£fVi(xi)+£gVi(xi)ui+ϵVi(xi)]≤0, (3)

Fig. 1. Agent Ai communicates with the other agents and senses
obstacles within its sensing range σ. In this sketch, there are two
CBF constraints w.r.t. the other agents, and one w.r.t. obstacle O1.

where £fVi(xi) := ∂Vi(xi)
∂xi

f(xi) is the Lie derivative of
Vi(xi) [33] and Ui is the control space of agent Ai.
Control barrier function (CBF). A CBF is designed to
avoid static obstacles as well as to prevent collisions among
moving agents. It ensures forward invariance of the state
trajectory, i.e., if the agent starts within a safety set, it will
always stay within safety sets [34]. Specifically, we encode
the safety requirement of agent Ai in a smooth function
hi(xi) : Rn 7→ R and its derivative w.r.t. time is given by

ḣi(xi) = £fhi(xi) +£ghi(xi)ui, (4)

where £fhi(xi) :=
∂hi(xi)

∂xi
f(xi),£ghi(xi) :=

∂hi(xi)
∂xi

g(xi)
are the Lie derivatives of hi(xi). We define the higher-order
CBF with relative degree one as follows [35].

Definition 2: Given the system dynamics (1) of agent Ai,
a differentiable function hi : Rn 7→ R is a higher-order CBF
with relative degree one if there exists a strictly increasing
function αi : R+ → R+ such that for any xi∈Rn,

hi(xi) ≥ 0, ḣi(xi) + αi

(
hi(xi)

)
≥ 0. (5)

Here, αi(·) is referred to as a class K function for agent Ai,
which is determined by function parameters η and ζ. More
details are given in Section IV-A.

III. PROBLEM FORMULATION
We first formulate the problem of decentralized multi-

agent navigation with CLFs for state convergence and CBFs
for safety guarantees. We then propose the problem of online
CBF optimization, which generates time-varying CBFs based
on instantaneously sensed states to optimize performance.

A. Decentralized Multi-Agent Navigation
Assume agents and obstacles are disk-shaped with radii

{Ri}Ni=1 and {Rℓ}Mℓ=1. Let {pi}Ni=1, {vi}Ni=1 and {di}Ni=1 be
the positions, velocities and destinations of agents A, which
are determined by the internal states {xi}Ni=1, and {pℓ,o}Mℓ=1
be the obstacle positions. The goal is to move agents towards
destinations while avoiding collision in a decentralized man-
ner. The destination convergence is equivalent to the state
convergence as limt→T x

(t)
i = xd

i with T the maximal time
step for i = 1, ..., N . The collision avoidance is equivalent
to the safety constraints on the agent states, i.e.,

C(t)
i,a ={x

(t)
i ∈Rn| ∥p(t)

i −p
(t)
j ∥≥ Ri+Rj

2
, j ̸= i}, (6)

C(t)
i,o ={x

(t)
i ∈Rn| ∥p(t)

i −p
(t)
ℓ,o∥≥

Ri+Rℓ

2
, ℓ=1, ...,M}. (7)

where ∥ · ∥ is the vector norm. This allows us to formulate
the problem of multi-agent navigation as follows.

Problem 1 (Decentralized Multi-Agent Navigation):
Given the multi-agent system A with dynamics (1), the



initial states {x(0)
i }Ni=1 and the target states {xd

i }Ni=1

satisfying {f(xd
i ) = 0}Ni=1, find decentralized policies

{πi :R|Ni|×n→Rm}Ni=1 [cf. (2)] such that for i = 1, ..., N ,

lim
t→T

∥x(t)
i − xd

i ∥ = 0, (8)

s.t. x
(t)
i ∈ C(t)

i,a ∩ C(t)
i,o = C(t)

i . (9)
The condition (8) guarantees state convergence, i.e., nav-

igation, and the condition (9) guarantees state safety, i.e.,
collision avoidance. Problem 1 is challenging because (i)
decentralized policies generate control inputs with only local
neighborhood information; and (ii), safety sets can be non-
convex and time-varying, depending on moving agents.

We propose to solve Problem 1 with a CBF-CLF based
quadratic programming (QP) controller. Specifically, at each
time step t, we can formulate a QP problem as

min
u

(t)
i ∈Ui,δ

(t)
i ∈R

∥u(t)
i ∥2 + ξ(δ

(t)
i )2 (10)

s.t. £fhi,j(x
(t)
i )+£ghi,j(x

(t)
i )u

(t)
i +αi(hi,j(x

(t)
i ))≥0,

for all j = 0, . . . , Ci,

£fVi(x
(t)
i )+£gVi(x

(t)
i )u

(t)
i +ϵVi(x

(t)
i )+δ

(t)
i ≤ 0,

x
(t)
i ∈ C(t)

i , for all i = 1, . . . , N,

where ξ ∈ R+ is a penalty weight for slack variable δi ∈ R
that is selected based on how strictly the CLF needs to be
enforced, and Ci is the number of CBF constraints based
on agent Ai’s perceived agents and obstacles. For example,
there are two CBF constraints w.r.t. the other agents and one
w.r.t. the obstacle in Fig. 1. The control input is bounded by
u
(t)
i ∈ Ui given physical constraints of agent Ai. The QP is

solved per time step to generate u
(t)
i until completion. The

class K function αi(·) in the CBF constraint determines how
strictly we want to enforce safety, and therefore will change
the agent behavior to be either conservative or aggressive.

B. Online CBF Optimization
The CBF-CLF-QP controller solves problem (10) to gener-

ate a sequence of control inputs {u(t)
i }Tt=0 for each agent Ai,

providing goal-reaching convergence and safety guarantees.
However, this may not be the case when problem (10) is
unsolvable at some time step t during navigation, i.e., when
there is no feasible solution for problem (10) given CBF
and CLF constraints at time step t. In this circumstance, an
agent will stay safe at its current state but stop progressing
towards its destination due to the lack of feasible control
inputs, resulting in the failure of multi-agent navigation.

Specifically, given system dynamics (1), CBF constraints
(5) and CLF constraints (3), the super-level set of agent Ai

that satisfies the constraints in problem (10) at time step t is

U(t)
i,CBF,CLF:=

u
(t)
i

∣∣∣∣∣∣∣∣∣∣
£ghi,j(x

(t)
i )u

(t)
i ≥−£fhi,j(x

(t)
i )

−αi

(
hi,j(x

(t)
i )

)
, for all j,

−£gVi(x
(t)
i )u

(t)
i ≥£fVi(x

(t)
i )

+ ϵVi(x
(t)
i ) + δ

(t)
i

. (11)

By combining (11) with the physical constraints Ui, the
space of feasible solutions of agent Ai is given by

Ui ∩ U(t)
i,CBF,CLF, for i = 1, . . . , N. (12)

For conservative CBFs, the resulting constraints are strict
and there may be no feasible solution in U(t)

i,CBF,CLF s.t.
Ui ∩ U(t)

i,CBF,CLF = ∅. For aggressive CBFs, the resulting
constraints are relaxed and the agents may be too close to the
obstacles or each other. In these cases, the QP controller may
generate control inputs that require sudden changes beyond
the agent’s physical capability Ui s.t. Ui ∩U(t)

i,CBF,CLF = ∅.
Both scenarios lead to the infeasibility of problem (10) and,
thus, navigation failure, indicating an inherent trade-off that
is defined by CBF constraints – see Figs. 2d-2e for examples.

The aforementioned issue is exacerbated when the en-
vironment becomes cluttered with increasing numbers of
agents and obstacles, which makes it challenging to hand-
tune CBFs. Furthermore, fixing CBFs during navigation may
not effectively handle the dynamic nature of the environment
with moving agents, and even well-tuned CBFs could suffer
from performance degradation with environment changes.
These observations motivate the use of time-varying CBFs
based on instantaneously sensed states, to tune agents’ con-
servative and aggressive behavior. We refer to the latter as
online CBFs. Define decentralized CBF-tuning policies as

πi,CBF

(
αi

∣∣∣xi,{xj}j∈Ni
,{pℓ,o}ℓ∈Ni

)
, for i=1, ..., N, (13)

which generate the class K function αi(·), i.e., the CBFs,
based on local neighborhood information. At each time
step t, a new class K function α

(t)
i (·) is generated for

agent Ai and passed into CBFs for solving (10) to com-
pute the control input u

(t)
i . Given any objective function

F ({πi,CBF}Ni=1,X
(0),Xd) that represents the navigation

performance, the initial states X(0) and the target states Xd,
we can formulate the problem of online CBF optimization.

Problem 2 (Online CBF optimization): Given the ini-
tial states X(0) and target states Xd, find decentralized CBF-
tuning policies {πi,CBF}Ni=1 [cf. (13)] that generate online
CBFs with local neighborhood information, to guarantee
the feasibility of problem (10) and maximize the objective
function F ({πi,CBF}Ni=1,X

(0),Xd).
The CBF-tuning policy conducts online CBF adjustments

based on the local state of a dynamic environment, which
provides control feasibility where fixed CBFs would not be
able to, while maintaining safety guarantees. The generated
time-varying CBFs strike a balance between conservative and
aggressive behaviors among different agents. For scenarios
where agent trajectories are in conflict (e.g., several agents
need to navigate through narrow space), this yields an inher-
ent prioritization among agents and provides deconfliction
for agent trajectories – see Fig. 3a for demonstration.

IV. METHODOLOGY
In this section, we specify the decentralized CLF-CBF-

QP controller to solve Problem 1 and leverage model-free
reinforcement learning with decentralized GNNs to solve
Problem 2. We consider a linear system for each agent Ai,
which has the following system dynamics[

ṗi,1
ṗi,2

]
=

[
0 0
0 0

] [
pi,1
pi,2

]
+

[
1 0
0 1

] [
ui,1

ui,2

]
, (14)

where pi = [pi,1, pi,2]
⊤ is the position and ui = [ui,1, ui,2]

⊤

is the control input of agent Ai for i = 1, ..., N .



A. CLF-CBF-QP Controller
Given the destination di = [di,1, di,2]

⊤ of agent Ai, define
a Lyapunov function candidate as Vi(x) = (pi,1 − di,1)

2 +
(pi,2 − di,2)

2 and the CLF constraint as

2(pi − di)
⊤ui + ϵVi(xi) + δi ≤ 0 (15)

for i = 1, ..., N . Define barrier function candidates as

hi,j,a(xi)=(pi,1−pj,1)
2+(pi,2−pj,2)

2−(Ri+Rj)
2, (16)

hi,ℓ,o(xi)=(pi,1−pℓ,1,o)
2+(pi,2−pℓ,2,o)

2−(Ri+Rℓ)
2,

where hi,j,a is w.r.t. collision avoidance between the agents
Ai and Aj , and hi,ℓ,o is w.r.t. collision avoidance between
agent Ai and obstacle Oℓ with pℓ,o = [pℓ,1,o, pℓ,2,o]

⊤ the
obstacle position. The resulting CBF constraints are

2(pi−pj)
⊤ui − 2(pi − pj)

⊤ṗj + ζi,a
(
hi,j,a(xi)

)ηi,a ≥ 0,

2(pi − pℓ)
⊤ui + ζi,o

(
hi,ℓ,o(xi)

)ηi,o ≥ 0, (17)

where ζi,a, ηi,a are CBF parameters of agent Ai w.r.t. the
other agents and ζi,o, ηi,o are w.r.t. the obstacles. In this
context, each agent has two sets of CBF parameters for the
other agents and for the obstacles, respectively. We can then
specify the CBF-CLF-QP controller by substituting the CLF
constraint (15) and CBF constraints (17) into problem (10).

B. Reinforcement Learning
The CBFs are determined by the class K function αi(·)

with parameters ζi,a, ηi,a for the other agents and ζi,o, ηi,o
for the obstacles. This indicates that we can learn CBFs by
learning CBF parameters ζi = [ζi,a, ζi,o]

⊤,ηi = [ηi,a, ηi,o]
⊤

at each agent Ai. Since it is challenging to explicitly model
the relationship between CBF parameters and navigation
performance, we formulate Problem 2 in the RL domain and
learn CBF-tuning policies in a model-free manner.

We start by defining a partially observable Markov deci-
sion process. At each time t, agents are defined by states
X(t) = {x(t)

i }Ni=1. Each agent Ai observes its local state
x
(t)
i , communicates with its neighboring agents, and senses

its neighboring obstacles to collect the neighborhood infor-
mation {x(t)

j }j∈Ni
and {pℓ,o}ℓ∈Ni

. The CBF-tuning policy
πi,CBF generates CBF parameters ζ

(t)
i and η

(t)
i , which is a

distribution over ζ
(t)
i , η(t)

i conditioned on x
(t)
i , {x(t)

j }j∈Ni ,
{pℓ,o}ℓ∈Ni

. The CBF parameters ζ
(t)
i , η(t)

i are fed into the
QP controller (10), which generates the control action u

(t)
i

that drives the local state x
(t)
i to x

(t+1)
i based on the agent’s

dynamics (14). The reward function ri(X
(t)) represents the

instantaneous navigation performance of agent Ai at time t,
which consists of two components: (i) the navigation reward
ri,nav and (ii) the QP’s feasibility reward ri,infs, i.e.,

r
(t)
i (X(t)) = r

(t)
i,nav(X

(t)) + βir
(t)
i,infs(X

(t)), (18)

where βi is the regularization parameter. The first term
represents the task-relevant performance of agent Ai, while
the second term corresponds to the feasibility of the QP
controller (10) with the generated CBF parameters, e.g., it
penalizes the scenario where the QP controller has no fea-
sible solution with overly conservative or aggressive CBFs.
The total reward of agents is r(t) =

∑N
i=1 r

(t)
i . With the

discount factor γ that accounts for the future rewards, the
expected discounted reward can be represented as

R
(
X(0),Xd, {pℓ,o}Mℓ=1|{πi,CBF}Ni=1

)
=E

[ ∞∑
t=0

γtr(t)
]
, (19)

where E[·] is w.r.t. CBF-tuning policies. The expected
discounted reward in (19) corresponds to the objec-
tive function in Problem 2, which transforms the prob-
lem into the RL domain. By parameterizing the poli-
cies {πi,CBF}Ni=1 with information processing architec-
tures {Φi(x

(t)
i , {x(t)

j }j∈Ni
, {pℓ,o}ℓ∈Ni

,θi)}Ni=1 of parame-
ters {θi}Ni=1, the goal is to learn optimal parameters {θ∗

i }Ni=1

that maximize R(X(0),Xd, {pℓ,o}Mℓ=1|{θi}Ni=1). We solve
the latter by updating {θi}Ni=1 through policy gradient ascent.

C. Graph Neural Networks

We parameterize CBF-tuning policies with GNNs, which
allow for decentralized execution. They are inherently per-
mutation equivariant (independent of agent ordering), and
hence, generalize to unseen agent constellations [36]–[38].

Motivated by the observation that CBFs need only rela-
tive information (e.g., relative positions between agents and
obstacles) [cf. (17)], we design a translation-invariant GNN
that leverages message passing mechanisms to generate CBF
parameters with relative information. For each agent Ai with
its local state xi, the states of neighboring agents {xj}j∈Ni

and the positions of neighboring obstacles {pℓ,o}ℓ∈Ni
, it

generates CBF parameters with the message aggregation
functions Fm,a,Fm,o and the feature update function Fu as

(ζ
(t)
i ,η

(t)
i )=Φi(x

(t)
i , {x(t)

j }j∈Ni
, {pℓ,o}ℓ∈Ni

,θi) (20)

=Fu

(∑
j∈Ni

Fm,a(xj−xi)+
∑
ℓ∈Ni

Fm,o(pℓ,o−pi)
)
,

where θi are the function parameters of Fm,a,Fm,o and Fu.
By sharing Fm,a,Fm,o and Fu over all agents, we have θ1 =
· · · = θN and thus Φ1 = · · · = ΦN .

The GNN-based policy has the following properties:

1) Decentralized execution: The functions Fm,a,Fm,o,Fu

require only neighborhood information and the policy
can be executed in a decentralized manner.

2) Translation invariance: The policy uses relative infor-
mation and is invariant to translations in R2.

3) Permutation equivariance: The functions
Fm,a,Fm,o,Fu are homogeneous and the policy
is equivariant to permutations (i.e., agent reorderings).

V. EXPERIMENTS

We evaluate our approach in this section. First, we conduct
a proof of concept with four agents and four obstacles. Then,
we show how our approach solves navigation scenarios that
are infeasible with fixed CBFs. Next, we show the gener-
alization of our approach in scenarios with more obstacles.
Lastly, we report results from real-world experiments.
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Fig. 2. (a) Agent trajectories with online CBFs generated by GNN-based policy. Green circles are initial positions, blue squares are goal
positions, and grey circles are obstacles. Green-to-blue lines are agent trajectories and the color bar represents the time scale. (b)-(c)
Time-varying CBF parameters ζ3,a, ζ3,o and η3,a, η3,o of agent A3 w.r.t. the other agents and the obstacles. The vertical lines in the top
plots of (b)-(c) represent the maximal and minimal values of time-varying CBF parameters. (d) Agent trajectories with the minimal fixed
CBF parameters (i.e., the most conservative case). The agents A2, A3 and A4 have overly conservative CBFs and their controllers have
no feasible solution. (e) Agent trajectories with the maximal fixed CBF parameters (i.e., the most aggressive case). The agents A3 and A4

have overly aggressive CBFs and get stuck before the narrow passage between O3 and O4, where controllers have no feasible solution.

A. Proof of Concept
We consider an environment shown in Fig. 2a. The agents

have radius 0.15m, and are initialized randomly in the top
region of the workspace and tasked towards goal positions in
the bottom region. The obstacles are of radius 0.5m, and are
distributed between the initial and goal positions of agents.
Implementation details. The agents are represented by
positions {pi}Ni=1 and velocities {vi}Ni=1, and the obstacles
by positions {pℓ,o}Mℓ=1. At each time step, each agent gen-
erates desired CBF parameters with its local policy based
on neighborhood information, and feeds the latter into the
QP controller to generate the feasible velocity towards its
destination. An episode ends if all agents reach destinations
or the episode times out. The sensing range, i.e., the commu-
nication radius, is 2m, the maximal velocity is 0.5m per time
step in each direction, the maximal time step is 500, and the
time interval is 0.05s. At time t, the reward is defined as

r
(t)
i =

( p
(t)
i − di

∥p(t)
i − di∥2

· v
(t)
i

∥v(t)
i ∥2

)
∥v(t)

i ∥2 + r
(t)
QP , (21)

where the first term rewards fast movement towards the
destination and the second term represents the infeasibility
penalty of the QP controller. The message aggregation and
feature update functions of the GNN are multi-layer percep-
trons (MLPs), and the training is conducted with PPO [39].
Performance. Fig. 2a shows the agent trajectories with
online CBFs. The agents move smoothly from initial posi-
tions to destinations without collision. Figs. 2b-2c show the
variation of CBF parameters ζ, η of an example agent A3

w.r.t. the other agents and obstacles, respectively. We see that
(i) the values of ζ remain maximal for the majority of its
trajectory, which can be interpreted as a relaxation of CBF
constraints to achieve fast velocities towards destination; (ii),
the values of ζ drop and the values of η increase between
time step 100 and 150, which render CBF constraints con-
servative to avoid inter-agent congestion. I.e., A3 slows its
velocity for A4 when preparing to pass through the narrow
passage between O3 and O4; (iii), the values of ζ and η tend
to be random after time step 250, because A3 is close to its
destination and CBF parameters play little role at that stage.

To show the trade-off between conservative and aggressive
behavior inherent in CBFs, we select the minimal and
maximal values from time-varying CBF parameters in Figs.

2b-2c (dashed lines), corresponding to the most conservative
and aggressive CBFs, and perform navigation for fixed CBFs
[21], [25] with these selected parameters. For the minimal
values in Fig. 2d, A2, A3 keep still and A1, A4 move
along the environment boundary, with overly conservative
trajectories, and only A1 reaches its destination. For the
maximal values in Fig. 2e, while all agents aggressively
move towards destinations, A3 and A4 get stuck before the
narrow passage between O3 and O4. This is because the
agents are too close to each other and the obstacles, where
their controller has no feasible solution. This highlights the
importance of our approach, which provides online CBFs.

B. Feasibility
We perform our approach in three distinct navigation

scenarios: Narrow Passage, Cross, and Singularity. For the
fixed CBFs, we employ an exhaustive grid-search to find
optimal parameters (ζ, η) from [0.1, 10]× [1.0, 2.0] for 100
combinations.

Fig. 3 shows the performance of our approach and the op-
timal fixed CBFs in our three scenarios. Overall, our results
show that, while we exhaustively traversed the parameter
space, there still exist scenarios where there is no solution
for fixed CBFs. In contrast, the online CBFs can solve these
infeasible scenarios (i.e., all agents reach their destinations
successfully). For the Narrow Passage scenario in Figs. 3a-
3b and the Cross scenario in Figs. 3c-3d, our approach
deconflicts agents by prioritizing them with varying degrees
of conservative / aggressive behaviors. For the Singularity
scenario in Figs. 3e-3f, the agent and its destination are
aligned with an obstacle in the middle. The fixed CBF-based
controller generates controls on the edge or vertex of the
admissible control set, and hence, agents get stuck in local
minima [40], while our approach helps agents escape such
conditions due to online CBF tuning.

C. Generalization
We show the generalization of our approach by testing the

trained policy on previously unseen environments. We con-
sider two baselines: (i) optimal fixed CBFs with exhaustive
grid-search and (ii) time-varying CBFs with random parame-
ters. The first searches the parameter space exhaustively and
selects the optimal values for fixed CBFs. As existing works
primarily concentrate on identifying the optimal fixed CBFs



(a) (b) (c) (d) (e) (f)

Fig. 3. Agent trajectories with online CBFs generated by GNN-based tuning policy and optimal fixed CBFs selected by exhaustive grid-
search in different infeasible scenarios. (a) Narrow Passage scenario with online CBFs. (b) Narrow Passage scenario with optimal fixed
CBFs. (c) Cross scenario with online CBFs. (d) Cross scenario with optimal fixed CBFs. (e) Singularity scenario with online CBFs. (f)
Singularity scenario with optimal fixed CBFs.
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Fig. 4. (a) Environment used to train GNN-based policy for online
CBFs and to conduct grid-search for fixed CBFs. Agent trajectories
are generated with online CBFs of the trained GNN-based policy.
(b) Performance comparison between online CBFs generated by
GNN-based policy, optimal fixed CBFs with exhaustive grid-search
and time-varying CBFs with random parameters.

for specific tasks [11], [41], [42], we consider this baseline
to approximate the optimal performance of controllers with
fixed CBFs. Note that it is inefficient and included here solely
for reference. The second selects random CBF parameters
every 10 time steps, which is as efficient as our approach.

We consider larger environments with 8 obstacles, where
the maximal time step is 750. We train our approach for
online CBFs and conduct grid-search for fixed CBFs in the
environment shown in Fig. 4a, and test them by randomly
shifting initial, goal and obstacle positions. The performance
is measured by two metrics: (i) Success weighted by Path
Length (SPL) [43] and (ii) the percentage to the maximal
speed (PCTSpeed). The former is a stringent measure com-
bining the success rate and the path length, while the latter
represents the ratio of the average speed to the maximal one.

Fig. 4b shows the results averaged over 20 random ini-
tializations. Our approach outperforms the baselines in both
metrics, with higher expectations and lower standard devia-
tions. This corresponds to theoretical findings that (i) online
CBFs coordinate agents’ conservative / aggressive behaviors
based on instantaneous environment states, which allows
smooth navigation without congestion for higher expected
performance; (ii), online CBFs deconflict agents to solve
infeasible scenarios, which improves robustness for lower
standard deviations. Random CBFs exhibit a higher SPL
than fixed CBFs because they deconflict some infeasible
scenarios by randomly prioritizing agents and have a higher
success rate. However, random CBFs show a lower PCT-
Speed because randomly coordinating agents exhibits poor
performance, even though navigation tasks are successful.

Fig. 5. Real-world experiments with DJI’s Robomasters. Robots
are required to pass through a narrow passage and reach predefined
goal positions. The online CBFs are able to deconflict robots.

D. Real-World Experiments
We conduct real-world experiments to validate our ap-

proach. We consider a narrow passage scenario that requires
deconfliction for multi-robot navigation. We use four cus-
tomized DJI Robomasters with Raspberry Pi. Each robot has
a partially observable space with a sensing range of 2m, and
employs an external telemetry (OptiTrack) for localization.
We use ROS2 as communication middle-ware. At each time,
the robot receives its current state and the neighbors’ states,
and deploys the decentralized controller for navigation.

Fig. 5 shows that our approach steers all robots to their
destinations without collision, because online CBFs decon-
flict robots by adapting between conservative and aggressive
constraint values. When performing the same experiment
with (optimized) fixed CBFs, robots fail to navigate through
the narrow passage because online deconfliction is not facil-
itated. This insight corroborates our theoretical analysis and
numerical simulations [44, Video Link].

VI. CONCLUSION
This paper proposed online CBFs for decentralized multi-

agent navigation. We formulated the problem of multi-agent
navigation as a quadratic programming with CLFs for state
convergence and CBFs for safety constraints, and proposed
an online CBF optimization that tunes CBFs based on
instantaneous state information in a dynamic environment.
We solved this problem by leveraging RL with GNN pa-
rameterization. The former allows for model-free training
and the latter provides decentralized agent controllers. We
show, through simulations and real-world experiments, that
our approach coordinates agent behaviors to deconflict their
trajectories and improve overall navigation performance, all
the while ensuring safety. In future work, we will extend our
work on higher-dimensional non-linear systems.
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