
/VA¢/_-CR- 172t5_'I
NASA Contractor Report 172544

ICASE REPORT NO. 85-12
NASA-CR-172544
19850013694

ICASE
PISCES: AN ENVIRONMENT FOR PARALLEL SCIENTIFIC COMPUTATION

Terrence W. Pratt

i.:7f,]iS'dIi l _, _ Dlil tl el

' ,': :" !_0'3

Contract No. NASI-17070 IJ_,NGLEYRESEARC_ ,.:E_XTL-K
February 1985. LI_2ARY,F"ASA

_L'I,;;.;. i014, VIRGIi'IIA

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Assoeiatlon

• NASA
National Aeronautics and
Space Administration

Langley Resoarch Centre'
Hampton,Virginia23665

PISCES: An Environment for Parallel Scientific Computation

. Terrence W. Pratt
Department of Computer Science

University of Virginia
• and

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center

Abstract

PISCES (Parallel Implementation of Scientific Computing EnvironmentS) is a project to pro-

vide high-level programming environments for parallel MIMD computers. Pisces l, the first of

these environments, is a Fortran 77 based environment which runs under the UNIX operating sys-

tem. The Pisces 1 user programs in Pisces Fortran, an extension of Fortran 77 for parallel process-

ing. The major emphasis in the Pisces 1 design is in providing a carefully specified "virtual

machine" that defines the run-time environment within which Pisces Fortran programs are exe-

cuted. Each implementation then provides the same virtual machine, regardless of differences in

the underlying architecture. The design is intended to be portable to a variety of architectures.

Currently Pisces 1 is implemented on a network of Apollo workstations and on a DEC VAX

uniprocessor via simulation of the task level parallelism. An implementation for the Flexible

Computing Corp. FLEX/32 is under construction. This paper provides an introduction to the Pisces

1 virtual computer and the Fortran 77 extensions. An example of an algorithm for the iterative

solution of a system of equations is given. The most notable features of the design are the provi-

sion for several different "granularities" of parallelism in programs and the provision of a "win-

dow" mechanism for distributed access to large arrays of data.

Submitted for publication in IEEE Software.

This research was supported in part by NASA Grant NAG-I-467 to the University of Vir-
ginia and in part by NASA Contract NAS1-17070 while the author was in residence at the Insti-
tute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research
Center.

In the scientific computing community, there is a widespread conviction that the supercom-

puters of the 1990's must inevitably involve many processors working together in parallel. Funda-

mental limits on circuit switching and signal propagation times suggest that further major speedup

of conventional hardware components will be increasingly difficult. However if large numbers of

conventional processors and memories can be put together to work effectively in parallel on single

problems, then we may still be able to provide the computing "horsepower" required to solve the

many problems that are still too large for today's supercomputers.

The 1980's can be seen as a time of exploration in parallel computing. The commercial super-

computers of the 1980's primarily extend the vector processors of the 1970's into configurations

with a few massive vector processors coupled together around a shared memory (e.g., the Cray X-

MP, the Control Data Cyberplus, and the ETA Systems GF-10). But more varied experimentation is

going on in many industry, government, and university laboratories where machines with much

larger numbers of processors and memories are being constructed [1],using a wide range of inter-

connection strategies (e.g., the NASA Massively Parallel Processor, the NYU/IBM Ultracomputer,

and the University of Maryland ZMOB).

Exploration in architectures for parallel computers is matched by exploration in parallel

algorithms and parallel languages. Filman and Friedman [2] provide an overview of some of the

diverse language concepts that have been developed for writing programs for parallel computers.

Hockney and Jesshope [3] and Rodrigue [4] provide useful introductions to some of the work on

algorithms.

The term parallel computer has several connotations here, which are best stated explicitly.

First, a parallel computer is presumed to consist of many processors and memories (where "many"

means at least four and possibly hundreds of processors, with each processor usually having some

local memory). There may be a large memory shared among the processors, or no shared memory.

Most importantly, the goal of a parallel computer is to provide maximum computing power for ,

large problems; thus each parallel computer design aspires to be a "supercomputer," although in a

particular implementation it may not yet have reached that status. These distinctions differentiate

2

our "parallel computer" from a "distributed computer" or a "computer network, _ in which high-

performance on single problems is not the goal of the design.

The PISCES Project

The PISCES project (PISCES = ParaUel Implementation of Scientific Computing Environ-

mentS) began in 1983as an exploration of parallel computing from a somewhat novel direction. If

we consider the traditional approach of designing hardware, then implementing an operating sys-

tem, then a programming language, and then applications programs as "bottom-up," then our

approach was "top-down": look first to the kinds of applications programs, then to the languages

needed to effectively write these programs, then to the operating systems needed to effectively run

these languages, and finally to the hardware needed to effectively implement the operating systems.

In our view, if we knew what kind of parallelism was available in the applications programs, then

each lower level could be designed to effectively preserve and provide an efficient implementation

for that parallelism.

The history of sequential programming languages provides ample evidence that the v_rtua/

machines defined by our programming languages are more crucial than the machine architectures

that implement them [5]. For example, although the original intent behind the development of

Fortran was to provide a higher-level interface to the hardware without losing the performance

possible with assembly language, that view has long ago given way to a more sophisticated under-

standing: it is the abstract "Fortran virtual machine" that we want implemented, not some particu-

lar hardware. Any hardware is acceptable provided it allows an efficient implementation of the

Fortran virtual machine (and, of course, the same could be said for the virtual machines defined by,

e.g., Lisp, Fortran, Ada, Cobol, or APL). The hardware may change many times, but the virtual

machine defined by the language remains relatively stable.

With this background, the PISCESproject may be seen as an exploration of several aspects of

parallel computation but with the initial emphasis primarily on the language and applications lev-

els, rather than on hardware and operating systems. We have taken as our applications area the

programming of large-scale scientific and engineering calculations of the sort that dominate most

supercomputer use. The question to be explored is "what sort of parallel virtual machines form the

right conceptual models around which to base languages for programming the parallel supercom-

puters of the 1990's?"

Note that we are not concerned with "language design" in the traditional sense in PISCES; that .

is, questions of syntax and compilation are of only slight importance. The dominant theme is the

virtual machine which conceptually forms the run-time model for the language (what in other

contexts might be termed the "semantics" of the language).

The Ptsces I Environment

Pisces 1 is the name for the first of the PISCES virtual machine designs. Pisces 1 also provides

a programming language with which to program this virtual machine. Thus the user is provided

with a complete programming and execution environment. Our goal with the Pisces 1 design is to

provide an environment within which to explore parallel scientific computations that is "conserva-

tive," that is, which retains as much of conventional sequential programming as possible, so as to

provide a direct migration route into the world of parallel computation for practicing program-

mers.

The Pisces 1 design has several important aspects:

1. Clearly defined virtual machine. In keeping with the view that a simple, clearly defined

virtual machine is at the center of any useful programming environment, we emphasize the

definition of the virtual machine. Part of our goal, in fact, is to provide a formal specification of

this virtual machine that will be accessible to Pisces users. The virtual machine defines the run-

time effect of any Pisces 1 programming construct.

2. Base sequential language. For programming the virtual machine, we take a standard

sequential language and provide a small set of extensions. For the scientific/engineering applica-

tions area, the base language is Fortran 77. The Pisces 1 virtual machine is carefully integrated

with the major aspects of the Fortran 77 sequential virtual machine, so that the whole provides a

harmonious mix of parallel and sequential constructs. We have studiously avoided the temptation

4

to "improve" on deficiencies in the sequentia! parts of Fortran; sequential Fortran procedures will

generally run without change in Pisces 1.

3. Multiple "granularities" of parallelism. Opportunities for performing operations in parallel
J

• can be found in most scientific programs without difficulty. Often the parallelism is very "fine-

, grained," involving sets of single arithmetic operations, such as in the element-wise addition of

I two vectors. At other times it has a larger "granularity," involving execution of all iterations of a

loop in parallel, execution of several subprograms in parallel, or execution of major program units

in parallel. In Pisces 1 the programmer can express parallel operations at each of these granularities

and thus may explore alternative ways of expressing the "natural" parallelism available in particu-

lar algorithms.

4. Implemented on a variety of architectures. We wish Pisces 1 to be easily implementable on

i a variety of parallel architectures. The same Pisces Fortran programs would then be testable on1
these architectures. In general each architecture may be expected to provide support for only some

t of the granularities of parallel operations provided by the Pisces 1 design, leading to major perfor-1
! mance differences among various architectures for the same program. We wish to explore both the

question of how effectively the Pisces 1 virtual machine can use various parallel hardware organi-

t zations and how effectively the Pisces 1 user can "tune" a Pisces Fortran program to run well on a
i particular implementation of the virtual machine.

5. Performance measurement and analysis. The central reason for programmers to explore

! parallelism for scientific computation is performance. To this end the Pisces design emphasizes

, two aspects. First, the virtual machine should make " " " " as' visible, programming alternatives, dis-
i

tinctions that are likely to reflect major performance distinctions in the underlying hardware.

Thus the virtual machine should abstract, but not hide completely, real facts about the underlying

f hardware. Jones and Schwarz [6] point to the importance of this design goal. Second, Pisces 1 pro-

vides an integrated set of tools for performance analysis, to provide a means to understand the

effect of restructuring a sequential program for parallel execution and of various alternative ver-

sions of the same program that use parallelism in different ways.

I

' 5

Current Implementations

Pisces 1 has two current implementations. The first is on a uniprocessor (a DEC VAX) under

the Unix operating system. Unix processes are used to simulate the largest granularity of parallel-

ism (tasks). A complete record of task initiations and communication is maintained. A perfor-
t

mance analysis package allows the user to inspect the numbers and types of tasks initiated during a

run and the communication patterns between tasks -- numbers and sizes of messages, and their

senders and receivers.

The second implementation is on a network of workstations (9 Apollo Domain workstations

running Unix). The goal of this implementation is to determine the effectiveness of Pisces 1 as a

vehicle for soaking up idle time on these workstations by running large scientific computations in

background (somewhat in the spirit of the "worm" programs of Schoch and Hupp [7]).

The first major parallel implementation of Pisces on a high performance system is planned for

1985 on a Flexible FLEX/32 system running 17 processors with approximately 35 mbytes of

memory (at NASA's Langley Research Center).

Overvtew of the Pisces Virtual Machine

In the following sections the various major elements of the Pisces 1 virtual machine are

described. To illustrate how this virtual machine is programmed in Pisces Fortran, an application

program is constructed as a running example. The problem is described in Fig. 2. Pisces Fortran

provides a small set of extensions to Fortran 77;these are summarized in Table 1.

Clusters and Coramurdcattons.

The Pisces virtual machine is organized as a set of clusters. Each cluster consists of a set of

tasks, each a complete program. Each task within a cluster runs concurrently with others in the
o

cluster, and all the clusters of tasks run concurrently with each other. The number of clusters is

static; the number of tasks within each cluster changes dynamically during execution of a program.

Figure 1 illustrates this virtual machine organization.

Clusters are connected by a communication net which allows messages to be sent between tasks

in different clusters. Similarly, tasks within a cluster are also connected by a communication net

- which allows communication via messages between pairs of tasks. Message passing is entirely asyn-

chronous; that is, when task X sends a message to task Y, X immediately continues without waiting

for a reply from Y. At some later time, Y may choose to "accept" the message sent by X. Y may

send a reply to X, which X may subsequently accept, or both may continue with no further com-

munication. Tasks may wait for messages whenever appropriate.

Types of tasks. Tasks come in two varieties: system-defined and user-defined. User-defined

tasks are the programmer's concern: he defines each in terms of its taaktype and then requests its

initiation at the appropriate time during program execution. System-defined tasks are both defined

and initiated by the Pisces system; the programmer is aware of them but does not directly control

them.

Controllers. Each cluster contains a static set of system-defined tasks called controllers. The

controllers monitor and control all activity within a cluster and are responsible for initiating both

user-defined tasks and other system-defined tasks as appropriate. The controllers may be con-

sidered as the "visible" part of the underlying operating system. Since controllers are tasks, they

are communicated with using messages. There are five types of controllers, and each cluster may

containatmost one ofeach type: ._

1. Task controller. Responsible for initiating and monitoring the activity of user-defined tasks.

2. Commurd_ations controller. Responsible for communications with other clusters (sending,

receiving, and forwarding messages).

3. Ftle controller. Responsible for secondary storage and the file system.

4. User controUer. Responsible for terminal access and user communications.

5. Error/environment controller. Responsible for error handling and overall monitoring of
m

system and cluster status.

Implementation of clusters and controUers.

What implementation is envisioned for clusters? The underlying architectures on which
8

Pisces 1 might be implemented vary widely. A cluster is best considered as a grouping of

processor/memory and other resources in a parallel system. At its simplest a cluster might be

implemented as a uniprocessor running Unix, in which each task is implemented as a Unix process.

(This is the approach used in our implementation on the workstation network.) Or a cluster might

represent a small set of processors working out of a common shared memory, or it might be a set of

processors, each with a local memory, connected by a fast switching network. In some systems

with a "fiat" interconnection structure, the entire system may form a single cluster.

Clusters also reflect the distribution of secondary storage and user terminal accessin a parallel

system. Secondary storage may be scattered through a parallel system, or centralized. Similarly,

user terminals may be connected at one central point, or distributed. A Pisces cluster may consist

solely of a secondary storage device and its access controller, represented as a cluster containing

only a file controller and communications controller. No user-defined tasks would run in such a

cluster. Alternatively, if secondary storage is directly connected through a processor that also runs

user programs, the file controller might be part of a larger cluster that also includes a task con-

troller and user-defined tasks.

Controllers provide an abstraction of the operating system facilities required for Pisces execu-

tion. For example, the ability to initiate or terminate a task, accessfiles on secondary storage, mon-

itor system status, and communicate with a user terminal are all features provided through con-

trollers. Where such facilities might be provided through calls to OS defined procedures in sequen-

tial programming, in the parallel programming context the same results are obtained by sending

messages to controller tasks (which themselves invoke the underlying operating system procedures).

This organization allows these activities to go on in parallel and perhaps in a separate part of the °

system (another cluster) from the requesting Pisces user task. a

When the Pisces 1 system starts up, its organization into clusters and controllers is fixed. It is

in this static structure that the major architectural features of the underlying hardware are

reflected. The Pisces programmer can ignore this organization to a large extent in task initiation

and message passing. However to the programmer interested in studying performance differences,

either within a single implementation or among different implementations, control of the place-

ment of tasks on clusters and balancing the intra-cluster and inter-cluster communications are

vital to performance analysis and tuning.

Example: Step I - Problem Defint_n and Partfrtordng

As an example, consider the problem described in Fig. 2: solution of the matrix equation

y=Ax +c by a simple iteration. A starting vector Xo is chosen, and then we repeatedly compute

x_+t=Axi+c until xi and x_+l are within Gat each component.

For parallel solution, at the highest level we choose to split the work into n parallel parts. N

tasks will be used, each doing 1/n th of the work. Also we will need a "control" task to parcel out

the data initially, handle the convergence test, and collect the results at the end. We call the con-

trol task the CTASK and each of the worker tasks an XTASK.

To partition the work, we do the obvious: let each of the n XTASK's compute 1/n th of the

new x vector values on each iteration. So for 100 x values and 10 XTASK's, the first XTASK com-

putes x l-Xlo, etc. To compute its new x values, each XTASK will need to know the 10 rows of

the A matrix and the 10 values in the c vector that correspond to its x values, plus all the values

in the old x vector.

From this partitioning the basic communication patterns emerge immediately. Initially the

CTASK must be started up. It must generate or retrieve the A matrix, the c vector, and Xo. The

CTASK may then initiate the XTASK's and provide them their portion of A and c, plus all of Xo

as arguments. On each iteration, each XTASK computes its part of x_+l and sends it to the other

XTASK's. It also determines if its part of x_+l has converged and sends a flag to the CTASK. The

CTASK collects all the convergence flags. If all have converged, then it tells all XTASK's to quit;

otherwise it tells them to continue. As the XTASK's terminate, they send their final X vector

values to the CTASK, which coUects them into a complete X vector for output.

There are II tasks, and all must communicate on each iteration. If all II can be run in one

cluster (i.e., if there is enough memory and processing power), then we might initiate all II in the

same cluster. Alternatively we might distribute them to two or more clusters. Here the program-

mer may tune the program to match the performance of the underlying hardware, while still

working entirely within the Pisces 1 virtual machine. He may try different allocation strategies

and compare the performance, etc.

Programming and CompU.ation.

The Pisces user writes his program as a set of tasktype definitions, each of which is essentially

like a main program in Fortran 77. Each tasktype defnition is compiled in two steps: first it is

preprocessed to produce a Fortran 77 program, which is then compiled by the standard Fortran

compiler to produce a load module. Any Fortran subroutines used in the tasktype definition are

also compiled. If they use any of the Pisces Fortran extensions, they must be preprocessed first.

After all the load modules needed for a single tasktype are ready, the entire set is linked with the

Pisces Fortran run-time library and the Fortran run-time library to produce an executable object

module, which is then saved on a file.

Next the Pisces system must be started up, if not already running. This involves starting up

the prespecifiedcontroller tasks within each cluster. The user may then log into the system, which

causes the user-controller for his terminal to initiate a user-control task (system-defined) to

handler interactions with his terminal. This user-control task then requests a command from the

user. To start up his Pisces Fortran program,the user gives an "initiate task of type X on cluster Y"

command. The user-control task sends this message to the appropriate task-controller for the

cluster named. The task-controller fetches the object module for the named tasktype, and initiates

its execution as a separate task. Ordinarily this user task will request initiation of other tasks to °

run in parallel.
m

10

Example: Step 2 - Task Definition and Initiation

Continuing with our example, Fig. 3 shows the two tasktype definitions required for this

problem. Within the CTASK definition, the INITIATE statement used to initiate parallel execu-

tion of the XTASK's is shown. For this example, we have chosen to execute all tasks within the

same cluster.

The "argument list" in the INITIATE statement and the corresponding"formal argument list"

in the TASKTYPE header of the XTASK definition require some comment. The arguments being

transmitted from the C'tASK to the new XTASK are sequencesof data values, not ordinary For-

tran subprogram arguments (which are transmitted by reference). Fortran provides a general

structure for collecting sequencesof data values into a single linear stream: the output variable list

of a WRITE statement. We use the same structure in Pisces Fortran: the values transmitted in a

message (including an "initiate" message) may be specified by a normal Fortran WRITE statement

variable list. On the receiver's end, the values received in a message are distributed into a set of

receiving variables, just as if they were being read in from a file; thus the receiver specifies this

distribution using a normal Fortran READ statement variable list, which appearsin the headerline

of the tasktype definition.

Tasks and Message-passing

A task is like an ordinary program, with the usual subprograms,global and local data, etc.

There are no shared data between tasks; each data item is owned by a single task.

Each task has an tn-queue where messageswait until they are accepted for processingby the

task. A message,once accepted, is processedby a handler, which is an ordinary subprogramcalled

when the messageis accepted. Any data values in the messageare passed on to the handler for pro-

cessing. Some messages are tagged as signals, indicating that they carry no data and need no

handler. Signals are simply counted when they are accepted.

The Pisces Fortran ACCEPT statement is used to control when a task accepts a message.

Within an ACCEPT the names of the messagetypes to be acceptedare listed. Eachof these message

11

types must be declared to be a SIGNAL or to have a HANDLER by the accepting task. For each

message of HANDLER type, a subroutine with the HANDLER heading must "alsobe provided as

part of the task definition. The details of these statements and declarationsare given in Table 1.

A task may accept messages in any order or in parallel. When a set of messages is accepted in

parallel, all the handlers run concurrently. Messages may be chosen for acceptance only on the

basis of their message type, not on the basis of their sender or any other criterion. The ACCEPT

statement may specify the number of messages of each type to accept (or ALL that have arrived),

the total number of messages,and a maximum delay. If the required numbers of messages have not

arrived, the task will wait for their receipt (and "timeout" if the maximum delay is exceeded).

Sending Messages

Since tasks are initiated dynamically, the number and type of tasks in any cluster may not be

known when the program is written. How do these tasks establish communication? Which tasks

may communicate? What types of messagesmay be sent? How does communication take place?

The answers in Pisces are based on two concepts: taskid's and handler's. When a new task of a

given type is initiated, it is given a unique taskid, composed of its cluster number and its local id

number (which is assumed unique among all tasks in a cluster). The general rule for communica-

tion among tasks is: you can communicate with any task if you know its taskid. Taskid's are data

objects and can be stored in variables and arrays (declared as type TASKID), passed as arguments,

etc.

The types of messages you can send to another task depends on its tasktype. The receiver is

only able to accept messages of types it has been programmed to handle, i.e., for which it has

handler procedures and HANDLER/SIGNAL declarations. Thus the set of possible message types

for a task is fixed when its tasktype is defined. "

To send a message to a task, you execute a SEND statement, which includes a specification of

the taskid of the recipient for the message. Besides the use of a known taskid, certain taskid's are

always available, including that of your "parent" (the task that requested your initiation), your

12

own taskid, that of the sender of the last message you received, and all controllers in your own or

another cluster. Also you may "broadcast" messages to all user-tasks in your own or another clus--
D

ter.

Q

The result of this design is that any pair of tasks may communicate in the Pisces system, but

they may first have to obtain the right taskid's. Each tasktype has a particular set of message types

it can process, but the same message can be processed in different ways by different tasktypes. Thus

the _meaning" of a message is determined by the recipient and may vary depending on the task to

which you send it. This structure is similar to that found in the "object-oriented" view of pro-

gramming [8].

Example: Step 3 - Setting up commurdcat_ons.

Returning to the example, assume the CTASK is running and has requested initiation of all 10

XTASK's. After the task controller completes these initiations, all 11 tasks are running in parallel.

However, they have no knowledge of each others taskid's, except that each XTASK knows its own

(available in system-defined variable PPPSELF) and that of its parent, the CTASK. Thus the

XTASK's cannot send messages to each other, and the CTASK cannot communicate with the

XTASK's (other than through a broadcast). To set up communications between any pair of these ll

tasks, we program the XTASK's to send their individual taskid's to the CTASK, which collects

them in a vector. When all have arrived, the CTASK sends the entire vector of taskid's back to

each XTASK (here we will use a broadcast). Fig. 4 shows this part of the program.

In this setup step, each task needs an appropriate handler for the messages it receives. The

CTASK needs one to store each taskid sent by an XTASK. Each XTASK needs one to store the

taskid vector broadcast by the CTASK. These handlers are also shown in Fig. 4. Note that the

- handler bodies here are trivial - all the work of storing the received values is specified directly in

the handler argument list.
I

13

Finer Granularities of Parallelism

There are three levels of parallelism visible above: clusters run in parallel, tasks within a
I

cluster run in parallel, and message handlers run in parallel (when a task accepts several messages

at once). These constructs take us to the level of subprogram size units of parallel execution. The

next level is that of statement groups within a subprogram. The PARDO loop construct specifies

that all iterations of a DO loop may run in parallel, each with its own copy of the loop index. The

PARBEGIN-PAREND statements bracket a set of statements that may be executed in parallel. At

the lowest level, that of individual arithmetic operations, the Pisces 1 design is incomplete, but the

intent is to provide the array and vector operations specified by the Fortran 8x standard currently

being developed [9].

At these finer granularities of parallelism, some hardware support for an effective implemen-

tation is essential. The most common hardware support is expected robe individual processors

with pipelined vector arithmetic units or attached array processors. Here the Pisces Fortran

preprocessor must translate into the appropriate Fortran procedure calls to use these features. We

have left this part of the design fairly rudimentary until we have a chance to implement Pisces 1

on a machine with this sort of hardware support.

Example: Step 4 - Main Iteration loop.

The main loop of the iteration may now be written. Each XTASK has only to multiply each

of its rows of the A matrix times the old x vector, and add the corresponding c vector element, to

obtain each of its new x vector values. The new x values must then be sent to each of the other

XTASK's (for the next iteration). Figure 5 shows this code. We could use a broadcast ('to all

send...") here, but for pedagogical purposes we use a direct send instead.

Each XTASK must then check for local convergence by pairwise comparing the difference of -

its old and new x values against _. The result is sent to CTASK by choosing one of the messages

NOCONV or CONVERGE. Then it waits to accept the global convergence flag from the C!ASK.

Figure 6 shows this part of the program. Note that the C/ASK chooses to treat CONVERGE mes-

sages as signals (and simply counts them), while providing a (trivial) handler for NOCONV

14

messages. When the entire computation has converged (or the maximum number of iterations has

been exceeded), the XTASK's terminate and send final results to the CTASK, as shown in Fig. 7.

Who Owns the Data2

Questions of ownership of data and correctness of shared data values are standard problems in

concurrent programming. "Monitors," "critical regions" protected by semaphores, and "lock" vari-

ables are well known solutions for protecting shared data from concurrent access by two program

segments [5]. In Pisces 1, each granularity of parallel operation raises these problems anew.

The treatment of data ownership and protection also has important performance implications.

Shared data should be accessible at roughly equal cost from all program compoments where it is

visible; thus shared data generally implies allocation in shared memory. System-provided protec-

tion mechanisms also usually increase the cost of access, so that access to a shared variable is more

expensive (often much more expensive) than access to a private variable.

In Pisces 1, these issues are resolved at each level of parallelism as follows:

1. Tasks and clusters. At the largest units of parallelism, there is no shared data at all.

Every data object is "owned" by some task. User defined tasks own their local and COMMON data.

Data objects in files are owned by the system file controllers. Note that Fortran COMMON blocks

are shared among the procedures of an individual task, but they are not shared among separate

tasks, even of the same tasktype. This design was chosen because many of the architectures of

interest provided no shared memory between processors. "Virtualizing" a non-shared memory

architecture to make it appear to support shared data would have unacceptable performance impli-

cations.

2. Message handlers. Message handlers are subprograms, often rather small subprograms.

- They need to share data with the task for which they handle messages, since a major part of their

purpose is to make changes in the local data of that task in response to requests from other tasks.
i

The natural mechanism for this sharing is the standard Fortran COMMON block. Thus no new

structures are provided for data sharing by handlers in Pisces 1. The implication for implementa-

15

tionisthata singletask,includingallitshandlersand subprograms,shouldrun on a setof proces-

sors(possiblyonly one)groupedarounda sharedmemory, with alltheCOMMON blocksallocated

storage in the shared memory. •

Protection of data in COMMON blocks is an issue, because concurrent access by several

handlers could compromise the data integrity. We choose to leave COMMON blocks unprotected,

for several reasons. First, the programmer has complete control over the order of execution of

handlers through the ACCEPT statement, so that if serialized access is required to a particular data

item, the program may simply accept one message at a time rather than many in parallel. Second,

most scientific algorithms partition the data so that no concurrent access takes place in any case.

For example, a common strategy is seen in Fig. 4 where each handler stores a taskid in a common

vector, using a subscript sent as part of the message. Because of the algorithm structure, no two

handlers will ever simultaneously access the same vector element although all are simultaneously

accessing the same vector. For these reasons, system-provided protection of COMMON data appears

undesirable, given its overhead.

3. Ftner granularities of parallelism. At the program segment level, parallel operations take

place on local or COMMON data (PARDO loops and PARBEGIN-PAREND segments). Again the

system provides no protection - the programmer is expected to use these language constructs only

after determining that the data references of the parallel components are independent. Parallel

matrix and vector operations, by their nature, insure independence of the data being manipulated

in parallel.

Distributing the Data

Getting the data to the right place at the right time in a parallel program is a major problem.

In many scientific programs, large amounts of data must be manipulated. Ordinarily the data are

partitioned and parceled out to separate tasks for processing, and each task may make further par-

titions. The data may be streaming in from secondary storage or may be generated by other parts

of the program. Similarly, secondary storage may be the target for result files or scratch files of

internally generated data. Managing the partitioning and movement of the data is a major

16

programming problem, and the solution has major' performance implications in most cases.

Many parallel computers are designed to have large amounts of memory, but the memory is

distributed, with some local to each processor, some shared among groups of processors, etc.; thus not

all memory is equally accessible to all processors. Proposed designs vary widely in this aspect. If a

datum needed by a task is in the "wrong_ memory, it generally must be moved to the "right"

memory before the task can use it, with a corresponding cost in communication.

If the data are on secondary storage, then it is undesirable to move them to the local memory

of one task, only to have that task partition them and send them on to other tasks without pro-

cessing. Instead we want to move to a task only that portion of the data actually required by that

task for its processing.

Pisces 1 uses a v_ndow mechanism developed by Mehrotra [10]that allows an array local to a

task or residing on secondary storage to be partitioned and repartitioned by other tasks without

any data movement. A window is a descriptor for a rectangular subarray of an array. The task

owning the array can create a window on any part (or the whole) of that array by using the

SET-WINDOW statement (see Table 1). The window is a data object which can be stored in a

variable of type WINDOW, passed as a parameter, sent in a message, etc. Alternatively a file con-

trol task can be requested to create and send back a window on an array stored in a file. The win-

dow contains both the taskid of the task owning the array, the address of the array, its type, and

the bounds of the part visible in the window. A task that has received a window on an array can

further subdivide the part of the array visible in that window, creating new windows on smaller

segments of the same array.

When a task determines that it is ready to process the data visible within a window, it sends

a message to the owner of the window (whose taskid is part of the window) either requesting a

. copy of the data visible in the window, sending data to be assigned to that part of the array, or

requesting some other action on that part of the array (depending on the handlers provided by the
.J

task owning the array). Thus a variety of "remote" actions may be requested on an array by tasks

that have the proper window. Where the array is on secondary storage: the file control task

receives these messages and insures protected access to the array by different concurrent tasks.

Example: Ustng wtndow$.

In Fig. 3 the CTASK partitioned the A matrix and the c vector and sent the data values to

each XTASK in the initiate message. However, suppose that the XTASK's were written to further

partition the data they received, to fire up additional subtasks, and to send the data along to these

new tasks. In this case, it would be preferable to avoid sending the data to the XTASK's. Or sup-

pose that the data were initially on a file; we would not want the CTASK to have to read it into

one memory, only to send it out to the XTASK's which might be executing in another memory.

Windows allow either situation to be avoided.

Figure 8 illustrates how a slight restructuring of the tasktype definitions of Fig. 3 allows the

CTASK to send windows on the A matrix and c vector to the XTASK's. Since a window is small

(about 6 words in the VAX implementation), the total size of each initiate message has been

reduced by (M+I)*NROWS -- about 1000 data values even for this small example. Of course the

data values will eventually have to be sent to the right task for processing; the advantage of win-

dows lies in deferring this transmission until the right task is ready to use the data.

ConcluM.on

The Pisces 1 design provides an environment for scientific programmers to explore various

aspects of parallel programming. By providing an implementation on several different parallel

architectures, exploration with the performance ramifications of parallel programming becomes

possible across a fairly broad and varied set of alternatives. There are many problems that are not

treated here: reliability and deadlock, to name two. A major question is whether the Pisces 1 style

of programming will be the right level for large scientific problems. Will it allow such programs

to be "intellectually manageable" or are these notions of parallelism at too low a level? And can

18

we get the performance required? It is a delicate balance.

Acknowledgements

Although the details of the Pisces 1 design are entirely the author's, design ideas have come

from many sources, including the many parallel language designs done by others [2]. P. Mehrotra is

responsible for development of the concept of "window" used for array access in Pisces 1. Other

members of the informal "Pisces design group" at ICASE, M. Patrick, R. Voigt, and L. Adams, have

contributed useful suggestions. The example in this paper is based on a larger sparse matrix algo-

rithm written by M. Patrick. N. Fitzgerald and J. Taylor, together with the author, constructed

the VAX implementation.

References

[1] L.S. Haynes, R.L. Lau, D.P. Siewiorek and D.W. Mizell, "A Survey of Highly Parallel Com-
puting," IEEE Compmer, Vol. 15, No. 1, Jan. 1982, pp. 9-24.

[2] R.E. Filman and D.P. Friedman, Coordinated Computing, McGraw-Hill, New York, 1984.

[3] R.W. Hockney and C.R. Jesshope, Parallel Computers, Adam Hilger, Bristol, 1981.

[4] G. Rodrigue (ed), Parallel Computations, Academic Press, New York, 1982.

[5] T.W. Pratt, Programming Languages: Deign and Implementation, Prentice-Hall, Englewood
Cliffs, 2nd ed., 1984.

[6] A.K. Jones and P. Schwarz, "Experience Using Multiprocessor Architectures - A Status
Report," ACM Computing Surveys, Vol. 12, No. 3, June 1980, pp. 121-166.

[7] J.F. Schoch and J.A. Hupp, "The 'Worm' Programs - Early Experience with a Distributed
Computation," Communications of the ACM, Vol. 25, No. 3, March 1982, pp. 172-180.

[8] B.J. Cox, "Message/Object Programming: An Evolutionary Change in Programming Technol-
ogy," IEEE Software, Vol. 1, No. 1, Jan. 1984, pp. 50-61.

[9] J.L. Wagener, "Status of Work Toward Revision of Programming Language Fortran," ACM
SIGNUM Newslefter, Vol. 19, No. 3, July 1984, pp. 5-42.

[10] P. Mehrotra and T.W. Pratt, "Language Concepts for Distributed Processing of Large Arrays,"
ACM SIGACT-SIGPLAN Syrnp. on Pr[ndples of D[stributed Computing, August 1982,
Ottawa, pp. 19-28.

19

Clusters and Tasks
Clusters and Tasks

Figure 1

Cluster1

I I Dynamically-

• • • User initiated
task tasks

Error/envi ronment

I] control ler

JCommunications Control I ertasks

{ controller (static)

communication ,)

k

2O

Ixn_llmxl[Aims×Ix°l_l+l°lmxl
Given A, ¢, and Xo, iterate until

[Xn+l--Xnl<_

m

Parallel solution: Use N tasks;partition A, x, and c into groups of -_- rows.

Example problem for parallel solution
Figure2

I

21

tasktype CTASK
parameter (NTASKS=IO, M=IO0, NROWS=IO)
real A(M,M), C(M), X(M), EPSIL
integer ROW1ST, ROWLAST

o

<get values for A, C, X, and EPSIL>

do 1 I=I,NTASKS
ROWIST -- NROWS * (I-1) + 1
ROWLAST = NROWS * I

on SAME initiate XTASK (I, EPSIL, X, (C(J), J = ROWIST,ROWLAST),
• ((A(J,K), K--1,M), J--ROW1ST,ROWLAST))

1 continue

< Figs. 4-7 >

end

tasktype XTASK (MYID, EPSIL, XOLD, CPART,
* ((APART(J,K), K=I,M), J--1,NROWS))
parameter (NTASKS=10, M=100, NROWS--10)
real XOLD(M), XNEW(NROWS), CPART(NROWS), APART(NROWS,M), EPSIL
integer MYID

< Figs. 4-7 >

end

Note: for readability, minor Fortran syntax restrictions are relaxed in these examples.

Tasktype Definition and Task Initiation

Figure 3

22

tasktype CTASK

handler IDENT
taskid TIDSET(NTASKS)
common TIDSET

<Fig. 3>

accept
IDENT (NTASKS)

end accept
toALL sendNEWTIDS(TIDSET)

< Figs. 5-7 >

end

handler IDENT (ID, TIDSET(ID))
parameter (NTASKS--10)
taskid TIDSET(NTASKS)
common TIDSET
integer ID
return
end

tasktYl_ XTASK(...)

handler NEWTIDS
taskid XIDSET(NTASKS)
common XIDSET

<Fig. 3>

to PARENT send IDENT (MYID, PPPSELF)
accept

NEWTIDS
end accept

end

handler NEWTIDS (XIDSET)
parameter (NTASKS--10)
taskid XIDSET(NTASKS)
common XIDSET

• return
end

Q

Note: Each XTASK gets a separate copy of all COMMON variables.

Setting Up Communication

Figure 4

23

tasktype XTASK(...)

handler NEWVALS
common XOLD

P

2 continue -- enter main iteration loop

8

<compute new local X values, store in XNEW>
<Fig. 6>

pardo 3 I=I,NTASKS
if (I.ne.MYID) then

to XIDSET(1) send NEWVALS(MYID,XNEW)
end if

3 continue

accept
NEWVALS (NTASKS-1)

end accept

<Fig. 6>

end

handler NEWVALS (ID,(XOLD(NROWS*(ID-1)+I)_I=loXIROWS))
parameter (NROWS-10, M=100)
real XOLD(M)

integer ID
common XOLD
return

end

Main Loop: Sending New X Vector Values

Figure 5

24

tasktype CTASK(...)
parameter (MAXITER=200) -- Maximum number of iterations

,, m_nal CONVERGE
handier NOCONV
logical GLOBAL -- global convergence flag

. common GLOBAL

< Figs. 3-4 >

do 2 I--1,MAXITER
GLOBAL ---.true.
accept NTASKS of

CONVERGE (NTASKS)
NOCONV (NTASKS)

end accept
to ALL send CONVFLAG (GLOBAL)
if CGLOBAL)goto 3

2 continue
to ALL send CONVFLAG (.true.) -- max iterations exceeded

3 continue

<Fig. 7>

end

handler NOCONV
common GLOBAL
logical GLOBAL
GLOBAL -- .false.
return
end

tasktype XTASK(...)

handler CONVFLAG
logical GLOBAL
common GLOBAL

<Fig. 4>

2 continue -- enter main loop

<compute new X values, store in XNEW>
° <determine if each new X value is within EPSIL of old X value>

if (<converged>) then
to PARENT send CONVERGE

else
to PARENT send NOCONV

end if
accept

Figure 6 (continued)

25

CONVFLAG
end accept
if (GLOBAL) then

< Fig. 7 and terminate > I)

else
4

<Fig. 5>

goto 2 -- loop until parent says to stop
end if
end

handler CONVFLAG(GLOBAL)
logical GLOBAL
common GLOBAL
return
end

Main Loop: Convergence Test

Figure 6

26

tasktype CTASK

handler NEWVALS
common X

< Figs. 3-6 >
11 •

accept
NEWVALS (NTASKS)

end accept

< write final X vector to a file >

stop
end

handler NEWVALS (ID,(X(NROWS*(ID--1)+I)_I=la_IROWS))
parameter (NROWS=10, M=100)
real X(M)
integer ID
common X
return
end

tasktype XTASK(...)

< Figs. 3-6 >

to PARENT send NEWVALS (MYID, XNEW)
stop

<Fig. 6>

end

Collection of Final X Vector and Termination

Figure 7

27

b

tasktypeCTASK

window W1,W2

<Get values for A, C, X and EPSIL> _'

do I I=I,NTASKS o
ROWlST= NROWS*(I-1) + 1
ROWLAST= NROWS*I
set Wl window (C(J),J=ROWlST,ROWLAST)on real C(M)
set W2 window ((A(J,K),K=I,M),J=ROWlST,ROWLAST)on real A(M,M)
on SAMEinitiate XTASK(I, EPSIL,X, W1,W2)

1continue

end

tasktype XTASK(MYID,EPSIL,XOLD,CWINDOW,AWlNDOW)

window CWINDOW,AWlNDOW

end

Data Partitioning UsingWindows (se_Fig. 3)

Figure 8

28

Syntax Semantics
Program Units

< tasktype defn > ::= Begins definition of a new tasktype
tasktype <name> [(<formal args list>)]

< formal args list > ::=
" -- any list of variables valid in

a READ statement

< handler defn > ::-- Beginsdefinition of a new handler
handler <name> [(<formal args list>)]

Declarations

< taskid decl> ::= Declares variables/arrays of taskid type
taskid < variable list>

< window decl > ::= Declares variables/arrays of window type
window < variable list >

<signal decl> ::= Declares message types to be treated as
signal < message type list> signals in ACCEPT statements

< handler decl > ::= Declares message types in ACCEPT struts
handler < message type list > which have handlers

Statements

<initiate stmt> ::= Used to request initiation of a new
on <cluster-spec> initiate task on a specified cluster (message

< tasktype name > [(< args list >)] sent to task controller)
< cluster-spec > ::=
ANY t SAME IOTHER I <cluster-number>

<args list> ::=
-- any list of variables valid

in a WRITE statement
< cluster-number > ::=

CLUSTER(< integer-expr >)

<send stmt> ::= Used to send a message to another task
to < task-spec > send

< message type > [(< args list >)]
< task-spec > ::--
PARENT ISELF ISENDER I <taskid-expr>

IALL [<cluster-number>]
4 I < controller-spec > [< cluster-number >]

< taskid-expr > ::=
• -- expression returning a value

of type taskid
< controller-spec > ::=
TCONTR I CCONTR l FCONTR

l UCONTR I ECONTR

Table I (continued)

29

< accept stmt > :r= Used to accept one or more messages
accept [<total count> of] - signals are counted or the

< message type > [(< individual count >)] appropriate handler is invoked

[delay < delay time expr > then
[< statement sequence >]]

end accept

< total count > ::= Specifies a maximum number of messages
< integer-expr > to accept, regardless of message type •

< individual count> ::= Specifies the number of messages of
ALL _ <integer-expr> this type to accept; ALL = accept all

that have arrived

< delay time expr > ::= Wait only this long for another message
<real-expr> before continuing (after processing

previous one)

< parallel do strut> ::= Do all iterations in parallel
pardo <Ftn DO strut >

< parallel begin-end strut > ::= Do all enclosed statements in parallel
parbegin

< statement sequence >
parend

<set-window stmt> ::= Create a window (descriptor) and save
set <window-var > window < window-spec> it in a variable of type window

on <type> <array name>(<array dimensions>)
<window-spec> ::= The implied-DO must specify a

< Ftn implied-DO > rectangular subarray of the array
named in the "on" clause

Pisces Fortran Extensions for Parallel Processing
Table I

3O

"It

1. ReportNo. NASA CR-172544 2. GovernmentAccessionNo. 3. Recipient'$CatalogNo.

ICASE Report No. 85-12
4. Title andSubtitle 5. ReportDate

PISCES: AN ENVIRONMENT FOR PARALLEL SCIENTIFIC February 1985

COMPUTATION 6.PerformingOrganizationCode

7. Author(s) 8. PerformingOrganizationReportNo. p

Terrence W. Pratt 85-12

10. Work Unit No.
9. PerformingOrganizationNameandAddress

Institute for Computer Applications in Science '11. Contractor GrantNo.
and Engineering

Mail Stop 132C, NASA Langley Research Center NASI-17070, NAG-I-467

Hampton, VA 23665 13. Typeof ReportandPeriodCovered
12. SponsoringAgencyNameandAddress

Contractor Renort

NationalAeronauticsand Space Administration 14.SponsoringAgencyCode
Washington,D.C. 20546 505-31-83-01

t5. Supptementary Notes

Langley Technical Monitor: J. C. South, Jr.

Final Report

16. Abstract

PISCES (Parallel Implementation of Scientific Computing EnvironmentS) is a

project to provide high-level programming environments for parallel MIMD

computers. Pisces I, the first of these environments, is a Fortran 77 based

environment which runs under the UNIX operating system. The Pisces 1 user programs

in Pisces Fortran, an extension of Fortran 77 for parallel processing. The major

emphasis in the Pisces I design is in providing a carefully specified "virtual

machine" that defines the run-time environment within which Pisces Fortran programs
are executed. Each implementation then provides the same virtual machine,

regardless of differences in the underlying architecture. The design is intended to

be portable to a variety of architectures. Currently Pisces I is implemented on a
network of Apollo workstations and on a DEC VAX uniprocessor via simulation of the

task level parallelism. An implementation for the Flexible Computing Corp. FLEX/32

is under construction. This paper provides an introduction to the Pisces I virtual
computer and the Fortran 77 extensions. An example of an algorithm for the

iterative solution of a system of equations is given. The most notable features of

the design are the provision for several different "granularities" of parallelism in

programs and the provision of a "window" mechanism for distributed access to large

arrays of data.

i i

17. KeyWords|Sugg_tedby Author(s}) 18. DistributionStatement

parallel computing 61 - Computer Programming and Software

programming languages
Unclassified - Unlimited

19. SecurityClamif.(ofthisreport) 20. SecurityClassif.(of thispage) 21. No. of Page= 22. Price

Unclassified Unclassified 31 A03

i ,-3os FocsalebytheNationalTechnicalInformationService,Sprin£field,.Virginia2216!

.11

ol

I

_p

