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Abstract

Charlotte is a distributed operating system that provides a powerful interprocess communication
mechanism. This mechanism differs from most others in that it employs duplex links, does not
buffer messages in the kernel, and does not block on communication requests. A link is a bound
communication channel between two processes upon which messages can be sent, received, awaited,
or canceled. Processes may acquire new links, destroy their end of the link, or enclose their end as
part of an outgoing message. A link is thus a dynamic capability-like entity that permits only the
holder access to its communication resource.

We first introduce the Charlotte interprocess communication structure and discuss our motiva-
tion for choosing the specific operations. We then describe distributed computing environments in
which Charlotte is applicable. Next, we discuss how we implemented the interprocess-
communication facility. We close with a comparison between Charlotte and related research and jus-
tify our design and its implementation cost.

L7his work was supported in part by NSF grant MCS-8105904 and by DARPA contracts N00014-82-C-2087 and
N00014-85-K-0788.
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1. Introduction

Charlotte is a distributed operating system that provides a powerful interprocess communication
mechanism employing duplex links to facilitate distributed applications. A linkis a bound communi-
cation channel between two processes upon which messages can be sent, received, awaited, or can-
celed. Processes may acquire new links, destroy their end of the link, or enclose their end as part of
an outgoing message. A link is thus a dynamic capability-like entity that permits only the holder

access to its communication resource.

The idea of using links for interprocess communication was introduced in the Demos operating
system [1]. Charlotte has enhanced the idea in several ways. First, a Charlotte link is a duplex com-
munication channel, while a Demos link allows traffic in only one direction. Both holders of a
Charlotte link have equal rights to use, transfer, or destroy it. Moreover, they can do so simultane-
ously, independently from each other. This symmetry permits a uniform communication interface.
Second , Charlotte does not buffer messages between processes. When both processes are in the
same machine, Charlotte copies the data directly between user address spaces. This decision places
the burden of buffer management on the programmer, not the kernel. Kernel buffering often
requires an extra kernel copy, which can be a waste of both space and time. Our experience with
Arachne, a predecessor of Charlotte, shows that buffer management at the kernel level leads to com-
plex deadlock [2]. Third, neither the Send nor the Receive primitives block the caller. This design

allows servers to proceed independently of the speed of their clients.

We first introduce the Charlotte interprocess communication structure and discuss our motiva-
tion for choosing the specific operations. We then describe distributed computing environments in
which Charlotte is applicable. Next, we discuss how we implemented the interprocess-
communication facility. We close with a comparison between Charlotte and related research and jus-

tify our design and its implementation cost.



2. Charlotte interprocess communication

The design space of message-based interprocess communication mechanisms is large. The
issues of naming, addressing, and flow control intertwine with one another. There is no general
agreement on how the kernel should handle these issues. At one extreme, the kernel could present
the data-link layer of a local area network, allowing users to tailor their protocols to the needs of par-
ticular programs. Each process would specify destination machines and process numbers. The
Rochester Intelligent Gateway [3] has such a simple interface, in which processes communicate
through an intermediary called a port. At the other extreme, user processes could transfer messages
among themselves in a network-transparent and process-name-transparent manner. This approach is
taken by Accent [4] and Demos/MP [5] as well as Charlotte. Charlotte tries to provide its users with

an especially high-level facility.

2.1. Design decisions

The distinctive features of Charlotte are duplex communication, lack of buffering, nonblocking
send and receive, synchronous wait for communication completion, selectivity of receipt, and

dynamic link transfer. We discuss each feature in turn.

Duplex communication

Charlotte links are duplex. Simplex links have the following shortcomings.

® Dangling links. When a process dies, all the simplex links that point to it automatically become
invalid. These links are scattered all over the network, and may also be in messages still in
transit. It is impractical to search the entire system for links that may point to a particular pro-
cess. Instead of revoking all these links at once, Demos/MP invalidates them when they are
used. In the meantime, they tie up system space. The worst case occurs when the dead pro-

cess is a server, since servers typically own many links.

] Link-management overhead. Client-server, master-slave, and remote-procedure-call sitnations

all require information to flow in both directions. Even pipelines require reverse flow for



exception reporting. With simplex links, reverse flow requires reply links. Experience with
Arachne indicates that many short-lived reply links are created, used once, and discarded dur-

ing remote requests.

® Migration. Demos/MP leaves a siub behind whenever a process migrates. The alternative is to
broadcast the new destination of the moving process from which all kernels correct their asso-

ciated links. Duplex links do not require such mechanisms.

Charlotte attempts to avoid these problems by providing duplex links. This choice introduces new

problems and complexities, as we shall see.
Buffering

An infinite number of intermediate buffers offers the highest degree of concurrency between
senders and receivers. In practice, a system can only provide a finite number of buffers to store

messages. A buffer pool requires deadlock prevention or detection techniques.

Charlotte experiments with the other extreme, avoiding buffering altogether. With no inter-
mediate system buffers, the kernel is simpler and more robust. Moreover, the user can assert com-

plete control over the number of messages in transit.

For applications requiring the transfer of large amounts of data, Charlotte eliminates the con-
straint of finite message size. Since buffers are allocated out of user address space, large transfers
present no difficulties for the kernel implementation. However, Charlotte does provide a small cache
of buffers purely for efficiency. The cache stores arriving messages that are not yet requested by the

destination.
Blocking

We decided to experiment with semantics in which basic communication activities do not block.
The Send and Receive service calls initiate communication but do not wait for its completion. In this
way, a process may post Send or Receive requests on many links without waiting for any to finish.

This design allows servers to communicate with clients without fear of being blocked. (Blocking



forms of Send and Receive are also available.)
Waiting

Posting a Send or Receive is synchronous, but completion is inherently asynchronous. We pro-
vide several facilities for dealing with this asynchrony. First, a process may explicitly wait for a Send
or Receive to finish. Second, a process may poll the completion status of a Send or Receive. Third, a

process may convert the completion event into an interrupt. (We have deferred implementing this

third facility due to semantic clashes with other features.)
Selectivity of receipt

The Receive request can specify a single link or any link. An intermediate specification might
be useful, but it imposes an extra burden on the kernel. Similarly, the Wait request can specify a
single link or all links. It can also specify whether a send or receive event (or either) is to be

awaited.
Link moving

The ownership of an end of a link is transferable. A process may enclose a link in a message
sent across a different link. The recipient of that message becomes the new owner of the link. The
sending process loses its ownership. While a link is moving, the process at the other end is still able
to post Send or Receive requests or even move its end of the link. The entire operation of link mov-

ing is transparent to the owner of the other end of the link.

2.2. Communication primitives

Charlotte provides five major operations on links. Their descriptions are detailed elsewhere

[6,7]. We summarize their main features here.

Send(transmission link, buffer, buffer size, enclosed link)
initiates a transfer of data from the indicated buffer along the transmission link. The operation
remains in progress until its completion is reported by the Wait call. An end of a link may be

enclosed in the message. If Send should fail, the enclosed link, if any, is restored to the



sender.

Receive(transmission link, buffer, buffer size)
allows a message to be received on the indicated link and placed in the buffer. The link iden-
tifier AllLinks permits the acceptance of a message on any link held by that process. Receive on
AllLinks may not coexist with Receive on a specific link, because it may cause inconsistency
(from user point of view) in choosing the buffer for arriving messages. If the buffer is not
large enough to hold the entire message, as much as fits is placed in the buffer, and the tail is
lost. In any case, both the sender and the receiver are notified via the completion event (dis-

cussed shortly) how much data was accepted.

Wait(transmission link, direction): completion event
returns the result of a previous communication request. The direction may be incoming
(Receive), outgoing (Send), or both, on a specific link or any link. An event descriptor is
returned by the kernel. It contains the matched link, direction, completion code, number of
bytes transmitted, and a new link, if one was acquired. The user may choose to be blocked

until the operation completes or to continue immediately.

Cancel(transmission link, direction)
requests cancellation of a Send or a Receive operation on the specified link. Cancel returns an
error when the operation does not exist, and failure when the operation has progressed beyond
the point where the kernel can stop it. This call blocks the process until the kernel is able to

report success or failure.

Destroy(link)
Requests that the given link be closed. Destroy always succeeds unless the link does not exist
or is being transferred. This call will abort all outstanding Send or Receive requests on that
link. It blocks the user until any necessary cooperation by the other kernel has completed.
The process at the remote end will get a failure code from any uncompleted call related to that

link. That end is reclaimed once a remote process invokes Destroy on its end. A request to



destroy a link being transferred is an error. All links owned by a process are destroyed when it

terminates.

3. Using Charlotte links

We have had extensive experience in using the Charlotte interprocess communication seman-
tics, and have found it quite appropriate to our needs. We have implemented standard utilities, such
as a fileserver, a name server, a memory manager, a link connector, and a command interpreter 71,
all of which use links to represent resources and services. More recently, the Lynx programming
language, whose communication semantics are based on Charlotte links, has been implemented and
is in heavy use [8]. We have converted several of our utilities from Modula to Lynx. The new ver-
sions are easier to code and maintain because they package the link concept in a type-secure, mul-
tithread environment. We have also used Lynx to encode several applications such as B trees, Sys-

tolic arrays, incremental minimal spanning trees, and Prolog and-or tree search [9].

Charlotte’s link facility fits numerous distributed-communication patterns. These patterns
include a community of servers, remote procedure call, peer conversations, and interposed
processes. In the following discussion, we show how to employ Charlotte interprocess-

communication mechanisms in those applications.
© Community of servers.

Resource allocation in a distributed environment may be governed by a community of server
processes for each resource. Ideally, the organization within the community of servers is hidden
from the client. This server-client relationship can be implemented by a link between the client and
any server in the community. If a particular server cannot satisfy a client’s request, it can relay the
request to another member of the community. Relaying involves passing the server’s end of the link
to another server. Link passing also allows servers to redistribute their load. The user is oblivious
to the change of servers. Similarly, the client can transfer its end of the link to another process

without interfering with the server community.



The non-blocking nature of Send and Receive allows servers to send requests to each other
without waiting for the responses. The community of Starter processes in Charlotte fits this model
well. A client may speak to any member of this community when it wants to start a new process.
The individual Starters communicate with each other to share load statistics and to forward client
requests. Furthermore, read-ahead and write-behind are easy to implement with non-blocking Send

and Receive requests.
© Remote procedure call.

Remote procedure call [10] is the synchronous language-level transfer of control between pro-
grams in disjoint address spaces. 1t requires two-way communication. A first message holds input
arguments, and a second contains the reply. The sender of the first message is blocked until the
reply is received. Links support this activity naturally. Since Charlotte does not restrict the size of
messages, no special effort is needed to deal with large parameters. Other communication systems

[11, 12, 13] restrict message size.

In addition, the non-blocking nature of Charlotte communication allows several remote pro-
cedure calls to be active at one time. Similarly, the callee can accept calls in whatever order it
prefers, reply more than once, or not reply at all. The callee can transform the call into another

remote procedure call. The second call can return directly to the original caller.

We have used these features to implement a distributed B-tree application [9]. Different sub-
trees are under the control of different processes. A query starts at the root process and is directed
by means of a remote procedure call to the appropriate subtree. While the result is pending, 2

second query may be submitted to the root and converted into another remote procedure call.
© Conversation.

Unlike remote procedure call, a conversation has two processes engage in a frequent exchange
of information without the notion of master and slave. Either process can initiate a communication at
any time. Such a conversational partnership can be represented by a single link. Other communica-

tion schemes require more channels [4, 5].



Charlotte implements file service in this way. An open file is represented by a link between the
client and the server. At first, the link is used in a remote-procedure manner. The client can direct
the file server to can enter a stream protocol. Then, if the file is open for reading, the server sends a
continual stream of information to the client. If it is open for writing, information flows the other
way. The reverse direction is still available for out-of-band information, such as requests t seek (for

reading) and error reports (for writing).
® Interposed processes.

An interposed process can help two processes communicating either using different protocols
or at different speeds. In the former case, the interposed process translates the protocols in both
directions. In the latter case, the interposed process buffers the data from the producer until needed
by the consumer. Other uses of interposed process include debugging and redirection of 1/0. A
debugging process may be arranged to monitor all interprocess communication by interposing itself
on all links [14]. In all cases, the notion of a link provides a convenient vehicle to connect processes
through an intermediary. However, interposing an intermediary can distort the Send/Receive seman-

tics of the communicating processes.

4. Implementation

Charlotte is implemented on the Crystal multicomputer [15]. It resides above a communication
package called the nugget [11], which provides a reliable transmission service. Charlotte’s kernel
implements the abstractions of processes and links. In order to provide the facilities described ear-
lier, kernels communicate with each other through a low-level communication protocol. Significant
events for this protocol include messages received from remote kernels and requests from local

processes.

4.1. The complexity of the protocol

A protocol design for a set of communication primitives must incur a complexity penalty pro-

portional to the complexity of the primitives. However, commonly used primitives should be exe-



cuted efficiently. We have achieved this goal by separating common from unusual situations.

The easiest situation is when a Send includes no links, and the matching Receive is already
pending. In this case, the sending kernel transmits one packet to the receiving kernel, and the latter
responds with a completion packet. If the matching Receive is posted later, but the message is still

held in the cache on the receiving kernel, the same protocol applies. Extra complexity is introduced

by messages too large to fit in a single packet.2

It is simple for the protocol to handle the Wait request. The variations that we allow (such as

waiting for any outstanding Receive) do not add much complexity.

Cancellation of Send and Receive is slightly more complex, since it must deal with numerous
cases. The Send or Receive in question might be in one of several states, such as still pending and

matched. Further, both ends may simultaneously cancel an operation that has matched.

The greatest complexity is introduced by link movement and destruction, especially when both
occur at the same time. Link movement requires that a third party (the kernel of the other end of the
link that is moving) be informed. That third party may also have a Send or Receive pending. The

protocol must also deal with both ends moving simultaneously.

Link destruction is straightforward if the link is idle. If the remote end has a request pending,
the situation becomes slightly more complex. If that request is a Send with an enclosed link, or if the
remote end is itself in motion, the situation becomes complex indeed. Such cases do occur, espe-
cially when a process terminates unexpectedly. We discuss these complex scenarios and present the
protocol elsewhere [7]. The protocol we developed uses twenty message types, six of which

represent process requests.

4.2. Implementation by finite state automata

Given the number of cases, some simple and some complex, we designed the implementation

so that all cases are handled in a regular manner. Complex cases require more work, but they do

2 The communication device imposes a limit of about 2KB per packet.
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not require a special coding style.

Our prototype implementation of Charlotte used ad hoc coding methods. We found this style
very difficult to debug and maintain. The current implementation represents the protocol as a finite
state automaton. Each link end has a state, and the inputs to the automaton are process requests and
packets arriving from remote kernels. The number of states is quite large, a phenomenon observed
by others as well [16]. We reduced the number of states by building independent automata for dif-
ferent functions: Send, Receive, Destroy, and Move. These automata interact only in a few cases.
For example, destroying a link affects its Send state. Cancellation is implemented in both the Send

and Receive automata.

A second reduction is based on a method described by Danthine [17] and others [18] in which
some state information is encoded in global flags. These flags are only consulted for particularly

complex cases.

Our automata have about 250 non-error entries. About 100 different actions are performed.
The simplest actions consist of a single operation, such as sending an acknowledgment packet. The

most complex action checks about five flags and selects one of several operations.

4.3. The structure of the kernel

The kernel is implemented as a collection of Modula processes [19], which we call tasks to dis-
tinguish them from user and utility processes. These tasks communicate via queues of work
requests. The Automaton task handles the protocol. The four automata are implemented as pro-
cedures within this task. All process requests are first verified by the Envelope task. Communication
requests are then forwarded to the automaton’s work queue. Two tasks deal with information flow to
and from the nugget. Other tasks are responsible for clock maintenance, statistics collection, and

checking if other nodes are alive. Processes run only when kernel tasks have no work to do.

This division of labor simplifies the implementation. We have found the kernel relatively easy

to debug and maintain. Most errors can be isolated to a specific action. Modifications are usually
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isolated to just a few actions.

5. Related work

In this section we compare our work with a representative sample of similar work done else-

where. This comparison is based on communication models and implementations.

Demos/MP [5] is an extension of the Demos operating system [1] that operates in a distributed
environment. Messages are sent on links. Links are buffered, one-way message channels to
processes. In contrast, Charlotte links are unbuffered, two-way message channels. The successful
implementation of process migration in Demos/MP has indicated that process migration is achievable
in a link-based environment [5]. Migration in Charlotte is simpler in one sense, since there is no
need to retain any information about the process in its old host. On the other hand, it is more com-

plex in that Charlotte links contain more state information that must be moved.

Accent [4] is a descendent of the Rochester Intelligent Gateway [3]. Communication takes
place through ports. A port is a protected kernel object into which messages may be placed and from
which messages may be removed. Processes may have ownership, send, and receive rights on a
port. Ownership and receive rights are not sharable. However, they may be given away. There-

fore, a port can change its receiver, which is not possible for Demos links.

Both the Demos link and the Accent port provide only one-way communication. However,
Accent does have reverse communication to warn senders when ownership or receive rights change
on a port. Neither provides a Cancel facility. Demos and Accent provide an intermediate level of
message selectivity, whereas Charlotte allows Receive to be posted on a single link or on all links.
Unlike Charlotte, Accent provides a way for a receiver to preview an incoming message by inspecting
a small amount of its information. This information can be used to decide which port to receive

from. Soda [13] also allows the receiver to reject messages based on preview.

V-kernel [11] uses a global flat name space for specifying destinations, in contrast to the

capability-like naming in Demos, Accent, and Charlotte. A global name space prevents network and
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process-name transparency. It also interferes with process migration and allows unwanted communi-
cation. By restricting its inter-process communication methods to support remote procedure call
alone, V-kernel achieves a very efficient implementation of message passing. Charlotte, on the other

hand, provides network and process-name transparency at the cost of transmission delay.

Eden [20,21] is an object-based distributed system that uses remote invocation as the principal
communication mechanism. This level of abstraction is higher than that provided by Charlotte, both
in the fact that objects are supported (instead of processes) and that remote-invocation send is sup-
ported (instead of simple messages). In order to achieve this level, Eden employs a high-level
language (EPL) that translates remote invocations into messages. Eden objects communicate with the
Eden kernel through Accent; Eden kernels communicate with each other through Berkeley Unix=l<

interprocess communication. Eden’s use of EPL is similar to Charlotte’s use of Lynx.

6. Conclusions

Charlotte is intended as a vehicle for large-scale distributed computation. Distributed applica-
tions can be programmed for Charlotte in several languages. The simplest interface is to use the
communication primitives directly from a program written in C or Modula. A higher-level interface
is provided by the Lynx language, which provides links as a first class object, provides strong typing
on messages, and allows several threads of control within one process. We foresee special libraries
for particular applications like backtracking [22] that completely hide the distributed nature of the

computation.

Charlotte’s link-based interprocess communication is a simple yet powerful tool. Once a link
is established, it allows two processes to communicate. During that time, they may also engage in
other activities, including communication activities. Like capabilities, links can be given away. This
facility allows us to build natural structures for a number of communication patterns. A server can

refer requests to other servers, and communities of servers can balance their load.

* UJnix is a trademark of Bell Laboratories.
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The ability to cancel arises from separating starting a communication event (Send or Receive)
and waiting for it to complete. Only Charlotte and Soda [13] have this feature. We have found can-
cellation important in pipeline protocols. Later stages of the pipeline can send control requests to
earlier stages. Those earlier stages cancel their current work and service the control request. Can-
cellation is also important in algorithms that use eager evaluation; a process can stop waiting for an

answer if it is sure the answer is not needed.

The simple primitives that Charlotte provides interact in complex ways. To control the com-
plexity, the implementation structures the protocol by using automata. The internal structure of the
kernel is divided into independent tasks that communicate by work queues. The structure imposes an

efficiency cost, but permits easy debugging and maintenance.

A legitimate question arising from our implementation is whether the facilities that Charlotte
provides are worth the complexity of the protocol and the efficiency cost. One way to answer this
question is to estimate the savings that would result from restricting or eliminating features. For
example, we could restrict link motion to cases when the other end is idle. This restriction simplifies

the protocol considerably.

We believe that it is too early to decide efficiency/feature tradeoffs. The field of distributed
computation is too young to know average computing needs and behavior patterns. The uses to
which Charlotte is put will shed light on this subject. We can say that the fairly heavy-duty links that
Charlotte provides do introduce processing costs. On VAX-11/750 computers connected by an 80
Mbps token ring, a single send-receive pair takes about 25 ms, and the largest aggregate throughput
for large messages is about 115 Kbps. To some extent, these figures are influenced by the nature of
the token ring (it requires several interrupts on each end to send a message) and by the internal
structure of the Charlotte kernel (we opted for modularity, Jeading to several task switches for each

message sent, and we spend significant time in debugging-related functions).

The kernel of Charlotte and all utility processes are fully operational. Debugging support

exists [23] and process migration has been implemented.
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