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Such a failure is called a repetitive failure
mode, although it would probably be
clearer to call it a diagnostic failure mode.

The first main point of this article is that
repetitive failure is very common in software-
controlled systems as compared to other
kinds of engineering systems. Second, I argue
that this state of affairs stems from an overly
optimistic approach by software system de-
signers and implementers, coupled with rap-
idly increasing system complexity. Finally, in
discussing ways to improve the situation, I
define two attributes of diagnosis that may
prove useful in clarifying the problem.

Evidence for repetitive failure
Repetitive failure is indeed a widespread

property of software-controlled systems.
For early evidence of this, we can go back
more than 15 years, when Ed Adams pub-
lished his now famous study at IBM,1

showing that a very small percentage of
faults—only around 2%—were responsible
for most observed failures. In other words,
his data showed that his systems were dom-
inated by repetitive failure.

Figure 1 shows the relationship between
fault and failure. In essence, every failure re-
sults from at least one fault, but not all faults
fail during the software’s life cycle. In fact,
Adams showed that a third of all faults failed
so rarely that for all intents and purposes
they never failed at all in practice. It is quite
easy to envisage a fault that does not fail. For
example, large systems sometimes contain
unintentionally unreachable code; a fault lo-
cated in an unreachable piece of code could
never fail. In general, however, under some
set of conditions, a fault or group of faults in
combination will cause the system to fail.

Figure 2 presents an analysis of dependen-
cies on a significant class of software faults oc-
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W
hen an engineering system behaves in an unexpected way, we
say it has failed. If the failure is significant, we use a process
called diagnosis to discover why the failure occurred. By defi-
nition, the successful outcome of diagnosis is the discovery of a

deficiency whose correction prevents the system from failing in the same way
again. We call such a deficiency a fault. If diagnosis is unsuccessful, the fault
remains undiscovered and can cause the system to fail again in the future.
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curring in a large study of commercial C sys-
tems.2 In this case, I calculated the weighted
fault rate by counting the occurrences of 100
of C’s better-known fault modes and weight-
ing them according to severity between 0 and
1.3 This class of faults is widely published, has
been known for the best part of 10 (and in
some cases 20) years, is known to fail, and yet
nothing much has been done to prevent it. Pre-
cisely the same thing occurs to differing ex-
tents for other standardized languages. 

It is perhaps no wonder that independ-
ently written programs tend to suffer from
nonindependent failure,4 when software in
general is riddled with a growing number of
known repetitive failure modes that we
seem unable to avoid.

Reasons for repetitive failure
Why would software systems be domi-

nated by repetitive failure? After all, other
engineering systems aren’t. If bridges failed
in the same way repeatedly, there would be a
public outcry. The answer seems to lie in ma-
turity: If you go far enough back in time,
bridges did fail repeatedly, and there was
public outcry. For example, in 1879, the Tay
Bridge in Scotland fell down in a strong gale.
It was poorly designed and built, and the
wind blew it over, causing the deaths of 75
people in the train that was on it at the time.
More or less as a direct result of the ensuing
public outcry, the Forth Bridge in Scotland,
built a little later, is almost embarrassingly
overengineered. If a comet ever hits the
earth, let’s hope that it hits the Forth Bridge
first. It will very likely bounce off.

In fact, in the 1850s, as many as one in
four iron railway bridges fell down until the
reason was discovered.5 The process of en-
gineering maturation, whereby later designs
gradually avoided past mistakes, has led to
the almost complete disappearance of repet-
itive failure—not only in bridges, but also in
most other areas of engineering. The single
exception is software. It is easy to think that
this is because software development is only
around 50 years old, but this is overly gen-
erous and ignores the lessons of history. The
fact is that software engineering is gripped
by unconstrained and very rapid creativity,
whereas the elimination of repetitive failure
requires painstaking analysis of relatively
slowly moving technologies.

This standard method of engineering im-

provement, summarized in Figure 3, has
been known for a very long time. It used to
be called common sense, but in these en-
lightened times, with the addition of a little
mathematics, we know it as control process
feedback.

Regrettably, use of this simple principle is
not widespread in software engineering, al-
though process control models such as the
SEI CMM firmly espouse it. It is almost as if
the idea is too obvious, a drawback that also
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Faults that fail

All faults

Figure 1. The relationship between
fault and failure. There is not 
necessarily a one-to-one relationship
between failure and “faults that 
fail.” A failure is simply a difference 
between a system’s expected behavior
and its actual behavior; some failures
result from two or more faults acting 
collaboratively.
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Figure 2. Weighted fault rates per 1,000 lines of code for a wide
variety of commercially released C applications, plotted as a
function of package number. This study analyzed 68 packages
(totaling over 2,000,000 nonblank, preprocessed lines) from 
approximately 50 application areas in approximately 30 
industrial groupings. The groupings ranged from non–safety-
related areas, such as advertising and insurance, to safety-
critical areas, such as air-traffic control and medical systems.
Safety-critical systems were a little better than the average
(which was 5.73), but one of the games measured scored better
than two of the medical systems.



might explain attitudes over the last 200
years or so toward Darwinian evolution.

The writer and technological seer Arthur
C. Clarke once said that “any sufficiently
complex technology is indistinguishable
from magic.” I would add that any suffi-
ciently simple technology is also indistin-
guishable from magic. Darwinian evolution
and control process feedback are two out-
standing examples of my principle in action.
They are apparently so obvious that they
shouldn’t be right. However, probably the
most important characteristic these two
share is that although improvement is inex-
orable, it also takes time. This is particularly
relevant in these days of “reduced time to
market”—perhaps better known as “don’t
test it as much.”

Another demonstrable source of repeti-
tive failure in software systems is impre-
cisely defined programming languages—a
problem that many organizations make no
effort to avoid. The language standardiza-
tion process exacerbates this problem. Ob-
viously, standardization is an important step
forward in engineering maturity, but the
process should not ignore historical lessons.
As practiced today, language standardiza-
tion suffers from two important drawbacks. 

First, language committees (and I’ve sat
on a few in my time) seem unable to resist
the temptation to fiddle, albeit with every
good intention. These committees add fea-
tures that seem like a good idea at the time,
but often without really knowing whether
they will work in practice. Of course, such
creativity is normal in engineering. It is sim-
ilar to the role of mutation in Darwinian
evolution.

What is not normal, however, is language
standardization’s second drawback, the
concept of backwards compatibility, often
expressed in the hallowed rule, “Thou shalt
not break old code.” The backwards com-
patibility principle operates in direct oppo-
sition to control process feedback.

So, drawback one guarantees the contin-
ual injection of features that may not work,

and drawback two guarantees the extreme
difficulty of taking them out again. In other
words, these two characteristics guarantee a
standardization technique that largely ex-
cludes learning from previous mistakes. If
other engineering disciplines pursued this
doctrine, hammers, for example, would have
microprocessor-controlled ejection mecha-
nisms to ensure that their heads would fly off
randomly every few minutes—just as they
did when made with wooden handles 40
years ago. Not surprisingly, hammers were
redesigned to eliminate this feature. We can
clearly see the effects of the language situa-
tion in Figure 2.

A further reason that software is full of
repetitive failure modes is my main subject in
this article—the diagnosis problem. If a sys-
tem fails and diagnosis does not reveal the
fault or all of the faults that caused the failure
(bearing in mind that some experiments have
shown that one in seven defect corrections is
itself faulty!1), the failure will occur again in
some form in the future. In other words, the
inability to diagnose a fault inevitably results
in the resulting failure becoming repetitive.

Now I’ll attempt to analyze why diagno-
sis often fails.

Quantifying diagnosis
The essence of diagnosis is to trace back

from a failure to the culpable fault or faults.
Unfortunately, we have no systematic model
that lets us go in the other direction—that is,
to predict failure from a particular fault or
group of faults. This is the province of the dis-
cipline known as “software metrics,” wherein
we attempt to infer runtime behavior and, in
particular, failure occurrence from some stat-
ically measurable property of the code or de-
sign. For example, we might say that compo-
nents with a large number of decisions are
unusually prone to failure. In general, we
have so far failed to produce any really useful
relationship, and the area is very complex.6

The primary reason for this appears to be that
software failure is fundamentally chaotic. In
conventional engineering systems, we have
learned through hard experience to work in
the linear zone, where stress is linearly related
to strain and the the system’s behavior at run-
time is much more predictable, although still
occasionally prone to chaotic failure.5 Unfor-
tunately, at the present stage of understand-
ing, software is much less predictable.
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Figure 3. The silver
bullet of engineering,
control process 
feedback embodies
the extraordinarily
simple principle that
it is not a sin to
make a mistake, it is
a sin to repeat one.
Careful analysis of
failure reveals the
all-important clues
as to how to avoid it 
in the future. The
analysis mechanism
is known as root-
cause analysis.



This asymmetry between prediction and
diagnosis is particularly clear when we con-
sider the difference between code inspections
and traditional testing. Code inspections ad-
dress the whole fault space of Figure 1. Con-
sequently, a large percentage of faults re-
vealed during code inspections would never
actually cause the system to fail in a reason-
able life cycle. In spite of this, the often dra-
matic effectiveness of code inspections com-
pared with traditional runtime testing is
unquestionable.7 Traditional testing, of
course, finds a problem at runtime. This by
definition is a failure and lies in the small
subset of Figure 1. (In fact, we can predict
that code inspections will be even more effec-
tive on systems that rapidly build up many
execution years, such as modern consumer
embedded systems, because in these cases the
subset of faults that fail is much bigger.)

Two essential parameters help us catego-
rize how easily a software failure can be di-
agnosed. These are diagnostic distance and
diagnostic quality.

Diagnostic distance
In essence, diagnostic distance is the “dis-

tance” in the system state between a fault be-
ing executed and the resulting failure mani-
festing itself. We can reasonably visualize this
distance as the number of changes of state
(for example, variables or files modified) that
occur between the fault’s execution and the
observation of failure. The greater the num-
ber of changes, the more difficult in general it
is to trace the failure back to the fault—that
is, to diagnose it. Let’s consider some simple
examples from different languages and dif-
ferent systems.

Consider Figure 4, a typical “stack trace”
resulting from a core dump, generated in
this case by a C program. The program has
tried to look at the contents of address zero,

a fatal mistake in C leading to an immediate
program failure. In other words, the “dis-
tance” between the fault firing and the fail-
ure occurring is very short. This, coupled
with the detailed nature of the stack trace,
points unerringly back at the precise loca-
tion of the fault. Not surprisingly, these fail-
ures are very easy to diagnose.

We can contrast this failure with the next
one, shown in Figure 5, which affected me
some years ago. This failure occurred in a For-
tran 77 program, but exactly the same prob-
lem manifests itself in other languages without
warning today. In this case, a comparison of
real variables behaved slightly differently on
different machines, a common problem. The
effect was an unacceptable drop in the signifi-
cance of agreement between two different
computers—from around four decimal places
to only two decimal places—in some parts of
a data set that formed part of an acceptance
test. This line of code was buried in the middle
of a 70,000+-line package containing various
signal-processing algorithms. From the point
of failure, a colleague and I spent some three
months on-and-off tracing the problem back
to this line of code.

In this case, the diagnostic distance be-
tween the fault and the failure was sufficiently
large to lead to an exceptionally difficult de-
bugging problem—although in the rich glow
of hindsight, it is statically detectable.

We can see other examples of large diag-
nostic distance in dynamic-memory failures
in mainstream languages such as C, C++,
and Fortran, to a lesser extent in Ada, and
also in several aspects of OO implementa-
tions. In these cases, dynamic memory is al-
located, corrupted at some stage, and rather
later on leads to a failure. We can also call
this kind of failure nonlocal behavior.

Diagnostic quality
In contrast to diagnostic distance, diag-

nostic quality refers to how well the diag-
nostic distance is signposted between the
state at which the fault executed and the
state at which we observe the software to
fail. To give a simple example of how influ-
ential this can be, remove a significant token
from the middle of a computer program, for
example, a “,” from a C program. When
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Dereference pointer content 0x0 at
strlen(…) called from
line 126 of myc_constexpr.c called from
line 247 of myc_evalexpr.c called from
line 2459 of myc_expr.c

Figure 4. A typical stack trace 
automatically produced by a 
reasonable C compiler (in this case
the estimable GNU compiler), at the
point of dereferencing a pointer 
containing the address zero.

…
if (tolerance.eq. acceptable_tolerance) then
…

Figure 5. A 
comparison of real-
valued variables.
This is a broken
concept in just about
every programming
language in 
existence and is one
of the features 
included in the
study that led to the
data of Figure 2.



such a program is recompiled, the compiler
will usually diagnose the absence of this to-
ken with a reasonably comprehensible error
message. Figure 6 shows an example from
the GNU compiler.

Note that the missing token leads to a
cascade of error messages that start out rea-
sonably comprehensible at the fault location
but rapidly degenerate into entirely spurious
messages, until the compiler eventually
gives up in disgust. This is a classic problem
in compiler design for all programming lan-
guages. Now imagine trying to diagnose the
missing token from the last compiler warn-
ing. Clearly, this can be very difficult. The
full error cascade signposts the fault-failure
path. Removing part of the signposting can
fatally cripple your ability to diagnose the
fault or faults from the failure.

Such cascades are becoming common in
real systems as they become more tightly
coupled and larger. Consider the example in
Figure 7, quoted by Peter Mellor8 in an ex-
cellent discussion of this topic.

Imagine trying to diagnose the landing
gear problem from the last error message in
this case! In fact, this led to a repetitive failure
mode, as at least one more incident occurred
(19 November 1988), and a further nine
months went by before a fix could be made.

Training engineers to provide adequate
signposting so that faults can be diagnosed
from failures is an educational issue. We all
too often fail to train software engineers to
anticipate failure, and it is uncommon to
teach the fundamental role of testing and
techniques such as hazard analysis in our
universities. This lack encourages over-
optimism and leads to inadequate prepara-
tion for the inevitable failures. The diagnos-
tic link between failure and fault is simply
not present, and the fault becomes difficult, if
not impossible, to find. Failure is one of the
natural properties of a software-engineering
system, and we ignore this immutable fact 
at our peril.

Even when diagnostic links are present
during testing, engineers often remove them
from or truncate them in the released system

for space reasons, crippling our ability to di-
agnose failure properly when it occurs in the
field. Consider the following examples of pos-
sible warnings issued in commercial systems.

Please wait ...

accompanied a failure in the flight manage-
ment system on an Airbus A340 in Septem-
ber 1994.9 To my knowledge, the cause has
still not been found.

System over-stressed ...

appeared in a cash register system in a pub-
lic bar. It later transpired that the printer
had run out of paper.10

More than 64 TCP or UDP streams open ...

appeared in a G3 Macintosh running OS8.1.
It turned out that the modem was not
switched on.10

Of course, the ultimate in poor diagnostics
is no warning at all. At the time of writing,
there is considerable public debate in the UK
about the Chinook helicopter crash in 1994
on the Mull of Kintyre in Scotland.11 The
crash killed 30 people, including both pilots
and several very senior security people from
Northern Ireland. Although the crash was
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…
myc_decl.c:297 parse error before ‘name’
…
(lots of increasingly more exotic messages)
…
myc_decl.c: 313: warning: data definition
has no type or storage class

Figure 6. Part of 
the fault cascade on 
one of the author’s 
programs, which 
has had a significant 
token, in this case 
a “,” deliberately 
removed. Warnings
near the point of 
occurrence are 
relatively easy to 
understand. Warnings
later in the cascade
rapidly become more
and more esoteric.

• MAN PITCH TRIM ONLY, followed in quick
succession by:

• Fault in right main landing gear;
• At 1,500 feet, fault in ELAC2, (one of 

seven computers in the Electronic Flight
Control System);

• LAF alternate ground spoilers 1-2-3-5 (fault
in Load Alleviation Function);

• Fault in left pitch control green hydraulic
circuit;

• Loss of attitude protection (which prevents
dangerous maneuvers);

• Fault in Air Data System 2;
• Autopilot 2 shown as engaged despite the

fact that it was disengaged; and then, 
finally,

• LAVATORY SMOKE, indicating a (nonexist-
ing) fire in the toilets.

Figure 7. The diagnostic sequence 
appearing on the primary flight display
of an Airbus A320, Flight AF 914 on 
25 August 1988. The faults were not 
spurious—the aircraft had difficulty
getting its landing gear down and 
had to do three passes at low altitude 
by the control tower so that the 
controllers could check visually.



blamed on pilot error, prior to this incident
concerns had been raised about the quality of
the FADEC software controlling this air-
craft’s engines—including concerns about a
design flaw that had precipitated the near de-
struction of another Chinook in 1989. The
essence of the verdict in this case seems to be
that because the crash investigators found no
evidence that the FADEC software failed, it
must have been the pilots. However, as any
PC user knows, most PC crashes leave no
trace, so that on reboot, there is no evidence
that anything was ever wrong. It is therefore
grievously wrong to equate no diagnosis with
no failure.

Unification
We can put together diagnostic distance

and diagnostic quality to summarize the di-
agnosis problem, as shown in Figure 8.
Here, we can see that when diagnostic dis-
tance is considerable, unless diagnostic
quality is good, we have a very difficult di-
agnostic problem, one that in general will
be intractable. The “difficult” sector of Fig-
ure 8 can be seen as a source of repetitive
failure. We can ameliorate such a problem
either by improving the diagnostic quality
or by reducing the distance between the
point where the fault executed and the point
where the failure was observed. In practice,
the latter is much easier.

I n the last few years, software engineer-
ing has begun producing more and more
systems where diagnostic distance is

large. Networking, for example, is a classic
method of increasing diagnostic distance.
Embedded systems are similarly difficult to
diagnose. Unless we can make rapid progress
in improving diagnostic quality—essentially
an educational issue—things are going to spi-
ral out of control, and we can look forward
to repetitive failure becoming a permanent
fixture in software-engineering systems. This
is clearly an unacceptable scenario.

We can address both these issues by edu-
cating software engineers to realize that fail-
ure is an inevitable—indeed, a natural prop-
erty of software systems—and to reflect this
fact in design, implementation, and provi-
sion for a priori diagnosis.
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