
3 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E

Recently, the OU’s Computing Department
(www.computing.open.ac.uk) has developed
more specialized master’s programs in software
development and in the management of software
projects. We characterize these professionally ac-
credited programs as part-time, open, and large-
scale distance learning primarily aimed at IT
practitioners. In this article, we show how these
characteristics have influenced our software en-
gineering curriculum, drawing distinctions from
more conventional programs. Although we dis-
cuss our particular experience at the OU, we
note broader lessons learned that might benefit
other institutions engaged in designing and de-
livering software engineering curricula to a geo-
graphically distributed student body.

Background
Many people working in the IT industry fit

the following profile: They have a university
education, possibly including some study of
computing or software development. They’re
well established in responsible jobs as develop-
ers, managers, database administrators, and so
on. They possess knowledge about their own
specialist areas and attend occasional training

courses on new technological developments. Af-
ter some years in a role like this, they want to
broaden their understanding of computing or
software engineering and to have the opportu-
nity to study one or more topics in some depth.
They also feel that additional formal qualifica-
tions would help their career development.

However, many such professionals can’t af-
ford to take time off from their jobs to study
full-time. They can study part-time at many
institutions, but not everyone lives near a suit-
able institution. With busy jobs and often con-
siderable traveling, it can be hard to fit in even
the limited attendance required. Many such
people find a solution to their dilemma in a
distance learning master’s program, such as
that offered by the OU.

The OU, based in the UK, has been a large-
scale provider of higher education by distance
learning since its foundation in 1970. The OU
has become known worldwide for its many pio-
neering initiatives in opening up higher educa-
tion, its quality course materials, and its teach-
ing. Current enrollment is over 200,000 students
in a range of programs from foundation (college
preparatory) level to master’s and PhD.

focus
Learning Software
Engineering at a Distance

D
elivering a software engineering curriculum by distance learning
requires innovative and flexible approaches to presenting and
managing the learning materials. At the Open University, we’ve
been offering a broadly based master’s degree in Computing for

Commerce and Industry by distance learning for over 20 years.

curriculum development

Brendan Quinn, Leonor Barroca, Bashar Nuseibeh, Juan Fernández-Ramil,
Lucia Rapanotti, Pete Thomas, and Michel Wermelinger, The Open University

The Open
University’s
SE curriculum
and delivery
mechanisms
are shaped by
its commitment
to offering
professionally
accredited
part-time, open,
and large-scale
distance learning
primarily aimed
at IT practitioners.

Authorized licensed use limited to: The Open University. Downloaded on March 09,2010 at 06:24:47 EST from IEEE Xplore. Restrictions apply.

N o v e m b e r / D e c e m b e r 2 0 0 6 I E E E S O F T W A R E 3 7

Curriculum structure
The postgraduate computing program con-

sists of a number of courses, each of which has
a unique identifying code (such as M865 for
Project Management) and a points rating, indi-
cating the amount of study and the weighting of
its contribution to a program. (A course in the
OU corresponds to a course in a US program of
study—that is, a unit of study making up part of
a degree program; most UK universities use the
term module instead.) With one exception,
courses in the computing program are rated at
15 points, and each course is expected to require
about 150 hours of part-time study over a six-
month period. Students need eight such courses
for the 120 points required for a postgraduate
diploma. To complete the master’s program,
they must also pass a 60-point research and dis-
sertation project, which takes just over a year
part-time. The total time to achieve a postgrad-
uate diploma can take from two years upwards,
with some programs having a maximum per-
mitted duration of four years to diploma.

The OU offers four possible routes, each
with a different title for the postgraduate di-
ploma or master’s. For this article, we focus on
the master’s in software development (see http://
pgcomp.open.ac.uk). Table 1 shows the pro-
gram’s structure.

The student experience
We call the OU’s approach to distance edu-

cation supported open learning, which has been
refined over many years. Students in our mas-
ter’s programs study using various media, in-
cluding specially produced printed material,
standard textbooks, online material, CDs, and
DVDs. We also make all OU-produced printed
material available online in the form of e-books,
so students can easily store or search them on a
computer or access them from anywhere with
Internet access. Students each have an allocated
tutor, who marks assignments and provides ac-
ademic support for groups of up to 18. Tutors
are university academics or suitably qualified IT
professionals employed by the OU on a part-
time basis. Students communicate with each
other and with their tutors mainly via email and
electronic conferencing.

We assess a student’s progress through course-
work assignments—normally two or three in
each course—and a final examination. Typically,
the exam and the coursework assignments are
equally weighted at 50 percent of the course’s

overall marks. The final research project is differ-
ent because we primarily use the dissertation to
assess it. Students submit all coursework elec-
tronically but take their examinations in person
at examination centers located throughout the
UK and in other countries.

Each course has learning outcomes that de-
fine the knowledge and understanding, cognitive
skills, and practical and professional skills that
students are expected to attain. We use a speci-
fied range of learning outcomes in designing each
assignment and exam and make sure that stu-
dents know how the learning outcomes are as-
sessed. For example, in an assignment for course
M882 Managing the Software Enterprise, we
asked students to demonstrate their knowledge
and understanding of these learning outcomes:

■ the management of human, technical, finan-
cial, timescale, and organizational resources;

■ quality management for software develop-
ment, software evolution, and process im-
provement approaches, and

■ the risks involved in developing and evolv-
ing software and how to identify, assess,
and manage them.

How we develop the curriculum
A team of OU full-time academic staff, in

Table 1
Program structure for the master’s

in software development
Course code Course title

Core for postgraduate diploma—90 points

M882 Managing the Software Enterprise

M883 Software Requirements for Business Systems

M885 Analysis and Design of Enterprise Systems

M873 User Interface Design and Evaluation

M874 Software Development for Networked Applications Using Java

M876 Relational Database Systems

Optional courses for postgraduate diploma—select 30 points (two of the following)

M865 Project Management

M877 Advanced Database Technology

M879 Distributed Applications and e-Commerce

M881 Architecture and Networks

M886 Information Security Management

Compulsory for master’s degree—60 points

M801 Research Project and Dissertation

Authorized licensed use limited to: The Open University. Downloaded on March 09,2010 at 06:24:47 EST from IEEE Xplore. Restrictions apply.

3 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

some cases with help from external specialist
consultants, writes each course’s academic
content (see figure 1 for some course descrip-
tions). Because most courses provide substan-
tial, specially designed printed material, the
course production process has much in com-
mon with conventional book publishing. The
academic writers are supported by administra-
tors, editors, graphic designers, and the whole
apparatus needed to print course books or
make them available in PDF format.

Because of this production process, we place
great emphasis on the materials’ initial qual-
ity—correcting significant errors or improving
the teaching style later can be more difficult and
costly than in a conventional university. We put
all draft course material through detailed scru-
tiny by critical readers from academic and in-
dustrial backgrounds. Additionally, we appoint
one or more independent external assessors,
from another university or from industry, to re-
view the course materials as a whole.

A program committee, composed of OU
academic staff and external advisors, oversees
the program’s curriculum, again providing in-
dependent expertise from both academic and
industrial perspectives. This committee aims
to ensure the program’s coherence and pro-
vides strategic vision to keep it current and rel-
evant in the longer term.

To avoid offering out-of-date course mate-
rials, we provide more topical or ephemeral
material online in forms that we can easily up-
date, and we regularly renew the case studies
and scenarios used in assessments. We also an-
nually review courses for minor changes and
have a major review normally every few years,
according to a preset schedule. After a major
review, we might update, delete, or replace the
course.

The OU also investigates new approaches to
course production, sometimes inspired by the
software development process. For example,
when producing course M885, the academic

Figure 1. Selected
features of courses
from the master’s in
software development.

M882 Managing the Software Enterprise
This wide-ranging course includes topics often neglected in traditional software engineering programs such as
ethical issues, intellectual property rights, human motivation, risk assessment, and software evolution, many of
which are also required for professional accreditation. It’s aimed at people in or working toward a management
role involving software. The course examines software’s role in organizations from human, social, knowledge,
business, and software engineering perspectives. Students can explore software development processes and
concepts by means of system dynamics simulations.

M883 Software Requirements for Business Systems
This course highlights the importance of requirements in software engineering. Web and DVD resources keep
students abreast of current research and practice, including videos of seminars by experts in the field. Students
can also use a specially designed software application for requirements capture and as a case study of require-
ments elicitation (by examining and extending the tool’s development).

M885 Analysis and Design of Enterprise Systems—An OO Approach
This course iteratively and incrementally teaches object concepts and techniques, paralleling the iterative soft-
ware development processes being introduced. The course particularly aims to develop students’ reflective
skills about making the most appropriate modeling choices. For example, current topics include alternative ap-
proaches to modeling such as agile modeling, Extreme Programming, and model-driven architecture. It also re-
inforces a rigorous approach to UML modeling with consistent annotations using both natural language and the
Object Constraint Language.

M886 Information Security Management
This course takes a security management focus, focusing on skills appropriate for the master’s level. Based on
UK and international standards (BS 7799/ISO 17799, see http://emea.bsi-global.com/InformationSecurity/
Overview/index.xalter), it lets students apply the course content to an organization they know. Completing the
course gives students the knowledge and skills required to develop and plan the implementation of an organiza-
tion’s information security management policy.

M801 Research Project and Dissertation
This course lets students research, in detail, a topic of professional relevance to them or their organization
through a 13-month period of supervised work, leading to a dissertation (10,000 to 15,000 words) and poster
presentation. Students and tutors use specially designed online systems to manage the process as students sub-
mit a series of gradually refined proposals and drafts leading to the final dissertation.

Authorized licensed use limited to: The Open University. Downloaded on March 09,2010 at 06:24:47 EST from IEEE Xplore. Restrictions apply.

team adopted various agile development prac-
tices, including short, time-boxed, and incre-
mental production cycles (material was pro-
duced and revised on a weekly basis) and pair
authoring.1

Program characteristics
We have characterized the OU master’s pro-

gram in software development as part-time,
open, and large-scale distance learning, profes-
sionally accredited at the master’s level and
mainly aimed at IT practitioners. In the fol-
lowing sections, we consider each of these
characteristics and discuss their influence on
the curriculum’s design and delivery.

Part-time
Students have considerable choice about the

timing of their study and the associated work-
load. They can take one course at a time or sev-
eral at once. They can vary the order of study
(relatively few interdependencies exist among
the courses), although we also recommend
pathways, and they can take breaks from study.
This lets them continue with their careers and
helps them fit in the demands of study with
competing pressures from work or home life.

Some students stop after one or several
courses or after obtaining the postgraduate
diploma (154 students completed the diploma
in software development in 2005)—only a mi-
nority continue to the master’s dissertation. We
consider this early exit as normal and in no way
a failure, as is sometimes the case in full-time

programs. Students undertake the courses for
various reasons, and this is reflected in their
exit points. In recognition of this, we’ve re-
cently added a postgraduate certificate award
that will be available to students after complet-
ing 60 points.

Because some students only take one or sev-
eral courses, we need to make each individual
course attractive enough to students so that it’s
economically viable to produce. We normally
withdraw or substantially rewrite courses with
persistently low student populations (in our case,
about 100 students or fewer). See table 2 for a
snapshot of student numbers. In 2006, we offer
two new courses, M882 Managing the Software
Enterprise and M883 Software Requirements for
Business Systems; they replace the 30-point
M880 Software Engineering course.

Open
The OU’s founding mission was to open up

higher education to people who previously
might have been denied access for lack of prior
formal qualifications. We keep entry to our mas-
ter’s program in software development open in
that we have no compulsory entrance require-
ments. In practice, we give strong advice to po-
tential students about the appropriate back-
ground and study pathways—we normally
expect a university degree or diploma and at
least several years’ experience in IT. Most stu-
dents in the program have this background—
some have much more.

For the minority without a strong back-

N o v e m b e r / D e c e m b e r 2 0 0 6 I E E E S O F T W A R E 3 9

Table 2
Student numbers for 2005

Course (points) No. of students Pass (%) Fail (%)

M801 Research Project and Dissertation (60) 88 73.9 25.0

M865 Project Management (15) 579 80.3 19.7

M873 User Interface Design and Evaluation (15) 218 85.5 14.5

M874 Software Development for Networked Apps (15) 230 93.9 6.1

M876 Relational Database Systems (15) 264 84.5 15.1

M877 Advanced Database Technology (15) 141 84.4 15.6

M885 Analysis and Design of Enterprise Systems (15) 215 89.6 10.4

M879 Distributed Applications and e-Commerce (15) 157 93.0 7.0

M880 Software Engineering (30) 261 90.0 10.0

M881 Architectures of Computing Systems (15) 94 84.0 16.0

M886 Information Security Management (15) 143 93.0 7.0

Total 2,360 86.6 13.3

Authorized licensed use limited to: The Open University. Downloaded on March 09,2010 at 06:24:47 EST from IEEE Xplore. Restrictions apply.

ground, there is an element of self-selection.
They or their employers pay significant fees, and
if they’re not sufficiently motivated to catch up,
they won’t continue with the program. The pro-
gram’s part-time nature lets students spread
their study over time if necessary to gradually
acquire the necessary higher-level skills—the
OU also offers numerous study skills resources.
Actual completion rates on courses are normally
80 percent or higher—many of those who drop
out do so for nonacademic reasons, such as
work or home pressure, and might return later
to resume their studies.

Unlike many conventional universities, we
rely on output standards rather than on selec-
tion by input standards. We guarantee these
output standards through independent exter-
nal examiners and professional and academic
accreditation.

Large scale
An OU course can have many hundreds of

students enrolled in it at any one time. This
has advantages—it provides the financial re-
sources to fund high-quality materials. The
many students and their tutors bring a wealth
of experience in IT and other fields, which
they can share to some extent, although this is
currently perhaps an underused resource.

The large scale (together with the distance
learning) could make some students feel rather
isolated and anonymous. We address this by al-
locating students in small groups to tutors, by
online conferencing, and by a limited amount
of optional face-to-face teaching.

A key issue is ensuring consistency in the stu-
dent experience, in particular in standards of
marking and feedback on assignments. We mon-
itor a sample of marked assignments for every
tutor and feed the outcome back to the tutor.
This takes place electronically—from student
submission through assignment monitoring and
tutor feedback. We also perform statistical mon-
itoring to identify any potential cases of exces-
sively lenient or harsh marking. Again, we in-
form tutors so that they can adjust their marking
if necessary. We use the same sort of statistical
approaches in examination marking to prevent
or rectify any potential inconsistencies between
markers.

Distance learning
One of the major attractions of distance

learning is the flexibility in the place and time

of study for students. Many students use time
spent traveling or waiting at airports to study
the course materials, which are specially de-
signed for self-study (for example, the courses
have no lectures and few tutorials). Some find
the printed materials most convenient for
this—others access our online materials.

Because students don’t normally have close
contact with academic staff or fellow students,
the course materials must have particular
characteristics. The materials must be fairly
self-contained. They must also facilitate active
learning by means of activities, self-assessment
questions, simulations, and so on.

Some issues apply particularly to using dis-
tance learning for software engineering. We’ve
observed two main aspects to this—one techni-
cal, relating to the potential diversity of student
hardware and software platforms—the other
being the need for software engineering to be a
social activity as well as a technical discipline.

Students must provide their own personal
computers and arrange for Internet access. It
can be challenging to find software engineer-
ing tools that are compatible with a wide
range of platforms, have stable versions, and
are affordable enough to distribute as course
material. Sometimes we distribute a standard
software tool but permit students to use dif-
ferent tools. At other times, we develop tools
especially for a course.

Software engineering is rarely an individual
activity—teamwork is the norm. Many of our
students, being practitioners, will have team-
work experience in their employment. However,
it can be difficult to provide opportunities for
teamwork in a distance-learning environment.
At the moment, the master’s programs don’t
have a provision for teamwork—all assessment
is individual. Students can communicate using
the OU online-conferencing systems, but this is-
n’t normally used for working in teams. We’ve
recently had encouraging experiences using the
online-conferencing system for teamwork in un-
dergraduate courses. The OU has also adopted
Moodle (http://moodle.org) as its virtual learning
environment to provide an integrated, high-qual-
ity online learning experience for students. We’re
working to adapt, extend, and integrate Moodle
with existing systems (including online confer-
encing). Soon, this will let us make full and inte-
grated use of newer technologies, such as wikis
and blogs.

Similarly, students normally present the out-

4 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

The program’s
part-time
nature lets

students spread
their study
over time

to gradually
acquire higher-

level skills.

Authorized licensed use limited to: The Open University. Downloaded on March 09,2010 at 06:24:47 EST from IEEE Xplore. Restrictions apply.

N o v e m b e r / D e c e m b e r 2 0 0 6 I E E E S O F T W A R E 4 1

Many students
use time spent

traveling
or waiting
at airports

to study
the course
materials.

come of their research projects to other students
and to colleagues. Because this isn’t feasible in a
distance-learning context, students must pre-
pare an online presentation as part of their final
submission in the master’s research project.

Master’s level
The Quality Assurance Agency is an independ-

ent body that oversees UK universities such as the
OU. The QAA defines a qualifications framework
(www.qaa.ac.uk/academicinfrastructure/FHEQ)
specifying appropriate levels and approaches for
all higher-education qualifications, such as
bachelor’s and master’s degrees. The OU uses
this framework when developing the curriculum
for its programs.

The QAA also sponsors work on bench-
marks for all major subjects, including com-
puting, which more closely specify the key re-
quirements and expected standards for each
academic discipline. According to the QAA,
subject benchmarks “describe what gives a dis-
cipline its coherence and identity and define
what can be expected of a graduate in terms of
the techniques and skills needed to develop un-
derstanding in the subject” (www.qaa.ac.uk/
academicinfrastructure/benchmark). The QAA
has approved a benchmark for bachelor’s pro-
grams in computing subjects and has drafted
the benchmark for master’s programs.

Subject benchmarks don’t prescribe the
curriculum’s detailed content, unlike, say, the
ACM curriculum (see www.acm.org/education/
curricula.html). The benchmarks do include a
list of appropriate topics, rather like that set
out for software engineering by the Software
Engineering Body of Knowledge (www.swebok.
org/home.html). However, the QAA benchmark
covers a wide spectrum of possible computing
topics and no feasible program could cover all
of it—rather, it indicates currently appropriate
topics that program designers might choose to
use.

Regular inspections and reviews, both in-
ternal and external, ensure that universities
comply with these academic requirements. All
UK universities have their courses scrutinized
by external examiners. The QAA defines an
examiner’s role as follows: to verify that aca-
demic awards are appropriate and to help in-
stitutions maintain and assure academic stan-
dards and ensure that assessment processes are
sound (www.qaa.ac.uk/academicinfrastructure/
codeOfPractice/section4).

Each level in the QAA framework has asso-
ciated qualification descriptors. These give ex-
amples of each level’s expected outcomes and
demonstrate the progression between levels.
Flexibility is possible, as the outcomes are meant
to serve as a framework, not a rigid set of re-
quirements. Here, we summarize the expected
outcomes for a master’s program:

■ Much of the study undertaken at the mas-
ter’s level will have been at, or informed by,
the “forefront” of an academic or profes-
sional discipline. Students will have shown
originality in the application of knowledge,
and they will understand how the bound-
aries of knowledge are advanced through
research. They will be able to deal with
complex issues both systematically and cre-
atively, and they will show originality in
tackling and solving problems.

■ They will have the qualities needed for em-
ployment in circumstances requiring sound
judgment, personal responsibility, and ini-
tiative, in complex and unpredictable pro-
fessional environments.

Many courses in the OU’s master’s in soft-
ware development use the assessment either in
coursework or exams to explicitly encourage
students to engage in current research and
practice in the field. Some might also supply a
reader, a booklet, or an online folder of key
academic or industry papers, and the OU of-
fers extensive online library facilities. Students
typically use the reader for their assessment,
which is geared toward the development of re-
flective skills2 and critical awareness of differ-
ent points of view and perspectives, as re-
quired at the master’s level.

For example, in course M882 Managing the
Software Enterprise, we base the assignments on
industrial case studies and academic papers. We
ask students to consider how the companies
portrayed in the case studies addressed issues
such as ethics, software procurement processes,
and so on. We use the academic papers to form
an essay-based question that seeks to engage
students in a deeper reflection about major top-
ics (such as the role of human motivation in
software development). We follow this up in the
exam’s second part, which is a long essay on a
given theme based on two or three papers se-
lected by the students with guidance from their
tutors.

Authorized licensed use limited to: The Open University. Downloaded on March 09,2010 at 06:24:47 EST from IEEE Xplore. Restrictions apply.

4 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Students can
build some

coursework
assignments,

and potentially
projects,

around their
work

experience.

Professionally accredited
It’s very important to our main constituency

of IT practitioners and to their employers that
our courses have professional recognition. The
main UK professional body for computing is the
British Computer Society (www.bcs.org). The
BCS accredits programs at universities so that
graduates can more easily become full members
of the professional body after an appropriate pe-
riod of experience. This can also lead to the pres-
tigious status of chartered engineer (CEng). This
status is fully equivalent to chartered engineers in
long-standing engineering professions such as
mechanical or civil engineering. In these more es-
tablished fields of engineering, you need char-
tered status for appointment to any senior job or
to leadership of a major project—this isn’t nor-
mally the case in the UK IT industry at present.

The BCS accreditation process is based on the
QAA requirements for master’s programs, but it
makes further demands to ensure programs have
appropriate content for the IT profession. These
include specific teaching of legal, social, ethical,
and professional issues applied to IT and the need
for students to complete a practical, problem-
solving individual project. Accreditation involves
a visit to the university by a team of academics
and industrial practitioners who scrutinize pro-
gram documentation and meet staff and students
for detailed interviews. Accreditation normally
lasts for five years, after which time a further visit
is required for renewal.

After the most recent BCS visit in May 2005,
the OU computing programs, including the mas-
ter’s programs, were fully accredited by the BCS
for five years. The BCS accredited our master’s
programs as specialist awards, which is the higher
of the two accreditation levels (generalist and spe-
cialist) available. The Institution of Engineering
and Technology (www.theiet.org), another im-
portant UK professional institution, also recog-
nizes our master’s programs.

Aimed at IT practitioners
Our curriculum is constantly exposed to in-

dustrial scrutiny and external academic oversight,
including that provided by our students, their
employers, our course developers, and tutors.

The topics we teach and the ways we present
them must navigate between two extremes. We
generally don’t consider primarily theoretical
topics as appropriate for a whole course. For
example, mathematical formal methods have in
recent years gone from a whole course, to part

of a course, to being dropped completely. How-
ever, we must cover topics at an appropriate ac-
ademic depth—we’re not offering pure train-
ing. We maintain an appropriate degree of rigor
in the way we teach software development. For
example, M885 Analysis and Design of Enter-
prise Systems reinforces a rigorous approach to
modeling with consistent annotations using both
natural language and the Object Constraint Lan-
guage. We base our approach to the develop-
ment of modeling skills on the practical applica-
tion of an iterative and incremental process to
case studies, with well-defined modeling perspec-
tives and an emphasis on rigor and precision.

Students can build some coursework assign-
ments, and potentially projects, around their
work experience. For example, M865 Project
Management asks students to apply the princi-
ples and techniques taught in the course to a
real project that they’ve worked on. Similarly,
the M886 Information Security Management
coursework incrementally builds up an infor-
mation security policy for an organization cho-
sen by the student. This tends to work well ex-
cept in the few cases where students aren’t
working in the appropriate field or role to have
a suitable project or organization. In such cases,
we offer alternatives.

This practitioner orientation also makes cer-
tain courses attractive to organizations seeking
professional development for their staff. For ex-
ample, a large multinational company recently
selected M882 Managing the Software Enter-
prise to be adapted for continuing professional
development of some of its staff, and we’re dis-
cussing similar arrangements for other courses
with this and other companies.

G uided by its educational mission and
key characteristics, the OU’s research
program in computing continues to in-

novate in the creation of learning materials and
their delivery. Areas for further improvement
include the automatic assessment of student as-
signments, agile development processes, social
and collaborative software, and privacy re-
quirements management.

Future directions for the program will likely
involve responding to the increasing globaliza-
tion of IT development and the consequent
movement toward more strategic and business-
oriented skills. We also anticipate increasing
our use of online methods to appeal to a more

Authorized licensed use limited to: The Open University. Downloaded on March 09,2010 at 06:24:47 EST from IEEE Xplore. Restrictions apply.

global audience. The OU has several active re-
search projects in online education, including
the use of virtual learning environments, and
we hope to take advantage of some of these in
the near future.

References
1. Agile Manifesto, www.agilemanifesto.org.
2. D. Schön, The Reflective Practitioner, Basic Books,

1983.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

N o v e m b e r / D e c e m b e r 2 0 0 6 I E E E S O F T W A R E 4 3

About the Authors

Brendan Quinn is the Director of Postgraduate Computing at the Open University. His
research interests include software engineering, particularly embedded systems, bioinformatics,
and curriculum design. He received his MSc in software systems from Sheffield University. He is
a chartered engineer and a member of the BCS. Contact him at the Computing Dept., The Open
Univ., Walton Hall, Milton Keynes MK7 6AA, UK; b.quinn@open.ac.uk.

Leonor Barroca is a senior lecturer in computing at the Open University. She was the
Director of Postgraduate Computing at the Open University between 2002 and 2005. Her re-
search interests include architectural approaches to software engineering, object-oriented devel-
opment, component-based development, and state-based specifications of temporal behavior.
She received her PhD in computing from Southampton University. She’s a member of the BCS.
Contact her at the Computing Dept., The Open Univ., Walton Hall, Milton Keynes MK7 6AA, UK;
l.barroca@open.ac.uk.

Bashar Nuseibeh is a professor of computing and the Director of Research in the Com-
puting Department at the Open University. His interests include systems requirements engineer-
ing and design, software process modeling and technology, and technology transfer. He re-
ceived his PhD in software engineering from Imperial College London. He is a chartered engineer,
a fellow of the BCS, and a member of the IET and holds the Royal Academy of Engineering/
Leverhulme Trust Senior Research Fellowship. Contact him at the Computing Dept., The Open
Univ., Walton Hall, Milton Keynes MK7 6AA, UK; b.nuseibeh@open.ac.uk.

Juan Fernández-Ramil is a lecturer in computing at the Open University. His re-
search interests include software evolution, effort estimation, system dynamics models of the
software process, empirical studies of software-related work, and software management educa-
tion. He received his PhD in computing from Imperial College London. Contact him at the Com-
puting Dept., The Open Univ., Walton Hall, Milton Keynes MK7 6AA, UK; J.F.Ramil@open.ac.uk.

Lucia Rapanotti is a senior lecturer in computing at the Open University. Her research
interests include requirements engineering, software architectures, and groupware systems.
She received her PhD in computing science from the University of Newcastle upon Tyne. Con-
tact her at the Computing Dept., The Open Univ., Walton Hall, Milton Keynes MK7 6AA, UK;
l.rapanotti@open.ac.uk.

Pete Thomas is a senior lecturer in computing at the Open University. His research inter-
ests include e-learning, online assessment in computing, and automatic diagram recognition. He
received his PhD in computing from the University of Dundee. Contact him at the Computing
Dept., The Open Univ., Walton Hall, Milton Keynes MK7 6AA, UK; p.g.thomas@open.ac.uk.

Michel Wermelinger is a senior lecturer in computing at the Open University. His re-
search interests include software architecture and software evolution. He received his PhD in
computer science from the New University of Lisbon. Contact him at the Computing Dept., The
Open Univ., Walton Hall, Milton Keynes MK7 6AA, UK; m.a.wermelinger@open.ac.uk.

www.computer.org/software

UPCOMING ISSUES:

SE Challenges in Small
Software Companies

Test-Driven Development

Software Patterns

Authorized licensed use limited to: The Open University. Downloaded on March 09,2010 at 06:24:47 EST from IEEE Xplore. Restrictions apply.

