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In large-scale, open, service-centric environ-
ments, thousands of services will have to be
discovered, adapted, and orchestrated on the
basis of user needs. Because SOA technologies
employ only XML descriptions, they offer
only manual support for integration that usu-
ally operates on a rigid configuration of work-
flows or services. Although XML is flexible
and extensible, it defines only the data’s struc-
ture and syntax.

Extending SOAs with semantics offers scala-
ble, adaptive automation. The goal is to design
a semantically enabled SOA (SESA) and a tech-
nology promoting on-the-fly personalization
and adaptability of business requirements. The
SESA adopts a service model that uses seman-
tics for rich description of both the services of-
fered and the capabilities that potential users
require. This model defines essential functional-
ities for the dynamic integration of services.
The SESA aims to fulfil users’ goals through
logical reasoning over semantic descriptions.

Ultimately, users won’t need to be concerned
with the processing logic; they will be able to
focus just on the result and its quality.

Governing principles
The SESA enables an open, service-centric

environment where service orientation, intel-
ligence, and seamless integration are the key
to providing services to their users. Three
principles drive SESA research, design, and
implementation:

■ The service-oriented principle promotes
service reusability, loose coupling, ab-
straction, composability, autonomy, and
discoverability.

■ The semantic principle allows a rich de-
scription of information and behavioral
models that enables automation through
logical reasoning in service discovery, ne-
gotiation, selection, mediation, and so on.

■ The problem-solving principle underpins

focus
SESA: Emerging
Technology for Service-
Centric Environments

S
ervice-oriented architectures—and particularly the Web service
technologies that enable them, such as WSDL (Web Services De-
scription Language) and SOAP—are widely acknowledged for
their potential to revolutionize computing. However, existing

SOAs will prove difficult to scale without a proper degree of automation.
SOAs’ success depends on resolving fundamental challenges that existing SOA
technologies don’t sufficiently address: search, integration, and mediation.  

service-centric software systems

Tomas Vitvar, Michal Zaremba, Matthew Moran, Maciej Zaremba, 
and Dieter Fensel, Digital Enterprise Research Institute

Extending service-
oriented
architectures 
with semantics can
help create service-
centric information
systems that better
adapt to changes
throughout software
systems’ lifetime.



the architecture’s ultimate objective:
goal-based discovery and invocation of
services. Users (service requesters) de-
scribe requests as goals semantically and
independently from services, while the
architecture solves those goals through
logical reasoning over their descriptions,
as we mentioned before.

The SESA and its related
technology

The Web Service Modeling Ontology pro-
vides a conceptual model for describing do-
main ontologies, user goals, services, and
mediators.1 To formally describe these ele-
ments, the Web Service Modeling Language
defines several complementary language
variants allowing for the logical expressive-
ness of both description logic and logic pro-
gramming.1 WSMO and WSML provide the
basis for a semantic technology that’s well
suited for the SESA and its underlying prin-
ciples. (For a comparison of SESA technol-
ogy with other approaches, see the “Related
Work on Adding Semantics to Web Services”
sidebar).

SESA distinguishes two types of services.
Middleware services are the main facilitators
for searching, integrating, and mediating busi-
ness services. The business services are ex-

posed by the service providers’ back-end sys-
tems, which are integrated within the SESA.
Through the functionality of these types of
services, the SESA aims to support

■ the business users who consume the func-
tionality of business services through some
domain applications, and

■ the engineers (enterprise architects, appli-
cation programmers, and domain experts)
who consume middleware services to mod-
el, deploy, assemble, manage, and maintain
business processes throughout the SOA life
cycle.

As figure 1 illustrates, the SESA has three
main layers: the middleware-services layer, the
business-services layer, and the problem-solving
layer. The WSMO conceptual model and its el-
ements of ontologies, services, and goals map
directly to the SESA business-services and prob-
lem-solving layers, while mediators map to the
middleware-services layer.

The middleware-services layer
The middleware services reside in the semantic

execution environment. They operate mainly on
the semantic-service model of business services,
aiming to facilitate the seamless integration of
business services. The OASIS (Organization for the
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Figure 1. The semantically enabled service-oriented architecture (SESA).



Advancement of Structured Information Stan-
dards) Semantic Execution Environment Techni-
cal Committee (www.oasis-open.org/committees/
semantic-ex) specifies the middleware services’
functionality. The WSMX (Web Service Model-
ing Execution Environment, www.wsmx.org)
and IRS-III (Internet Reasoning Service, http://
kmi.open.ac.uk/projects/irs) are the reference
implementations of OASIS SEE specifications.

The SEE comprises three sublayers of mid-
dleware services. The vertical sublayer defines a

framework that functions across the other two
sublayers but that remains invisible to them:

■ Execution management defines the con-
trol of middleware services’ distributed
execution.

■ Security defines secure communication—
that is, authentication, authorization, con-
fidentiality, data encryption, traceability,
or nonrepudiation support for execution
scenarios.
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Besides the Web Service Modeling Ontology (see the
section “The SESA and its related technology” in the main
article), the OWL-S1 ontology can be used for semantic de-
scription of services. OWL-S comprises three subontologies:

■ ServiceProfile describes a Web service’s functionality.
■ ServiceModel defines a Web service’s behavior.
■ ServiceGrounding links ServiceModel and the descrip-

tion of the concrete Web service that the Web Services
Description Language (WSDL) provides.

OWL-S uses the Web Ontology Language (OWL) for de-
scriptions of its elements. OWL currently doesn’t support rule
languages, which are essential for describing functional and
behavioral service semantics using logical conditions. In ad-
dition, OWL-S doesn’t include the user request in its concep-
tual model, and it doesn’t assume that service environments
are inherently heterogeneous.

To overcome these deficiencies, WSMO introduces a
proper language layering, including logic-programming
languages suitable for describing service semantics using
logical conditions. It also introduces ontological role separa-
tion, clearly distinguishing between the requester and the
provider side (that is, between goals and services). Plus, it
introduces mediators as the core of a conceptual model
treating heterogeneity as a natural aspect of Web services.

In addition, some technologies are building on the OWL-S
model. Among others, the OWL-S Virtual Machine provides
a general-purpose client for the invocation of Web services
based on OWL-S descriptions.2 Although the OWL-S VM
proves the OWL-S model’s value, it addresses only a subset of
the functionality that a semantically enabled service-oriented ar-
chitecture (SESA) offers. For example, the OWL-S VM doesn’t
directly address mediation and lacks goal-driven execution.

Other specifications also aim to add semantics to ser-
vices. The Semantic Annotations for WSDL and XML Schema
(SAWSDL)3 is a recent World Wide Web Consortium (W3C)
project that adopts WSDL-S4 specifications. SAWSDL aims
to define simple extensions to annotate various WSDL ele-

ments with semantic descriptions. While SAWSDL doesn’t
define any semantics specifically for service descriptions, it
can serve as a grounding mechanism between WSMO se-
mantics and WSDL elements.5

Based on WSDL-S, METEOR-S (Managing End-to-End Op-
erations with Semantics, http://lsdis.cs.uga.edu/projects/
past/METEOR) defines a complete service life cycle based on
service semantics.4 It lets you create WSDL-S descriptions from
annotated source code, automatically publish WSDL-S des-
criptions in enhanced UDDI registries, and generate OWL-S
descriptions from WSDL-S for grounding.

In addition, you can view the SESA as complementing the
W3C’s Web Services Architecture,6 building on its principles.
However, some differences exist. For example, the SESA in-
cludes semantic mediation, refines the Web Services Architec-
ture goal state to a WSMO goal, and includes WSMO chore-
ography interfaces for both goals and services (a WSMO
choreography describes a service’s external behavior). For
conceptual models of Web services specifications (WS-*) such
as policy, security, or reliability, the SESA either adopts these
specifications as part of the business service model or adopts
them through the underlying Web service technology.
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The broker sublayer defines the function-
ality necessary for goal-based discovery and
invocation:

■ Discovery defines tasks for identifying and
locating business services that can achieve
a goal.

■ Adaptation defines an adaptation within a
particular integration process according to
users’ requirements (for example, service
contracting and validation).

■ Orchestration defines the execution of a
composite business process together with
the communication between a service re-
quester and a service provider in that
process.

■ Monitoring defines the monitoring of the
business services’ execution. It gathers in-
formation on invoked services—for exam-
ple, for determining quality of service or
for identifying faults during execution.

■ Fault handling defines how to handle
faults occurring during the business ser-
vices’ execution.

■ Mediation defines interoperability at the
data and process levels.

■ Composition defines the composition of
services into an executable workflow.

■ Grounding defines transformations from
semantic descriptions of business services to
nonsemantic descriptions, and vice versa.

The base sublayer defines functionality that
isn’t directly required in goal-based discovery
and invocation but that the broker layer re-
quires for successful operation:

■ Formal languages define semantic lan-

guages used for semantic description of
services, goals, and ontologies.

■ Reasoning defines reasoning functionality
over semantic descriptions.

■ Storage defines a persistence mechanism
for various elements (for example, reposi-
tories for services and ontologies).

■ Communication defines the middleware’s
inbound and outbound communication.

The business-services layer
The SESA adopts descriptions for business

services using the WSMO service model while
building on the underlying technology for in-
vocation and communication. Here, we show
how to define business services using descriptions
of information, functional, behavioral, and non-
functional semantics and how to ground those
descriptions to WSDL message types and oper-
ations. (Although the semantic descriptions are
independent of the underlying technology, the
grounding to WSDL leverages existing de jure
and de facto SOA standards in the SESA context.)

Information semantics. A business service’s
core is the information semantics (information
model) on which it operates. This semantics is
the formal definition of the domain ontology
that the service uses for description of func-
tional and behavioral semantics.

In general, to model ontologies, you can use
concepts, attributes, relations, and axioms.
Concepts describe classes of objects and define
the terminology of the domain of discourse. For
example, in figure 2, the Service concept (line
6) stands for the class of all services that can be
put in a subsumption relation by means of the
subConceptOf construct (lines 10 and 11).
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Figure 2. A simplified
ontology for 
a hypothetical 
telecommunications-
services system.

01 …

02 ccoonncceepptt Customer

03 hasConnection ooffTTyyppee (1 1) NetworkConnection

04 hasService ooffTTyyppee (0 1) Service

05 isValidCustomer ooffTTyyppee (1 1) boolean

06 ccoonncceepptt Service

07 requiresBandwidth ooffTTyyppee (1 1) integer

08 ccoonncceepptt NetworkConnection

09 providesBandwidth ooffTTyyppee (1 1) integer

10 ccoonncceepptt VideoOnDemandService ssuubbCCoonncceeppttOOff Service

11 ccoonncceepptt IPTelephonyService ssuubbCCoonncceeppttOOff Service

12 …



Attributes define relations between con-
cepts, define these relations’ constraints, and
point to data types. For example, in figure 2,
the Customer concept has the attributes
hasConnection and hasService. These
attributes point to concepts for the parts of the
Customer concept with the restrictions that the
network connection definition is mandatory
while at most one connection can be defined.

Axioms define arbitrary complex logical
expressions over other definitions in the on-
tology. We show examples of logical expres-
sions for some descriptions of services later in
this article.

Functional semantics. This semantics is the for-
mal description of service functionality, de-
scribing what a service can offer to its users
when it’s invoked. We describe the service’s
functionality as a capability, which we model
as preconditions, assumptions, postconditions,
and effects. As figure 3 illustrates, precondi-
tions and assumptions define the conditions of
the information space and of the world outside
that space, respectively, that must hold for
state s1—the system’s state before the invoca-

tion of the service W. Similarly, postconditions
and effects define the conditions for state s2—
the system’s state after the invocation of the
service W. We then define the invocation of W as
a transition between states s1 and s2:

holds(PRECONDITIONS �
ASSUMPTIONS, s1)

� holds(POSTCONDITIONS �
EFFECTS, s2).

In figure 3, the state space comprises all the
services available for a search (for example,
services in a repository). The information
space comprises all the information available
to all the services. The world space comprises
the information outside the information space.
Here, the capability uses WSML to describe a
network subscription service’s functionality—
in this case, video on demand (VoD). The pre-
condition specifies that the customer must
have a connection with the minimal band-
width the service requires. The assumption
specifies that the customer must have suffi-
cient funds in his or her bank account. The
postcondition identifies a valid customer hav-
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?customer[hasConnection hasValue ?connection]
    memberOf Customer and
?service[requiresBandwidth hasValue ?x]
    memberOf Service and
?connection[providesBandwidth hasValue ?y]
    memberOf NetworkConnection and
?y >= ?x

?customer[hasService hasValue ?service] memberOf Customer

isSubscribed(?customer, ?service)

State space

W precondition

W postcondition

W effect

W assumption
hasCredit(?customer)

World space

Information space

Valid in the world

Valid in
the world

Valid in the
information

space

Valid in the
information space

s0

s1

s2

s3 s4

sn

s5

Service W 

Figure 3. A functional-
semantics example.



ing the connection and service defined. The ef-
fect specifies that the customer subscribes to
the service.

Behavioral semantics. This semantics defines a
service’s external and internal behavior. The
external behavior, called a choreography, de-
scribes a protocol that a client uses to consume
the service functionality. The choreography de-
scribes interactions involving messages sent to
the service from the network and to the net-
work from the service. (Our definition of cho-
reography differs from the one that the Web
Services Choreography Description Language2

uses.) The internal behavior, called an orches-
tration, describes a workflow—that is, how the
service’s functionality is aggregated out of
other services.

To model the choreography and orchestra-
tion, we use an abstract state machine. We de-
fine the ASM as

IW = (In, Out, L),

where IW is the interface of the choreography
or orchestration, In and Out are ontological
concepts of some information semantics used
in input and output messages, and L is a set of
rules. Each rule has the form “if condition then
effect” and corresponds to one or more inter-
actions with the service following the underly-
ing message exchange pattern (we explain
MEPs in more detail later). For the rule to ex-
ecute, the condition must hold in a state in the
information space; the effect defines how the
state changes when the rule executes—that is,
how the information space is modified by
adding, deleting, or updating the data.

Figure 4 uses two rules to define the cho-
reography for the service in figure 3. The
first rule specifies how to get the details
about the customer (lines 15–19). This rule
can execute if SearchCustomerRequest is
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Figure 4. An example
choreography, which
describes a service’s
external behavior.

01 …

02 ssttaatteeSSiiggnnaattuurree

03 iinn

04 SearchCustomerRequest wwiitthhGGrroouunnddiinngg

05 {“http://someuri/service.wsdl#wsdl.interfaceMessageReference(SCust/in0)”}

06 SubscriptionRequest wwiitthhGGrroouunnddiinngg

07 {“http://someuri/service.wsdl#wsdl.interfaceMessageReference(AddS/in0)”}

08 oouutt

09 Customer wwiitthhGGrroouunnddiinngg

10 {“http://someuri/service.wsdl#wsdl.interfaceMessageReference(SCust/out0)”}

11 SubscriptionResponse wwiitthhGGrroouunnddiinngg

12 {“http://someuri/service.wsdl#wsdl.interfaceMessageReference(AddS/out0)”}

13

14 ttrraannssiittiioonnRRuulleess

15 ffoorraallll {?searchCustomer} wwiitthh (

16 ?searchCustomer mmeemmbbeerrOOff SearchCustomerRequest )

17 ddoo

18 aadddd(_# mmeemmbbeerrOOff Customer)

19 eennddffoorraallll

20

21 ffoorraallll {?subscriptionRequest, ?customer} wwiitthh (

22 ?subscriptionRequest[customerId hhaassVVaalluuee ?cid] mmeemmbbeerrOOff SubscriptionRequest aanndd

23 ?customer[id hhaassVVaalluuee ?cid] mmeemmbbeerrOOff Customer )

24 ddoo

25 aadddd(_# mmeemmbbeerrOOff SubscriptionResponse)

26 eennddffoorraallll

27 …



in the information space (in our example, we
assume that the user will supply this informa-
tion, as we explain later). The second rule de-
pends on the first rule and defines how to per-
form the service subscription (lines 21–26).
Here, the subscription request must use the
customer’s identifier (customerId).

Nonfunctional semantics. This semantics de-
scribes additional constraints over service
functionality that the functional description
didn’t capture. They’re incidental details spe-
cific to a service’s implementation or running
environment, independent of the service’s ac-
tual purpose but necessary for successful com-
munication. To express these constraints, we
can use policy languages (for example, WS-
Policy3) and their semantic representation.4

Nonfunctional descriptions can also capture
other information about services, such as the
author or version, using the Dublin Core
metadata set (http://dublincore.org). In addi-
tion, we use them for grounding, as we de-
scribe next.

Grounding. The SESA business services adopt
the WSMO semantics for various descriptive
parts of services. For the parts regarding ser-
vice invocation (such as how and where the
client can access the service), the WSMO de-
fines grounding from the semantic descrip-
tions to the WSDL descriptions. The SESA
uses this grounding for on-the-wire message

serialization (WSDL binding), physical Web
service access (WSDL service and end point),
and communication (SOAP).

In addition, business service descriptions
don’t preclude the use of other relevant Web
services specifications (WS-*) such as policy,
service security, reliable messaging, and trans-
action. While policy specifications can have
semantic representations as nonfunctional de-
scriptions, the other specifications can serve
as part of the WSDL descriptions. To support
such specifications at the SESA middleware
layer, relevant middleware services should im-
plement them.

The grounding specifies

■ references for ontological concepts used in
a choreography to WSDL messages and

■ transformations from XML data to in-
stances of ontological concepts (lifting)
and vice versa (lowering).

The grounding is useful during communica-
tion with the service after the definition of
WSDL operations and their MEPs.

Table 1 shows four basic types of WSDL
2.0 MEPs (www.w3.org/TR/wsdl20-adjuncts/
#meps) and their corresponding choreography
rules and WSDL operations. Here, c1, …, c6

are ontological concepts specified as input
(In) or output (Out) of some choreography
IW. msg1, …, msg6 are XML Schema elements
of input or output messages of operations.
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Table 1
Message exchange patterns, rules, 

and Web Services Description Language operations
MEP and rule WSDL operation

in-out: <operation name=”oper1” pattern=”http://www.w3.org/ns/wsdl/in-out”>
if c1 then add(c2) <input messageLabel=”In” element=”msg1” />
c1 � In, ref(c1, msg1) <output messageLabel=”Out” element=”msg2”/>
c2 � Out, ref(c2, msg2) </operation>

in-only: <operation name=”oper2” pattern=”http://www.w3.org/ns/wsdl/in-only”>
if c3 then no effect <input messageLabel=”In” element=”msg3” />
c3 � In, ref(c3, msg3) </operation>

out-only: <operation name=”oper3” pattern=”http://www.w3.org/ns/wsdl/out-only”>
if true then add(c4) <output messageLabel=”Out” element=”msg4” />
c4 � Out, ref(c4, msg4) </operation>

out-in: <operation name=”oper4” pattern=”http://www.w3.org/ns/wsdl/out-in”>
if true then add(c5) <output messageLabel=”Out” element=”msg5” />
if c5 � c6 then no effect <input messageLabel=”In” element=”msg6” />
c5 � Out, ref(c5, msg5) </operation>
c6 � In, ref(c6, msg6)



ref(c, m) denotes a reference grounding of an
ontological concept c and a message msg.

As figure 5 shows, more complex rules usu-
ally exist whose conditions define the order in
which the invocation should happen. The cho-
reography specification’s current version doesn’t
handle other types of MEPs, such as ones in-
cluding faults and optional messages.

Figure 4 shows the example for the refer-
ence grounding (lines 5, 7, 10, and 12). A lift-
ing or lowering grounding defines a transfor-
mation (usually in XSLT, Extensible Stylesheet
Language Transformations) that’s specified as
a URI (uniform resource identifier) in the lift-

ing or lowering nonfunctional description of
the service (not shown in figure 4). When the
rule for obtaining customer details (lines
15–19) executes (the condition holds in the in-
formation space), the system first lowers the
instance data of SearchCustomerRequest
to the XML message referenced by the con-
cept (line 5). The system then invokes the
corresponding WSDL operation, passing the
XML message as the input data. Next, the
system lifts the output XML message re-
ceived from the invocation to the instance of
the referenced Customer concept (line 10).
Finally, the system adds the resulting data to
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Figure 5. An example
goal.

01 …

02 GGooaall GoalSubscription

03

04 ccaappaabbiilliittyy

05 pprreeccoonnddiittiioonn

06 ddeeffiinneeddBByy

07 ?customer[hasConnection hhaassVVaalluuee ?connection] mmeemmbbeerrOOff Customer

08 ppoossttccoonnddiittiioonn

09 ddeeffiinneeddBByy

10 ?customer[hasService hhaassVVaalluuee ?service] mmeemmbbeerrOOff Customer aanndd

11 ?service mmeemmbbeerrOOff VideoOnDemandService

12

13 cchhoorreeooggrraapphhyy GoalSubscriptionChoreography

14 ssttaatteeSSiiggnnaattuurree

15 iinn

16 OrderResponse wwiitthhGGrroouunnddiinngg

17 {“http://someuri/goal.wsdl#wsdl.interfaceMessageReference(SS/in0)”}

18 oouutt

19 OrderRequest wwiitthhGGrroouunnddiinngg

20 {“http://someuri/goal.wsdl#wsdl.interfaceMessageReference(SS/out0)”}

21

22 ttrraannssiittiioonnRRuulleess

23 ffoorraallll {?request} (

24 naf ?request mmeemmbbeerrOOff OrderRequest )

25 ddoo

26 aadddd(_# mmeemmbbeerrOOff OrderRequest)

27 eennddFFoorraallll

28

29 ffoorraallll {?request, ?response} wwiitthh (

30 ?request mmeemmbbeerrOOff OrderRequest aanndd

31 ?response mmeemmbbeerrOOff  OrderResponse )

32 ddoo

33 eennddFFoorraallll

34 …



the information space according to the rule’s
action (line 18).

The problem-solving layer
Through this layer, users can formulate or

identify goals, submit goals, interact with the
architecture during processing, and get desired
results. End users can perform these activities
through some domain applications; engineers
can perform them through some management
tools—that is, an integrated development envi-
ronment. The reference implementations of the
IDE framework developed for the SESA are the
Web Service Modeling Toolkit (WSMT) and
WSMO studio (www.wsmostudio.org).5

The key to this layer is the formal descrip-
tion of the user’s objectives. For this purpose,
the SESA defines the goal description as a re-
quested capability (what the user wants to
achieve) and a choreography interface (how
the user wants to communicate) having the
same structural definition as the business ser-
vice (see the sections “Functional semantics”
and “Behavioral semantics”). In addition, we
can express user requirements such as a ser-
vice’s desired quality by using nonfunctional
descriptions of the goal.

Figure 5 shows a goal of a user who wants to
subscribe to a VoD service. The precondition
(lines 5–7) specifies that the user is a customer
already having some network connection. The
postcondition (lines 8–11) specifies that the cus-
tomer subscribes to the intended VoD service.
The choreography interface defines which data
the user expects to supply (specified in Order-
Request) and to receive (specified in Order-
Response). The rules in lines 23–33 correspond
to the out-in MEP of the underlying WSDL (see
table 1). Here, naf (negation as failure) is a non-
monotonic inference rule that derives not
OrderRequest when OrderRequest fails to
be derived in the information space.

Integration
The SEE middleware defines two phases for

business services integration: late binding and
execution.

Late binding
This phase allows binding a user goal and a

set of business services by means of intelligence
in the SEE middleware. We call this phase “late
binding” because the binding isn’t known a pri-
ori (that is, during modeling) and can be per-

formed in a semiautomated way on the fly. Typ-
ically, late binding involves tasks for service dis-
covery, contracting, and validation, comple-
mented by composition and interspersed with
mediation. This phase operates on semantic de-
scriptions of business services and can take sev-
eral forms, depending on the scenario.

Discovery. When the system receives a user goal,
the discovery task matches the goal capability
with the capabilities of services in the middle-
ware repository. Taking the goal from figure 5
as an example, this task finds a potential service
satisfying the goal capability in figure 3 (the goal
postcondition concept VideoOnDemandService
subsumes the Service concept from the service
postcondition). The discovery task must evaluate
various semantic relationships between the goal
and services, including exact match, intersection
match, subsumption match, plug-in match, and
disjointedness.6

Contracting. This process refines the discovery
results by consulting dynamic instance data of
the goal and the potential service. Including
such data in static service descriptions is
clearly infeasible—the system must obtain the
data dynamically during the late binding.

In our example, the goal data is part of the
service request as shown in figure 5 (through
the rule in lines 23–27), while the system ob-
tains the service data by executing appropri-
ate rules from the service choreography in fig-
ure 4 (that is, it obtains the customer details
using the rule in lines 15–19). In this example,
we assume that through the order request in
figure 5, the user supplies the customer iden-
tification together with the details for the sub-
scription request needed by the service chore-
ography in figure 4. If the goal and service
choreographies use different ontologies, data
mapping and mediation are necessary. The
potential service can satisfy the goal if all data
is fetched and the service precondition evalu-
ates to true in the information space. In our
example, the precondition holds if the cus-
tomer’s connection bandwidth is greater than
the service’s required connection bandwidth.
More information about this process appears
elsewhere.7

Composition. When no single service can satisfy
the whole goal, the composition task tries to cre-
ate a plan for that goal. Using AI methods such
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When no single
service can
satisfy the
whole goal, 

the composition
task tries 

to create a plan
for that goal. 



as backward or forward chaining, this task tries
to find an order of services while recursively per-
forming discovery and contracting. This results
in a description of a composite business service’s
orchestration.

In our example, if the customer connection
bandwidth is less than the service connection
bandwidth, composition might result in a
workflow of two services—that is, an upgrade
connection service and the subscription service.

Validation. Although late binding aims to auto-
mate integration, human validation might be
necessary in sensitive domains such as e-health,
where late-binding results could have crucial
real-world effects. In the SESA, a combination
of service-analysis and user-approval methods
ensures this validation.

Service analysis provides information based
on the service usage and quality, answering
questions such as “how often does the service
fail?” and “how often is the service used in the
given context?” With the help of this informa-
tion, when the system notifies the user that the
goal can’t be fully satisfied, he or she can relax
some of the functional or nonfunctional re-
quirements. By selecting less functionality, the
user might find higher-quality services; by re-

laxing the nonfunctional requirements, the user
might find services with more functionality.

Execution
Figure 6 depicts this phase, which is performed

by three middleware services. Orchestration man-
ages the whole execution process, mediation re-
solves heterogeneity issues, and communication
implements grounding together with inbound and
outbound communication.

The process involves nine possible states:

1. The execution starts when the system re-
ceives a user goal (representing a requester)
and a service (representing a provider).
These descriptions are usually the result of
the late binding. We also assume the soft-
ware engineer has created the mapping of
the goal and service ontologies and stored
it with the middleware.

2. The system loads the goal and service chore-
ographies into the orchestration engine, cre-
ating one instance for each. Each instance
contains processing memory (representing
the information space) used for storing data
for runtime processing and a set of rules
from the choreography definition.

3. The execution waits for new data (state 4),
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processes the available data (states 5–8), or
ends the execution (state 9).

4. The system checks whether new data from
the user or service (both follow their chore-
ographies) is available. If the system re-
ceives new data, it lifts the data using par-
ticular grounding definitions.

5. When new data is available, the system
passes it to the data mediator. This media-
tor mediates the data from the user to the

service ontology or from the service to the
user’s ontology.

6. Control then passes to the process media-
tor, which decides where to put the new
data: into the processing memory of the
user’s choreography, the processing mem-
ory of the service’s choreography, or both.
This mediator bases its decision on evalua-
tion of the rules’ heads for each choreogra-
phy. In particular, the mediator evaluates
whether the subsequent processing of the
choreography can use this data.

7. The system processes the updated choreo-
graphies. That is, for a rule whose head sat-
isfies the content of the choreography’s
processing memory, the system executes
the body.

8. For each input concept in the rule’s condi-
tion, the system sends the data to the ser-
vice or user, according to the definition of
the underlying operation. To do this, the
system lowers the data to the correspond-
ing XML message. The execution then goes
back to the control state (state 3).

9. When no data is available for the processing,
no rules remain to be processed in choreo-
graphies, and no data remains to be received
from the user or the service, the execution
reaches the end state.

W hile the SESA facilitates a novel
style of integration of services by
means of semantic service descrip-

tions and AI methods, some people say that
such an approach isn’t realistic today. They ar-
gue that the complexity of semantic languages
and integration techniques that depend on log-
ical reasoning is a burden for service process-
ing and high performance.

However, the logical reasoning can effi-
ciently help resolve inconsistencies in service
descriptions as well as maintain interoperabil-
ity when these descriptions change. The more
complex the services’ descriptions are, the
more difficult it is for a human to manually
maintain the integration. The semantics that
promote the automation is the key to such in-
tegration’s flexibility and reliability.

To demonstrate the value of semantics for ser-
vice descriptions as well as automation in ser-
vice integration, we’re working on the Semantic
Web Services Challenge (www.sws-challenge.
org). The SWS Challenge aims to establish a
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common understanding, evaluation scheme,
and testbed to compare and classify various
approaches to services integration in terms of
their abilities as well as their shortcomings in
real-world settings. Although a world full of
services doesn’t exist yet, one-click integra-
tion will be desirable. The SESA and its re-
lated activities enable such a world as well as
such integration.

Discuss this article at http://blog.vitvar.com/SESA.
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