
0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E 	 November/December 2008 I E E E S o f t w a r e � 71

focus 1opp or t un i s t i c s o f t war e s y s t em s deve l opm en t

Monoliths to Mashups:
Increasing Opportunistic Assets

M. Todd Gamble and Rose Gamble, University of Tulsa

Increasing integration
services can improve
opportunistic
development by
presenting monolith
applications
as opportunities
for mashups.

O
pportunities are available resources that yield desired results. Their suitability
depends on who seizes the opportunity and the context for its use. Opportu-

nistic development relies on the availability of reusable software components
to produce hybrid applications that opportunistically join such components to

meet immediate functional or content needs.1 Availability and connectivity are key quali-
ties of an opportunity.2 Situational assessment determines when the best available, most
deployable opportunities exist within time and resource constraints.3

This article examines opportunistic develop-
ment from an enterprise perspective in which
the reusable resources are called opportunis-
tic assets. We define fitness criteria for classify-
ing resources according to their potential as op-
portunistic assets. We consider the roles of the
monolith and the mashup in opportunistic devel-
opment. Monoliths are large, self-contained soft-
ware applications that control significant data
and processing components. Mashups are Web
application hybrids that consume opportunistic
assets. Developers of end-user mashups choose
APIs from multiple providers to weave a new ap-
plication, joining content and functionality. The
more opportunistic assets there are, the faster
the resulting application comes together. Often,
providers expose services as part of the growing
trend of modern monoliths, scalable software
applications from Internet companies that offer
a wide range of useful services. Unfortunately,
the range of reuse opportunities doesn’t extend
to enterprise mashups, where hybrid-application
development relies on legacy monoliths of indus-

try IT for robust functions that ensure quality of
service (QoS) in the resulting software.

Monoliths produce opportunistic assets when
they expose key functions that are easy to mash.
Reusing legacy monoliths poses integration prob-
lems, however. More than a surface interoperability
analysis is required, leading to longer development
times and missed opportunities when enterprise
mashups are evaluated against the quick deploy-
ment and innovative outcomes of end-user mash-
ups. To reduce this integration barrier, we advocate
elevating integration strategies to first-class oppor-
tunistic assets. These assets can present monolith
applications as opportunities for mashups.

Opportunistic Assets
To reuse existing software artifacts (components,
services, data, and so on), developers must deter-
mine which features are most important in a given
situation. This assessment is per reuse artifact
type and within a window of opportunity. It de-
termines when an artifact is an opportunistic as-
set. Concerns beyond functionality come into play,

72	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

influencing whether a particular artifact can com-
plete a portion of the solution architecture. For ex-
ample, security, robustness, and scaling might be
of less concern when the priority is to deliver some-
thing immediately.

We identify four criteria by which a developer
evaluates a potential opportunistic asset:

Functional fitness. Does the asset perform the
actions that the application requires? Does it
provide the necessary data, at the right level of
granularity? Does it offer multiple functions
that are rich and robust?
QoS fitness. Does the asset provide acceptable
QoS? Is reusing the asset legal, safe, and secure?
Does a reputable API provider offer this asset?
Does the asset enhance the resulting applica-
tion’s value?
Contextual fitness. Is there developer bias to-
ward service choices, vendors, or technologies?
Can the asset be reused within the time frame
of the opportunity?
Technical fitness. Is integration possible with
readily available resources? Is the functionality
or data available with the right type of inter-
face? Was the asset implemented with technolo-
gies that are compatible with the development
environment? Are there important interoper-
ability issues beyond the service’s invocation
(for example, data semantics or interaction
protocols)?

High functional fitness is a clear indicator for
reuse consideration. However, an application can
have only medium functional fitness (most results
are useful) yet still attain opportunistic status by ex-
celling in other fitness criteria—in other words, it is
“good enough” overall. Low functional fitness gen-
erally discounts an application.

Many concerns relate to the reuse of stable sys-
tems that provide the desired QoS fitness. If a de-
veloper bases an opportunity’s definition on longer-
term goals, then more stable services—to the point
of being monolithic—can influence the selection
among available choices.4 QoS fitness also indicates
the developer’s comfort in using the application.
High QoS fitness is associated with trustworthy re-
sults, usable in many situations. Questionable per-
formance, accountability issues, and security con-
cerns can lower QoS fitness.5

Contextual fitness encompasses developer
bias and the situation surrounding opportunis-
tic development. Contextual fitness is high if
the starting point for reuse examines software
components produced from prior development ef-

■

■

■

■

forts. The greater the developer’s experience and
access to information about reusable software,
the broader the set of alternatives considered as
opportunities. Context also considers the time al-
lowed to search for opportunities. Contextual fit-
ness is lower if identification and assessment ap-
pear too time-consuming.

Opportunistic development depends greatly on
technical fitness, which can be the deciding factor
in reuse. If the asset doesn’t expose the proper in-
terface for composition, then its technical fitness is
low. Low technical fitness implies that further inves-
tigation of the asset is necessary to determine how
integration should proceed. For most situations, if
significant integration is necessary, developers will
eliminate that asset as an opportunity. Quick and
easy integration increases technical fitness.

Legacy and Modern Monoliths
Monoliths can produce opportunistic assets if they
can expose key functions that are easy to mash.
Developers often arduously combine monolith in-
terfaces, logical functions, and data to meet user
needs and deploy them to a single, homogenous
platform.

Legacy Monoliths
Long-standing proprietary enterprise systems, ei-
ther procured from software vendors such as SAP
and Oracle or developed in-house, are called leg-
acy monoliths. They usually represent not only the
great majority of existing software assets but also
the embedded business processes and key data for
an organization’s core functions. These systems are
critical to most companies’ ongoing health.

Legacy monoliths often have high functional
fitness. In fact, they might be the only place where
needed functionality exists. However, identify-
ing desired functionality and separating it from
these systems’ other components could be difficult.
Functions and data aren’t compartmentalized, re-
quiring many compensating actions and special
cases, with point-to-point links across systems.
This situation results in accidentally complex ar-
chitectures. By definition, legacy monoliths have
high QoS fitness, yet they may have considerably
low technical fitness. The many protocols used for
their primary interfaces are often not conducive to
interoperability. These might include batch reports
or user-level textual or graphical interfaces, but
few true APIs. Finally, if resolving availability and
integration issues in a timely manner isn’t possible,
contextual fitness suffers.

So, although new applications with substantial
QoS requirements can benefit from incorporating

Legacy monoliths
often have

high functional
fitness. In fact,
they might be
the only place
where needed
functionality

exists.

	 November/December 2008 I E E E S o f t w a r e � 73

legacy monolith capabilities, these monoliths’ func-
tions are often opaque to opportunistic develop-
ment. Because of these limitations, developers will
overlook legacy monolith applications or eliminate
them from consideration as opportunistic assets.

Modern Monoliths
These monoliths serve as business platforms for
Internet companies, such as Google and Amazon,
which are enormously scalable, proprietary systems
providing reusable services to consumers. Unlike
legacy monoliths, which were either built or bought
by a single organization and implemented in a pri-
vate infrastructure, modern monoliths exist within
the “cloud” of the public Internet, with their func-
tions available as software services. Driven by simi-
lar concerns as that of proprietary software ven-
dors, Internet companies build monoliths to protect
their intellectual property and as ongoing platforms
for stable value creation by continually enticing new
users while retaining existing ones. The business
model is to create desirable opportunities for reus-
ing their platform through APIs and user interfaces.
Modern monoliths determine which services to of-
fer to the market.

Built from the ground up, modern monoliths
provide modular interfaces for opportunistic re-
use, elevating their functional fitness. They set a
standard for service exposure and ease in combin-
ing services. For example, Amazon has a rich user-
level interface for searching, shopping, reviewing,
and so on. It also supplies interfaces to program-
mers so that they can develop their own presence
as sellers. Similarly, in addition to providing Web-
based search, email, and messaging, Google en-

ables reuse of functions such as maps and searches
through APIs. Thus, technical fitness is high. With
such enormous user populations, modern monolith
companies can’t anticipate the uses of their APIs.
Release cycles are often continuous, with new ad-
ditions added daily. Quality is “best effort,” poten-
tially resulting in low QoS fitness. Still, functional
and technical considerations override subpar QoS
fitness in a given context. Table 1 summarizes the
distinctions between legacy and modern monoliths.

Mashups
Mashups join together the outputs of two or more
applications into something new, making them con-
sumers of opportunistic assets. The goal is to lever-
age someone else’s investment to speedily devise a
development solution for a problem at hand.2,6

Modern monoliths such as those developed
by Yahoo (http://developer.yahoo.com), Amazon
(http://aws.amazon.com), and Google (http://code.
google.com) offer mashup libraries. These libraries
facilitate the formation of mashups within a Web
browser by programming with scripts or incorpo-
rating other active content. Similar constructions
within a Web server can speed up mashup devel-
opment there as well. Reusable assets are more
valuable if they represent stable subassemblies that
otherwise would require substantial effort and re-
sources to reproduce.7 A mashup relies on these
subassemblies, which are essentially those services
that monoliths expose.

End-User Mashups
These mashups use lightweight, ad hoc integra-
tions to quickly produce applications. Because

Table 1
Legacy versus modern monoliths

Comparators Legacy monoliths Modern monoliths

APIs Closed or limited APIs Built with exposed APIs, promote reuse

Organizational
use

Used by one organization (commercial off-the-shelf, free and
open source software, or custom)—private infrastructure

Used by many organizations and individual users—
shared infrastructure

Integration Require heavy, complex integration Support only lightweight integration

Reuse model Reuse by copy with license, pay for license Reuse by service, software-as-a-service model,
pay for use (or supported via advertising)

Web technology Pre-Web or Web 1.0 Web 2.0 and beyond (for instance, the Semantic Web)

Quality of service Service-level agreements, defined QoS, structured releases Nascent, best-effort service levels; perpetual beta
or continuous release

Customization Customizable per copy but dependent on specialized
programming skills

Standardized for all users, customizable via
configuration or user programming

Deployment Deployed on private networks Deployed on public networks

74	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

development is simplistic, end users rely on in-
terfaces compatible with APIs that support Web
services, Web content syndication, and social net-
working to create and share composed but some-
what limited content and minimal functionality.
The resulting mashups generally offer limited QoS
because it is not an expected development consid-
eration.8 End-user mashups appeal to users and de-
veloper enthusiasts who want the freedom to cre-
ate their own applications quickly. These mashups
tend to assume there’s an underlying functional-
programming model, invoking remote services as
needed and without concern for side effects.9 An
example mashup composes Google maps, event lo-
cators, and a weather feed for information on road-
trip activities. Another example links multiple tools
(such as dictionaries, a thesaurus, and Wikipedia) to
provide a comprehensive word analysis from a sin-
gle query. The immediacy of mashing can be con-
trasted with its limited quality, its superficial inte-
gration, and the temporary nature of its results.8,9

Web applications consumed by end-user mash-
ups meet the opportunistic-asset fitness criteria in
different ways. Functional fitness should be satis-
factory but not necessarily perfect. Technical fit-
ness is the most important, owing mainly to both
developer inexperience with programmatic integra-
tion and the expediency associated with mashup
construction. The design decision to use Web 2.0
technologies both contributes to these applications’
quick deployment success and simplicity and reflects
the lack of sophistication in their end-user develop-
ment.10 If users can’t invoke a service because it
lacks technical fitness, they simply find another one.
Contextual fitness follows similar reasoning. These
assets generally have low QoS fitness because there
is less concern for longevity, robustness, and service
availability. So, timeliness of deployment and ease
of connection override factors such as security and
performance.

Enterprise Mashups
Developers of enterprise mashups seek the ease of
creating end-user mashups when combining mod-
ern services with internal legacy monolith functions
to create higher-utility applications.4 Enterprise
mashups are an extension of technologies compris-
ing enterprise application integration (EAI), extract-
transform-load (ETL), and enterprise information
integration (EII). Enterprises struggle with oppor-
tunistic development. Because of interoperability
problems, the legacy monoliths these enterprises de-
pend on aren’t fit to be opportunistic assets.

One example of a simple enterprise mashup
combines information about the physical location

of a company’s retail outlets with a Google map
and displays the results for reference by customer
service agents or a customer self-service Web site.11
This mashup fulfills the “find a store near you”
function to tie online sales with brick-and-mortar
stores in a consumer’s neighborhood. Other uses re-
side inside the enterprise to extend internal applica-
tions. For example, the enterprise can mash Inter-
net-based standardized geographic (or geocoding)
data with internal logistics information to precisely
locate product shipments or track delivery vehicles.

Legacy monoliths are fertile ground for service-
enablement efforts to create opportunities for enter-
prise mashups. Yet, three main issues undermine
their fitness. First, the application’s internal func-
tions might not be exposed to the highest-level in-
terface. The enterprise mashup developer must then
uncover hidden information that only an experi-
enced integrator would know how to manipulate.

Second, a decade or more of integration at-
tempts at many corporations have shown that
service enablement is a difficult, expensive busi-
ness. Platforms or software stacks might dictate
interoperability and reuse constraints that can only
be understood with analysis that isn’t “quick and
dirty.” Early instances of tools provided limited
support of technology adapters for integration to
legacy systems (see the “Legacy System Integra-
tion” sidebar). Service-oriented architectures still
largely require heavyweight, complex integration
solutions. In many cases, it simply takes too long
to service-enable legacy monoliths to consider them
opportunities.

The third issue involves maintaining the ex-
pected QoS throughout the hybrid application. For
example, mashups can challenge existing security
models by directly linking with the “back office”
represented by existing legacy monoliths, thus by-
passing many layers of security and quality controls
in existing systems and procedures. These consid-
erations force the enterprise to balance the trade-
offs among opportunistic development techniques,
including when and how to integrate expediently
with some risk to, or compromise in, the quality of
the resulting mashup.

Table 2 on page 76 summarizes the relation-
ship between sample mashup types and EAIs. Data
mashups provide content filtering, aggregation,
and other data transformations to present reusable
output as opportunistic assets with high functional
and technical fitness, but with low QoS due to data
quality and security issues. Contextual fitness is rel-
ative to how and where the data is needed. Process
mashups are Web service orchestrations that can
produce opportunistic assets, including composite

Mashups
join together
the outputs

of two or more
applications

into something
new, making

them
consumers of
opportunistic

assets.

	 November/December 2008 I E E E S o f t w a r e � 75

	 Legacy System Integration
In Figure A, integration zones appear between three inter-
face classes of Web 2.0 (APIs), Web 1.0 (Web sites), and
pre-Web technologies (proprietary APIs and pre-Web tech-
nologies such as message queuing). The figure also shows
tools for implementing connectors in each zone. Mashup
tools (both client and Web based) represent the state of
the art in opportunistic development, where even novices
can create applications on demand. Point-and-click, simple
forms, or copy-and-paste of small code snippets complete a
mashup. Reaching this level requires service-enabling (pro-
viding connectors to add APIs) existing capabilities buried in
lower layers to produce opportunistic assets. Some capabili-
ties could require work at successive levels (a chain of con-
nectors) to be viable for mashup reuse.

Mashup servers provide more tooling—particularly state
maintenance (for example, caching)—coordination, deeper
data integration, and broader sets of prepackaged connec-
tors than consumer mashup tools. Currently, mashup servers
include commercial products and research or alpha versions,
such as IBM’s Damia server, that are accessible to professional
developers. However, such servers are moving toward im-
proved usability for sophisticated end users (for example, busi-
ness developers), thanks to model-driven interfaces or simple
scripting, which will eventually support full point-and-click
mechanisms. Mashup servers include governance capabilities
to control how to construct mashups and which services they
use to address enterprise security and efficiency concerns.

An established approach to enterprise application inte-
gration (EAI) is to use integration servers as intermediaries

between newer applications and legacy monoliths. Such in-
termediaries provide a platform to overcome complex, isolat-
ing barriers to integration such as architectural mismatches
and business process incompatibilities. EAI embeds the in-
tegration services in enterprise service bus implementations.
Integration servers support heavyweight integration styles
that generally require specialized developer skills. These
styles include extract-transform-load (ETL) batch operations
for data, and enterprise information integration (EII) for con-
structing integrations across multiple databases so that they
appear to be a single database.

Legacy
monolith

(Web)

Legacy
monolith

(pre-Web)

Mashup
application

O
pp

or
tu

ni
ty

 in
cr

ea
se

s

In
te

gr
at

io
n

ef
fo

rt
 in

cr
ea

se
s

Integration
servers

Mashup
tools

Integration
zones

Pr
of

es
si

on
al

 d
ev

el
op

er
s

So
ph

is
tic

at
ed

 e
nd

 u
se

rs

En
d

us
er

s

Developer
roles

across
zones

Web services, databases,
Web clipping and scraping,

Excel, XML

Web services,
RSS, Atom, XML

Message queuing,
object request brokers,

proprietary APIs,
structured files

Pre-Web

Web 1.0

Web 2.0
Modern

monolith

Mashup
servers

Additional Resources

“Damia: A Data Mashup Fabric for Intranet Applications,” M. Altinel
et al., Proc. 33rd Int’l Conf. Very Large Data Bases (VLDB 07),
VLDB Endowment, 2007, pp. 1370–1373.

“End-User Development: New Challenges for Service Oriented Ar
chitectures,” C. Dörner et al., Proc. 4th Int’l Workshop End-User
Software Eng. (Weuse 08), ACM Press, 2008, pp. 71–75.

Enterprise Integration Patterns: Designing, Building and Deploying
Messaging Solutions, G. Holpe and B. Woolf, Addison-Wesley,
2003.

“Intel Mash Maker: Join the Web,” R. Ennals et al., ACM Sigmod
Record, vol. 36, no. 4, 2007, pp. 27–33.

“Towards Service Composition Based on Mashup,” X. Liu et al.,
Proc. IEEE Congress on Services, IEEE Press, 2007, pp. 332–339.

“Understanding the Three E’s of Integration EAI, EII and ETL,” C.
Imhoff, DMReview.com, Apr. 2005, www.dmreview.com/issues/
20050401/1023893-1.html.

Figure A. Model for layered integration tools. The strata of system interfaces coincides with the evolution of
technologies over time, each supporting its own integration capabilities and challenges.

76	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

Web services. Process mashups have similar fitness
characteristics to data mashups. Both can introduce
a problem of governance over their reusable assets
because data and services from third parties could
be involved in the mashup but not transparent. Al-
though EAI has similar inputs to enterprise mash-
ups and outputs that are potentially reusable, they
might not be mashable.

Using Connectors to
Increase Opportunistic Assets
Enterprise mashup developers want the speed of
delivery associated with end-user mashups, yet
they expect better quality and reliability. Inte-
grating monolith applications can be a barrier to
achieving robustness within time bounds and re-
source availability. The required effort to apply
an integration approach must be comparable to
that of reusing an existing asset. When QoS needs
are limited, the integration should take the quick-
est route to deployment. Many end-user mashups
need only a trial-and-error approach to composi-
tion. However, enterprise mashups require more
effort to control QoS fitness for potential oppor-
tunistic assets.

Interoperability analysis to resolve compo-
nent integration problems of hybrid systems has
produced several integration strategies, includ-
ing screen scraping of a Web page for a mashup,

architecture connectors,12 integration patterns,13
and Web service orchestrations. We generically call
these integration strategies connectors. Interfaces
are often realized through connectors. Hence, in-
creasing a component’s technical fitness is the pri-
mary reason for introducing a connector.

In essence, reuse opportunities can be broad-
ened through two development techniques. First,
application providers write and directly expose
their services for potential integration. Second, in-
tegrators produce and publish connectors that tar-
get more existing applications. Together, these two
techniques yield the benefits of increasing opportu-
nistic assets for use in enterprise mashups. The first
opens the possibility of coupling a monolith appli-
cation with a customized connector to form a com-
posite opportunistic asset. The second promotes
connectors themselves as opportunistic assets, of-
fering them for reuse as needed.

Exposing Monoliths
To achieve the expectations of enterprise mash-
ups, legacy monolith applications must migrate
toward the offering style of modern monoliths.
This migration requires legacy monoliths to be-
come a delivery platform for usable services that
retain functional and quality standards in many
contexts. Most tools supporting opportunistic
development require presenting assets as services

Table 2
Sample mashup types

Opportunistic
development styles Inputs Outputs Purpose Examples

End-user mashups RSS, Atom,
XML, Web
services

User interfaces Support Web services,
Web content syndication,
or social networking

Microsoft Popfly (www.popfly.com),
IBM QEDWiki (http://services.
alphaworks.ibm.com/qedwiki)

Data mashups RSS, Atom,
XML, spread-
sheets

RSS, Atom, XML,
Web services

Support content filtering,
aggregation, or other
data transformations

Yahoo Pipes (http://pipes.yahoo.
com), RSSBus (www.rssbus.com)

Process mashups Web services,
databases

Web services, RSS,
Atom, portal and applica-
tion server components
(portlets, servelets)

Produce process-
oriented mashups,
orchestrate multiple
Web services

Serena (www.serena.com/mashups),
WS02 Mashup Server (http://wso2.
org/projects/mashup)

Enterprise mashups Public or
private open
interfaces

Web services, RSS,
Atom, XML, GUIs

Create higher-utility
applications by compos-
ing existing systems

JackBe (www.jackbe.com),
Kapow Technologies
(www.kapowtech.com)

Enterprise application
integration

Private,
proprietary
interfaces—
files, messages,
databases

Files, database updates,
invocable APIs,
messages

Interconnect private,
possibly monolithic
applications

IBM WebSphere Enterprise Service
Bus (www.ibm.com/software/
integration/wsesb), BEA (http://
dev2dev.bea.com/alservicebus),
Progress Sonic Enterprise Service
Bus (www.sonicsoftware.com/
products/sonic_esb)

	 November/December 2008 I E E E S o f t w a r e � 77

through some API that is compatible with the de-
velopment environment’s technology. To increase
transparency in service offerings, the mashup de-
veloper must work with monolith maintainers to
determine when a monolith’s composite interface
is good enough to avoid delving into a partici-
pant system interface that the larger application
obscures. As these interfaces are made accessible,
their availability to expose underlying applica-
tions (in essence, breaking down the monolith) as
opportunistic assets can be evaluated.

Unfortunately, legacy monolith applications
could be inadequate for integration if their internal
structure or existing interfaces are poorly designed
and documented. For example, some functions
might interact only with trusted-partner systems.
Exposing these internal functions could require a
chain of connectors crossing different technology
eras. In this case, some lower-level systems would
receive an interface “makeover” by being wrapped
with several Web services to expose the systems’
functionality. Developers must fashion and pattern
connectors to aid this exposure through APIs that
provide surface-level integration while maintain-
ing information quality. Although the associated
connectors may change when the asset is reused
in a different opportunistic setting, the composi-
tion of connector and monolith should appear as a
single opportunistic asset.

Returning to Fitness
Connectors must modify or enable interfaces to
existing component capabilities that increase the
component’s fitness for achieving opportunistic-
asset status. To become opportunistic assets them-
selves, connectors must act as reusable intermedi-
aries in multiple settings in order to attain a high
functional fitness. Technical fitness addresses the
simplicity of using the connector—that is, whether
employing connectors requires the same or less ef-
fort as comparable mashup opportunities. Simi-
lar to components that are opportunistic assets,
connectors require accompanying metadata and
cataloging to express their type, style, platform,
function, and so on, for contextual fitness. To
achieve high QoS fitness, connectors must main-
tain the interaction expectations among related
components.

Integration tools can produce versatile forms of
connectors. However, their capabilities and con-
figurations do not necessarily resolve the problem
of increasing opportunistic assets. To clarify their
contribution, we evaluate integration tools (see the
“Legacy System Integration” sidebar) for fitness as
it relates to implementing connector technologies,

as Figure 1 shows. This overlay view illustrates
where each tool and its corresponding integration
approaches have strengths for addressing fitness
gaps. Integration servers show their heritage of
demanding high degrees of QoS and technical fit-
ness. The narrow view of mashup tools is shown
by their high contextual fitness but low rating in
all other areas. Mashup libraries are a bit more
functional, but they take a “some-assembly-re-
quired” approach and therefore have a lower con-
textual fitness. Finally, enterprise mashup servers
seek to be all things to all people, and they end
up with moderate ratings in all fitness areas. They
may be good enough for many uses, but they will
not excel in any.

Enhancing the Connector
Using connectors as services initiates the creation
of opportunistic assets specifically for timely inte-
gration within mashups. Developers find and reuse
these assets, which might take the form of purely
gluing tools or intermediate, completed integra-
tions from prior work.12 As opportunistic assets,
connectors will be qualified by their ability to be
coupled with an application according to their fit-
ness criteria.

For example, Yahoo Pipes (http://pipes.yahoo.
com/pipes/docs) can create integrations that serve
as components within a mashup (or other Pipes
integrations). Yahoo Pipes creates a simple envi-
ronment for connector construction (similar to
Unix pipes, from which it derives its name) that
connects multiple data sources and services into
a pipeline of functions. These functions perform

Figure 1. The fitness
of available integration
tools. The labels
for the three types
of developers apply
to the context levels,
from broad (an
enterprise) to specific
(an individual user).

Technical
fitness

Professional developers

Business developers or
sophisticated end users

End-user developers

Functional
fitness

Quality-of-
service fitness

Contextual
fitness

Integration servers
Mashup servers
Mashup tools
Mashup libraries

78	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

actions such as sorting, filtering, and transforma-
tion. One transformation is interface conversion.
For example, a Pipes program (or simply pipes)
can convert a simple text-delimited file (such as a
spreadsheet) into an XML data format. Pipes op-
erate over modules, each representing some pre-
defined functionality within a palette that Yahoo
provides; these modules can also be other pipes.
This arrangement sets the stage for reuse of earlier
integrations. In addition, given Yahoo’s simple yet
powerful interface, the design paradigm (the pipe
and filter pattern) is both familiar to professional
developers and easily understood by end-user de-
velopers. These properties yield a higher technical
fitness over functional and contextual fitness.

Composite applications in other domains explore
connector concepts with similar fitness criteria.
Fuselets are lightweight processes that form direct
connections between components on a publish-
subscribe-query bus to execute joint tasks more
quickly.14 Contract templates are XML encodings
instantiated so that simulation components can
communicate to an infrastructure that directs user
experimentation to the appropriate component (or
combination of components), to produce the desired
result.15 In both cases, metadata determines which
actions to invoke and in what order, as well as how
the resulting system interprets the connector’s in-
stantiation. Users, developers, and integrators must
migrate connectors to generic service representa-
tions that better meet functional and QoS fitness
expectations and make them available as opportu-
nistic assets for components in multiple contexts.

As part of the objective to increase opportu-
nistic assets, we identify three prospective strat-
egies that introduce connectors as services. The
first strategy is to offer easily customizable inter-
faces to work with broad classes of application ar-
chitectures, interfaces, functions, and data. This
strategy broadens usability, loosening the fit nec-
essary for any given need. Carefully constructed
Web services (for example, Amazon’s e-commerce
APIs) satisfy this approach, as do Web widgets
(for instance, Google AdSense). Web widgets
make simple code available to cut and paste into
Web pages.

The second strategy bundles known patterns
and integration enablers that cohesively perform a
common integration strategy. The bundle can pro-
duce superconnector services that allow uninhib-
ited interaction among various components yet re-
main decoupled for the inevitable evolution of the
integration as new opportunities arise. Bundling
is appropriate for integration server and mashup
server implementations whose library of connec-

tors can be packaged in a single implementation
and development environment.

The final strategy exposes the packaged con-
nector interface to Web 2.0 technology.10 This ap-
proach is used in mashup servers and mashup tools
hosted in the containers of mashup platforms such
as Google Gadgets, which execute only within
other Google applications.

The downside of using connectors as services is
that some end-user programming might be neces-
sary to take full advantage of an opportunity. Al-
though patterns, templates, and partial code (simi-
lar to what Pipes, fuselets, and contract templates
provide) provide guidance, initially constructing
a mashup can take more time. However, the pro-
gramming required should not prevent end users
from completing them, and the final product value
will be worth the extra effort. As tools mature, rule-
or metadata-driven customization will naturally
replace programming, letting all mashup develop-
ers work at higher abstraction levels and enabling
point-and-click mashup construction.

Figure 1 shows that a significant lever in mak-
ing connectors (and the tools that use them) more
fit as opportunistic assets that are attractive to the
mashup developer is to increase contextual fitness.
As opportunistic developers become familiar with
tools such as Yahoo Pipes, their view of “opportu-
nity” will be altered. For every new occurrence of
a problem, they will consider not only those ser-
vices available but also those that might be acces-
sible through a Pipes construction. The reason for
this transition is that they will now view the capa-
bilities of Pipes-based development to be compat-
ible with their view of opportunistic development.
Integration is quick and easily accessible.

T o be successful, enterprise mashups must
realize the benefits already touted by end-
user mashups. Most important, their

implementation must be fast enough to achieve
results within the window of opportunity given.
However, unlike end-user mashups, they must also
derive their value from legacy monoliths. Over-
coming the challenges and complexities of legacy
monolith interoperability will require addressing
the technical shortcomings while incorporating the
benefits of end-user mashup design approaches.
Connectors must be mashable in the same context
as the applications being reused. Robust and flex-
ible connectors could be combined with legacy ap-
plications to create opportunistic assets or serve as
independent services to help opportunistic devel-
opment flourish.

To be successful,
enterprise

mashups must
realize the

benefits already
touted by end-
user mashups.

	 November/December 2008 I E E E S o f t w a r e � 79

References
	 1.	 L. Cherbakov et al., “Changing the Corporate IT

Development Model: Tapping the Power of Grassroots
Computing,” IBM Systems J., vol. 46, no. 4, 2007, pp.
743–762.

	 2.	 J. Brandt et al., “Opportunistic Programming: How
Rapid Ideation and Prototyping Occur in Practice,”
Proc. 4th Int’l Workshop End-User Software Eng.
(Weuse 08), ACM Press, 2008, pp. 1–5.

	 3.	 E.M. Maximilien, R. Ajith, and T. Stefan, “Swashup:
Situational Web Applications Mashups,” Proc. Object-
Oriented Programming Systems, Languages, and Ap-
plications (Oopsla 07), ACM Press, 2007, pp. 797–798.

	 4.	 M.T. Gamble and R.F. Gamble, “Isolation in Design
Reuse,” Software Process: Improvement and Practice,
vol. 13, no. 2, 2008, pp. 145–156.

	 5.	 J. Zou and C.J. Pavlovski, “Towards Accountable
Enterprise Mashup Services,” Proc. IEEE Int’l Conf.
E-business Eng. (Ecebe 07), IEEE Press, 2007, pp.
205–212.

	 6.	 B. Hartmann, S. Doorley, and S.R. Klemmer, “Hack-
ing, Mashing, Gluing: Understanding Opportunistic
Design,” IEEE Pervasive Computing, vol. 7, no. 3,
2008, pp. 46–54.

	 7.	 H.A. Simon, The Sciences of the Artificial, MIT Press,
1996.

	 8.	 J. Hong and J. Wong, “Marmite: End-User Program-
ming for the Web,” Proc. Conf. Human Factors in
Computing Systems (CHI 06), ACM Press, 2006, pp.
1541–1546.

	 9.	 R. Ennals and D. Gay, “User-Friendly Functional Pro-
gramming for Web Mashups,” Proc. ACM Sigplan Int’l
Conf. Functional Programming (ICFP 07), ACM Press,
2007, pp. 223–234.

	10.	 T. O’Reilly, “What Is Web 2.0: Design Patterns and
Business Models for the Next Generation of Software,”
O’Reilly Network, www.oreillynet.com/lpt/a/6228.

	11.	 A. Jhingran, “Enterprise Information Mashups: Inte-
grating Information, Simply,” Proc. 32nd Int’l Conf.
Very Large Data Bases (VLDB 06), VLDB Endowment,
2006, pp. 3–4.

	12.	 N.R. Mehta, N. Medvidovic, and S. Phadke, “Towards
a Taxonomy of Software Connectors,” Proc. 22nd Int’l
Conf. Software Eng. (ICSE 00), ACM Press, 2000, pp.
178–187.

	13.	 F. Buschmann, K. Henney, and D. Schmidt, Pattern-
Oriented Software Architecture: A Pattern Language
for Distributed Computing, vol. 4, John Wiley & Sons,
2007.

	14.	 N. Ahmed and J.R. Milligan, “Fuselets: Lightweight
Applications for Information Manipulation,” Proc.
SPIE, vol. 5820, 2005, pp. 267–276.

	15.	 R. Gamble et al., “FACT: A Fusion Architecture with
Contract Templates for Semantic and Syntactic Integra-
tion,” Proc. IEEE Int’l Conf. Information Reuse and
Integration (IRI 08), IEEE Press, 2008, pp. 380–385.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
M. Todd Gamble is a visiting researcher at the University of Tulsa and a member of the technical staff at Verizon
Business. His research interests include large-scale systems integration, IT infrastructure strategy, and management
platforms for converged services. Gamble received his PhD in computer science from the University of Tulsa. He is a
member of the IEEE Computer Society and the ACM. Contact him at todd.gamble@computer.org.

Rose Gamble is a professor of computer science at the University of Tulsa. Her research interests include soft-
ware interoperability, dynamically reconfigurable workflows, and security policy modeling and composition. Gamble
received her DSc in computer science from Washington University in St. Louis. She is a member of the IEEE Computer
Society. Contact her at gamble@utulsa.edu.

Engineering and Applying the Internet

IEEE Internet Computing reports emerging
tools, technologies, and applications
implemented through the Internet to support
a worldwide computing environment.

In upcoming issues, we’ll look at:

• Data Stream Management
• RFID Software and Systems
• Dependable Service-Oriented Computing
• IPTV
• and more!

www.computer.org/

