
focus

18	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

gue s t e d i t o r s ’ i n t r o duc t i on

Developing
Scientific Software
Judith Segal, Open
University

Chris Morris,
Science and Technology
Facilities Council H

ow can scientific-software development be improved? Exploring this
question requires investigations, solidly grounded in practice, into both
the particular characteristics of scientific-software development and po-
tentially relevant software engineering techniques, methods, and tools.

That is our goal in this special issue.

Important research in this area, con-
ducted under the aegis of the Darpa High
Productivity Computer Systems program
(www.highproductivity.org), has already
appeared in the literature.1 However, not
all scientific computing is high-performance
computing (HPC)—the variety of scientific
software is huge. Such software might in-
deed be complex simulation software devel-
oped and running on a high-performance
computer, but it might also be software
developed on a PC for embedding into in-
struments; for manipulating, analyzing, or
visualizing data; or for orchestrating work-
flows. We hope this special issue provides
some flavor of that variety.

What makes scientific
software development different
Developing scientific software is fundamen-
tally different from developing commercial

software. Most software developers have
some idea of what a human-resources or ac-
counting package should do, and they feel
they can understand (perhaps with some ef-
fort) such packages’ requirements. But do
you understand, for example, how genomic
DNA gets transformed into protein crystals?
Do you comprehend the intricacies of fluid
dynamics? Or how to solve 20 simultaneous
partial differential equations? A scientist
(domain expert) must be heavily involved
in scientific-software development—the av-
erage developer just doesn’t understand the
application domain. For this reason, the sci-
entist often is the developer.

Another difference has to do with re-
quirements. HR people and accountants
broadly know what they want: they might
well change their mind as development
progresses, but they basically understand
their domain. For scientists, this might

not be the case. The software’s purpose
is often to improve domain understand-
ing—for example, by running simulations.
Full up-front requirement specifications
are impossible: requirements emerge as the
software and the concomitant understand-
ing of the domain progress. Related to the
users’ incomplete understanding of the do-
main is the additional problem of validat-
ing scientific software. Scientists often lack
“test oracles”—real data against which
they can compare their software’s out-
put. Simulation software is a case in point:
the science is too complex, too large, too
small, too dangerous, or too expensive to
explore in the real world.

Field studies of scientists developing
their own software have revealed the model
of software development shown in Fig-
ure 1.2,3 No software engineering course
would teach this model, but it’s surpris-

	 July/August 2008 I E E E S o f t w a r e � 19

ingly prevalent in scientific-software development.
Other field studies have demonstrated that ef-

forts to impose software engineering techniques
on scientists are beset with problems.2,4 Figure 2
illustrates a clash between the software engineers,
who expect an up-front specification of require-
ments, and the scientists, who expect requirements
to emerge.3

Three themes
We were told that we received 20 percent more
submissions than an average IEEE Software spe-
cial issue. We were happy to have the problem of
too many good articles to fit into a single issue. We
solved it by organizing the accepted articles into
three themes: those in two themes appear in this is-
sue; those in the third will appear early next year.

Characterizations
The first theme concerns the characterization of sci-
entific software and scientific-software developers.
Rebecca Sanders and Diane Kelly describe a quali-
tative study to explore scientists’ perceptions of risk
and the management of risk in the software they
develop. Victor R. Basili, Jeffrey C. Carver, Dan-
iela Cruzes, Lorin M. Hochstein, Jeffrey K. Hol-
lingsworth, Forrest Shull, and Marvin V. Zelkowitz
describe the HPC community’s characteristics as
identified in their case studies and discuss which es-
tablished software engineering techniques and tools
might benefit this community. Finally, David Wool-
lard, Nenad Medvidovic, Yolanda Gil, and Chris A.
Mattmann classify workflow systems according to
their focus: discovery, production, or distribution.

War stories
The second theme might be called “war stories.”
We received many case studies of actual scientific-
software development projects as told by the scien-
tist developers (not regular contributors to IEEE
Software, we think). Alas, we rejected nearly all
of these. Some described software, often exciting,
that the author had developed. However, we re-
jected these articles because we were interested in
the process, not the product, of scientific-software
development. Other submissions, more problemati-
cal to us as editors, were thoughtful reflections on a
particular project but made little or no attempt to
discuss how relevant these reflections might be to
other projects. We thus faced situations in which
one reviewer working in the same scientific area as
the submission’s authors said, “This is brilliant,”
whereas other reviewers working in different areas
said, “How is this relevant to me?”

Unsurprisingly, reviewers clashed on other issues,

too. We assigned each submission at least three re-
viewers, at least one of whom was a practitioner of
scientific-software development and one of whom
was a software engineering academic (of course,
these categories of practitioner and academic aren’t
always clear-cut). Software engineering academics
sometimes said of a practitioner case study, “The
authors don’t know the literature.” Our sympathies
lay toward the authors in such cases. There are in-
teresting issues to explore as to why developers of
scientific software, or indeed software in any appli-
cation domain, don’t know the literature that soft-
ware engineering academics expect them to know.
Is this, in fact, the academic community’s fault in
that it fails to tackle issues that truly concern prac-
titioners? Or do software engineering academics
formulate their arguments so as to convince their
peers, without concern for how such arguments im-
pact practitioners? This is an important discussion,
we feel, but inappropriate to pursue here.

In the end, three case studies made the final cut
because we consider them reflective of development
practice and of interest to IEEE Software’s general

No

Vague idea
of what

is needed

Develop piece
of software

Um—is this
what I want?

Does it seem
to do what I expect?

Looks
like it.

No

Yes

Modify/extend

Decide “It’ll do.”

Figure 1. A model of scientific-software development. Here,
requirements are mostly emergent, the emergence of requirements
is intertwined with evaluation, and testing is cursory.

Figure 2. A clash
between software
engineers and
scientists. The former
expect requirements to
be specified up front;
the latter expect them
mostly to emerge.

Software engineer Scientist

I need your
requirements.

Sigh…

Sigh…

I just have to work out
what’s going on here.

Ooh, wouldn’t it be
interesting if we tried that?

Sorry, I haven’t quite
worked out what they are.

I need your
requirements NOW!

GIVE ME YOUR
REQUIREMENTS!

20	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

readership. Karen S. Ackroyd, Steve H. Kinder,
Geoff Mant, Mike C. Miller, Christine A. Rams-
dale, and Paul C. Stephenson describe 20 years’ ex-
perience in developing software to handle synchro-
tron data. Their article is notable in two ways: all
the authors are practitioners with no links to the
software engineering academic community, and
the article describes an attempt to apply an agile
method, Extreme Programming. Many practitioner
submissions claimed they were following an agile
methodology, but often this meant only that they
followed the iterative, incremental feedback model
in Figure 1. The fact that agile methodologies have
their own practices and inherent disciplines seems
to have passed these people by. The article by Ack-
royd and her colleagues is a noteworthy exception.

Also in this theme, Mark Vigder, Norman G.
Vinson, Janice Singer, Darlene Steward, and Keith
Mews describe their automation of scientific work-
flows at the Institute of Ocean Technology in Can-
ada. This article provides insight into how both
users and IT support personnel might be involved.
Richard Kendall, Jeffrey C. Carver, David Fisher,
Dale Henderson, Andrew Mark, Douglass Post,

Cliff Rhoades, and Susan Squires discuss the devel-
opment of weather-forecasting software, and find
commonalities with previous case studies of simula-
tion software in different domains. Thus, they de-
rive lessons that might be applied throughout the
HPC community.

Guidelines
We characterize the final theme roughly as guide-
lines. The three articles in this section discuss in the
light of the authors’ experiences how requirements,
usability, and design might be addressed in the con-
text of scientific-software development. These three
will appear in a future issue.

H ow far has this special issue-and-a-half
met our aim to explore how scientific-
software development might be im-

proved? We have, we think, made a good start. In
fact, we had another aim that we didn’t articulate
in our call for articles. This was to build a commu-
nity of people interested in the issues of scientific-
software development. The First International
Workshop on Software Engineering for Com-
putational Science and Engineering (www.cse.
msstate.edu/~SECSE08), recently held at the 30th
International Conference on Software Engineer-
ing, represents another effort to achieve this aim.
The biggest challenge here is to reach the scien-
tists who are developing their own software,
often as the sole developers of software in their
labs. If you have any ideas on how to meet this
challenge, or, indeed, any comments to make on
this editorial, we’d be delighted to hear from you.
Contact us at j.a.segal@open.ac.uk.

References
	 1.	 J.C. Carver et al., “Software Development Environ-

ments for Scientific and Engineering Software: A Series
of Case Studies,” Proc. Int’l Conf. Software Eng. (ICSE
07), IEEE CS Press, 2007, pp. 550–559.

	 2.	 J. Segal, “Some Problems of Professional End User De
velopers,” Proc. IEEE Symp. Visual Languages and
Human-Centric Computing (Vlhcc 07), IEEE CS Press,
2007, pp. 111–118.

	 3.	 J. Segal, “Models of Scientific Software Development,”
Proc. 2008 Workshop Software Eng. in Computa-
tional Science and Eng. (Secse 08), www.cse.msstate.
edu/~SECSE08/Papers/Segal.pdf.

	 4.	 J. Segal, “When Software Engineers Met Research Sci-
entists: A Case Study,” Empirical Software Eng., vol.
10, no. 4, 2005, pp. 517–536.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

Further Resources
Greg Wilson’s Software Carpentry Web site (www.swc.scipy.org) offers in-
struction in those software engineering techniques and tool uses that he’s
identified as important to scientific-software developers who don’t have a
software engineering background.

Computing in Science & Engineering magazine (http://cise.aip.org) aims
to reach scientists developing software as well as software engineers. The
mission of this joint publication of the IEEE Computer Society and the Ameri-
can Institute of Physics is to “support the development of computing tools and
methods as well as their effective use in both computational and experimental
science and engineering.”

About the Authors
Judith Segal is a lecturer in computing at the Open University, working in the Empiri-
cal Studies of Software Development group. Her research is grounded in field studies of
software development by nonprofessional software developers such as financial mathemati-
cians, earth and space scientists, and molecular biologists. She’s also interested in how to
bridge the gap between the academic and practitioner communities. Segal received her PhD
in algebra from the University of Warwick. Contact her at j.a.segal@open.ac.uk.

Chris Morris is a software developer in the UK government’s Daresbury Lab,
where he leads a multidisciplinary team developing a laboratory information manage-
ment system for molecular biology. Morris received his MA in pure mathematics from the
University of Oxford. Contact him at c.morris@stfc.ac.uk.

