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ABSTRACT

This paper presents a case study on parallelizing the sequen-
tial version of the BZip2 compression program for usage on
multicore computers. We describe the encountered software
engineering problems, discuss the tradeoffs of different par-
allelization strategies, and present empirical performance re-
sults.

The study was conducted during the last three weeks of a
multicore software engineering course. Eight students, work-
ing in teams of two, were assigned the task to parallelize
BZip2 in a team competition. Before starting with BZip2,
all students had three months of extensive training in par-
allelization with POSIX threads and OpenMP, as well as
knowledge of profiling strategies and tools.

Our empirical findings show that considerable speedups
can be gained by exploiting parallelism on higher abstraction
levels through parallel patterns, which are more significant
than speedups obtained from a fine-granular parallelization.
Another key issue we identify is the systematic refactoring of
existing sequential code to prepare it for parallelization; the
time needed for such refactorings can be significantly longer
than for the actual insertion of parallelization constructs.
The team who mastered these tasks well won the contest
with a speedup above 10 on an eight-core SUN Niagara T1,
while the weakest team produced a parallel version that was
even slower than the sequential one.

Categories and Subject Descriptors

D.1.3 [Programming Techniques|: Concurrent Program-
ming— Parallel programming; D.2.0 [Software Engineer-
ing]: [General]
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1. INTRODUCTION

With the emergence of affordable multicore processors
that integrate several computing cores on a single chip, par-
allel programming becomes a concern for more developers
than ever before. Despite the existing body of paralleliza-
tion knowledge in scientific computing, numerics, operating
systems, or databases, we still have many application areas
in everyday computing that were not attractive for paral-
lelization so far. Consequently, the software engineering of
such applications also did not receive much attention. How-
ever, we are now at an inflection point where this is changing,
as ordinary users possess multicore computers and demand
software that exploits the full hardware potential. Unfor-
tunately, previous empirical studies often focused on the
mentioned areas, on architectures not comparable to cur-
rent multicore systems, or on selected algorithms [13, 8, 7].

We now have a new situation where parallelism need no
longer be confined to a narrow application range, but be em-
ployed in many different types of applications that are used
in everyday life. We thus need to improve the software engi-
neering for multicore applications and fill the existing gaps.
One important building block for systematic engineering are
empirical case studies that investigate in detail which paral-
lelization approaches work and which do not work for certain
applications. This must be complemented by an analysis of
the reasons for success or failure of parallelization, along
with an identification of the issues that require further re-
search.

This paper addresses at this point and presents an empir-
ical case study of the parallelization of the sequential BZip2
compression program [12]. This program was chosen for sev-
eral reasons: it is widely used, it is a real application that is
relevant in everyday life, the source code is available as open
source, and the functioning principles are well-documented.
In addition, the algorithms are not trivial and the size of
the available code is just large enough to be manageable for
students in an extended course exercise.

The parallelization of BZip2 was done as a 3-week course
exercise at the end of a multicore software engineering course,
after all students had three months of intensive training in
parallelism. Eight students, working in teams of two since
the beginning of the course, were assigned the parallelization
task as a competition. We chose to conduct the study this
way because we expected a larger diversity of solutions that
would help triangulate the relevant engineering issues. To
make the study more realistic, we set a 3-week time frame
and allowed the students to pursue any strategy they con-
sidered promising, use any tools or languages they wanted,



or reuse any code or parallel library, as long as the binary
compatibility of the compressed/decompressed files was pre-
served. We created standardized benchmark files for com-
pression, and compared the parallel implementations on an
eight-core SUN Niagara T1 with 16GB of RAM.

The paper is organized as follows. Section 2 presents the
details of the multicore software engineering course and the
context of the study. Section 3 outlines the fundamentals
of the compression mechanisms of the sequential BZip pro-
gram. Section 4 focuses on the parallelization of BZip, shows
the details of how each team approached parallelization, and
makes quantitative comparisons of the resulting programs.
Detailed performance results of each team are presented in
Section 5, and the winning team is identified. Thereafter,
we discuss in Section 6 the lessons learned and make sugges-
tions for the improvement. Threats to validity are discussed
in Section 7. The novel insights are summarized in Section 8.

2. THEMULTICORE SOFTWARE
ENGINEERING COURSE

The course was part of the computer science curriculum at
the University of Karlsruhe, Germany, and was held during
the winter semester 2007/2008. The course started October
2007, ended February 2008, and had a total duration of 15
weeks. It was supervised by a post-doc, a PhD student, and
a student assistant. All participants were graduate students
who voluntarily chose to participate because they were in-
terested in the topic. All students already took classes on
software engineering, good knowledge of C/C++/Java, and
were highly motivated to develop practical skills in the area
of parallelization.

The course had alternating teaching parts and practical
parts (one week teaching, followed by two weeks of prac-
tice). The teaching part presented the concepts needed in
the practical part. In the practical part, the students were
given different tasks, such as writing parallel programs and
testing them on the SUN Niagara T1. The last three weeks
of the course were reserved for the final challenge: the par-
allelization of the sequential BZip2 compression program.

2.1 The Teaching Part
The teaching part covered the following topics:

e Basics of multicore programming
(processor architecture, thread programming models,
process models, design patterns, speedup considera-
tions)

e POSIX Threads (PThreads)
(concepts, thread management, synchronization with
mutexes, condition variables)

e OpenMP
(fork/join model, constructs for parallelization/ syn-
chonization, thread scheduling strategies)

e Performance
(caching issues, PThreads/OpenMP issues)

e Profiling
(concepts and tools, e.g., Intel VTune [9], gprof [5],
KProf [10], Valgrind (esp. Callgrind / KCachegrind)
[15])

2.2 ThePractical Part

The students were given assignments to write parallel pro-
grams. They worked in pairs that were formed at the be-
ginning of the course. After two weeks, the students had
to submit their solutions for pass/fail grading. All teams
passed all assignments. We briefly outline the contents of
the assignments:

e Introductory examples: try out the working environ-
ment on SUN Niagara, makefiles, Subversion

e Assignment 1 (PThreads): performance comparison of
process vs. thread creation, find data dependencies
in loops, parallel histogram computation for a list of
integers

o Assignment 2 (PThreads): manual implementation of
semaphores, implementation of the sleeping barber prob-
lem, implementation of the dining philosophers prob-
lem, parallel implementation of mergesort

e Assignment 3 (OpenMP): HelloWorld in OpenMP, par-
allel computation of 7 (numerical integration and Monte
Carlo approach), parallel search for the smallest ele-
ment of an array, parallel Ranksort

e Assignment 4 (OpenMP): parallel insertion/deletion of
elements in a linked list, parallel Bucketsort, parallel
application of a smoothing filter on a digital image

e Assignment 5 (OpenMP): parallel Quicksort, parallel
matrix-vector and matrix-matrix multiplication, iter-
ative Jacobi and Gauss-Seidel solvers

2.3 TheFinal Challenge: Parallelizing BZip2

After working on the topics described in Sect. 2.1 and 2.2,
the students had a sense of achievement and were very con-
fident of their skills. They were highly motivated when the
parallelization of BZip2 was proposed as a final challenge,
and happy to parallelize a larger program. BZip2 was avail-
able as open-source written in C. For the final three weeks,
the teams competed against each other to obtain a parallel
version of BZip2 with the shortest execution time on the
8-core SUN Niagara T1.

The rules of the competition were as follows. The stu-
dents were told to try to parallelize on all fronts and at
all possible levels. Everything was allowed, as long as the
binary compatibility of compressed/decompressed files was
preserved (i.e., for a given input file, the parallel version had
to produce the same file as the sequential version of BZip2).
It was permitted to use any program, tool (e.g., profiler,
debugger), or library that a team found useful. Further-
more, the teams were allowed to rewrite any portion of the
code or integrate any open-source code available on the In-
ternet. The students were given an article describing the
operation principles of the compression algorithm [14]. We
also communicated to the students that a speedup of at least
2 was obtained for a parallel version in our previous feasi-
bility study.

Various parallel implementations of BZip2 existed [16, 1,
6], and the students were aware of them. It was allowed
to look into the code and re-use parts of it. However, [6]
was not binary compatible with the sequential version of
BZip2 for file with sizes greater than 900,000 bytes. The



other implementations [16, 1] were based on older versions
of BZip2.

We prepared special input files with varying sizes and
different suitability for compression. The intention was to
make the execution times of the parallel compression pro-
grams comparable and to simplify the testing process. For
example, some files contained random bytes, long sequences
of zeroes, or were real-world archives obtained from the In-
ternet. On of these files, the Eclipse package for Linux
(eclipse-java-europa-fall2-linux-gtk.tar, 79MB, obtained from
[2]) was designated as the benchmark for the competition.
To simplify the benchmarking process, the teams had to
make their programs parameterizable from the command
line, e.g., with the number of threads to be used in parallel.
The final benchmarking was done separately by a student
assistant after the submission deadline for the parallel pro-
grams.

The students were asked to document their work, such as
their initial strategies and expectations, the difficulties en-
countered during parallelization, and their actual approach.

3. FUNDAMENTALS OF COMPRESSION
WITH BZIP

The relevant background on BZip is outlined next. We
begin with the algorithmic principles of the sequential BZip
and summarize some key points of the existing open source
implementation that was used for parallelization.

3.1 Algorithmic Principles

BZip uses a combination of different techniques to com-
press data in a lossless way. An input file to be compressed
is divided into fixed-sized blocks that can be processed in-
dependently. Each block is fed into a pipeline of algorithms.
The most important stages of this pipeline are depicted in
Fig. 1. The compressed blocks obtained at the end of the
pipeline are stored in the original order in an output file. All
transformations are reversible, and the stages are passed in
the opposed direction for decompression.

:> Burrows-Wheeler :>Move-To-Front Huffman ::>
Transformation (BWT) Coding (MTF) Compression

Input Stage 1 Stage 2 Stage 3 Compressed
File Output File
Figure 1: Operation principle of the sequential

BZip2 algorithm.

The first pipeline stage performs a Burrows-Wheeler Trans-
formation (BWT) on a block [4]. This transformation re-
orders the characters in such a way that similar characters
have a higher probability of being closer to one another. Nei-
ther the length of the block nor the characters are changed.
Conceptually, a string S of N characters taken from an al-
phabet X is transformed in the following way:

e form N cyclic shifts of S (imagine each shifted string
written in a new line) and sort the lines lexicographi-
cally

e from each shifted S, extract its last character

e construct a string L whose ith character L; is the last
character of the ith sorted shift

e output (L, I), where [ is the index of the original S in
the list of shifts; index counting starts with 0

For example, S = ‘abraca’ yields L = ‘caraab’ and I =
1. The transformation can be reversed by using L and I
to reconstruct the shifts and obtain a lookup vector that
is used to map the characters to their original positions.
Reference [4] presents further details and explains why this
transformation is reversible.

The second stage performs a Move-To-Front (MTF) Cod-
ing [3] on (L, I). The string L is transformed as follows [4]:

e define a vector R = (ro,...,rN-1)

e create a list Y. Initialize it to contain each character
of the alphabet X

e fori=0...N—-1

— set r; = number of characters in Y preceding
character L;

— in Y, move the character L; to the front of Y
e output (R, I)

For example, MTF produces for L = ‘caraab’,] = 1 the
vector R = (2,1,3,1,0,3) and I = 1. This locally-adaptive
algorithm assigns low integer values to symbols that reap-
pear more frequently, and replaces long runs of the same
character with zeroes. The resulting vector can be com-
pressed more efficiently.

The third stage applies the well-known Huffman compres-
sion (cf. [11]) to the vector obtained in the previous stage.

3.2 Open Source Implementation

An open source implementation called BZip2 was devel-
oped by Seward [12]. It employs the algorithms described
in the previous Section and allows the definition of a block
size from a range of 100.000 Bytes — 900.000 Bytes.

The compression program is built on top of a library that
provides low-level and high-level interfaces to the compres-
sion algorithms.

The low-level interface consists of functions that compress
and decompress data in main memory. The sorting algo-
rithm needed for the BWT (cf. Sect. 3.1) has a sophisticated
fallback mechanism to improve performance.

The high-level interface provides wrappers for the low-
level functions and adds functionality for dealing with I/O,
such as streams and files.

4. PARALLELIZING BZIP2

We now describe the parallelization strategies of the com-
peting teams and present quantitative comparisons of their
parallel programs.

Evidence [17] is collected from the written reports of the
teams, personal observations, the submitted code, the final
presentations, and from interviews with the students after
their presentations.



4.1 Strategies of the Competing Teams

411 Teaml

The first team had different parallelization strategies that
were radically changed under time pressure. In principle,
they started with their own approach to parallelize algo-
rithms on a low level, using a mixture of OpenMP and
PThreads. As the submission deadline approached, they
decided to revert to an earlier snapshot and port the paral-
lelization ideas of BZIP2SMP [1] to their code.

Their planned strategy was to understand the code base
(1 week), parallelize it (1 week), and test/debug the parallel
version (1 week).

Their actual work soon departed from their original plans.
At the beginning, the team tried about 2 hours to get an
overview of the code and find the files that were relevant
for parallelization. In another 3-4 hours, they created exe-
cution profiles with gprof, KProf, and Valgrind. The group
realized that input data had to be chosen carefully in order
to find the critical path and keep the data sizes manageable.
Another 2 hours were invested in understanding interesting
code along the critical path. General code understanding as
well as studying article [14] took about 6 hours. Thereafter,
they found the parallel processing of data blocks to be most
promising, but they had problems to unravel existing data
dependencies.

The team continued with a parallelization on a low ab-
straction level, taking about 12 hours. In particular, fre-
quently called code fragments were parallelized with OpenMP,
and a sorting routine was exchanged for a parallel Quick-
sort implementation using PThreads. However, the achieved
speedup was small.

The team decided to refactor the code to OOP and im-
prove its readability. After 8 hours, they were surprised to
see that the execution times did not differ much from the
previous version, but the code was now easier to understand.
The restructured code also eased the work on the paral-
lel processing of data blocks, which took about 12 hours.
Although only a few lines had to be changed to introduce
parallelism, it was difficult for the team to assess the impact
of those changes.

Although the refactoring approach was promising, the group

ran out of time as the deadline approached and decided to
abandon this strategy. They reverted to the version before
the OOP refactoring and began to integrate some paral-
lelization ideas obtained from the BZIP2SMP [1] code basis
(2 hours). Additional 3 hours were used to make the files
ready for submission.

In the end, the team reported that fine-granular paral-
lelization was inappropriate. It would have been necessary
to restructure the code even more in order to be able to
parallelize effectively.

4.1.2 Team?2

The second team focused on extensive restructuring of the
sequential program before starting with the parallelization.

Their plan was to analyze and profile the code (1 week),
refactor it (1 week), and parallelize it (1 week).

The group spent about 2x50 hours of work in total. The
first week was dominated by code analysis and profiling of
the sequential Bzip2 with Valgrind and gprof. In the re-
maining time, their work concentrated on restructuring the
sequential version of BZip2 and preparing the code for par-

allelization. Two days before submission, the team was still
refactoring; the actual parallelization was done in the last
day before submission.

In particular, the entire library used in BZip2 as well as
the I/O routines were rewritten using a producer-consumer
pattern. Thereafter, PThreads were used to introduce par-
allelism. The team realized early that a fine-granular paral-
lelization, e.g., of the sorting algorithm, did not yield suffi-
cient speedups. Therefore, they tried to achieve parallelism
on higher abstraction levels. The massive refactorings were
indispensable to resolve data dependencies and enable block-
wise compression in their producer-consumer approach.

Although the team identified several other hotspots for
parallelization, they did not have enough time to tackle
them. For example, no time was left for fine-tuning the
parallel version obtained so far. The team also planned to
try pipeline to improve throughput.

The group reported that they drastically underestimated
the time needed for refactoring. Refactoring was accom-
panied by long periods of frustration, until an executable
parallel version existed. Nevertheless, the team was aware
that such drastic restructuring was indispensable.

4.1.3 Team3

The third team started with a fine-granular parallelization
strategy using OpenMP and abandoned it later in favor of
a master-worker approach using PThreads.

Their initial strategy was to begin with program and al-
gorithm understanding, followed by a parallelization with
OpenMP.

The students mentioned that they worked 6 or more hours
a day. During the first 10 days, 2-3 hours a day were spent
on understanding code and algorithms, as well as on trying
out OpenMP directives. The sequential code was profiled
with gprof to find performance bottlenecks.

After trying out different ways of fine-granular paralleliza-
tion with different OpenMP directives (e.g., parallel for),
the team realized that the speedups were not promising.
They were aware that the changes would have to be much
more invasive. However, they did not want to make large
modifications to the library used by BZip2. They decided
to focus on data parallelism on a higher abstraction level
and implement a master-worker approach in which different
blocks of a file were compressed independently. The master
filled a buffer with blocks, while workers took blocks from
the buffer to compress them.

The thread synchronization mechanism between master
and workers was considered difficult. The students used se-
quence diagrams to design it and conditional variables and
mutexes to implement it. Another difficulty was the file
output, which required adjustment of the sequence of the
compressed blocks to obtain the original order.

Unfortunately, the team did not finish the parallel version
by the deadline, and it was therefore excluded from the final
competition. Although the main reason was a trivial bug in
an I/O routine, the students said that they were too tired
to find and fix it. However, the group submitted a working
version one week after the deadline, and we used this version
for benchmarking.

4.1.4 Team4

This team had a trial-and-error approach for paralleliza-
tion, working from the bottom up.



Their strategy was to create execution profiles of the se-
quential code with gprof/KProf, find the critical path, and
parallelize the code along this path. OpenMP was chosen as
a means for parallelization, as the students considered it to
be simpler and superior to PThreads.

The team reported that their actual work was dominated
by trying out ideas. In sum, they spent about 70% of their
time on implementing and debugging ideas, and only 30%
on actually reading and understanding the sequential code.
Program understanding was perceived as one of the most
difficult tasks. Large parts of the code were misunderstood
during the first parallelization attempts, and the team failed
to gain a thorough understanding of the compression algo-
rithm.

Another difficulty was that many parts of the sequential
code were not parallelizable right away, due to data depen-
dencies, side effects of function calls, and tricky optimiza-
tions for faster sequential execution. In addition, many loops
in the sequential version were realized in a while (true){...}
style that did not allow enclosing them with parallel for loops
with OpenMP.

Consequently, the group started to refactor the loops.
They focused on loops with no function calls, thus avoid-
ing the handling of side effects in the parallel case. Data
dependencies were unraveled, leading to code that could be
wrapped by parallel OpenMP for loops. Unfortunately, this
effort was rewarded only with minor speedups.

The group explained that — from its point of view — OpenMP

would be a good and scalable approach for parallelization in
general. However, the students reported that in this case
study, parallelizing BZip2 would have required a much more
fine-granular synchronization between individual threads in
order to preserve data dependencies. The usage of OpenMP
required massive refactorings to make the sequential code
parallelizable. This was difficult to do within the given time.
Given the opportunity to start over, they would have re-
sorted PThreads instead.

4.2 Quantitative Comparisons

The quantitative comparisons of the parallel BZip2 code
produced by the four teams provide some interesting in-
sights.

Table 1 shows the total lines of code (LOC), the LOC
without blank lines and comment lines, and the number of
lines containing parallel constructs (e.g., pthread_create,
pthread_mutex_lock, \#pragma omp, etc.). Compared to
the sequential BZip2, the LOC of the parallel versions vary
about +15%. There are only a few lines (less than 2%)
expressing parallelism.

Table 2 shows that although the total LOC do not vary
widely, the number of modified lines can be large (e.g., 49%
for team 1). Team 2 and 3 modified about 12% and 17% of
the lines of the sequential BZip2, also pointing to a signifi-
cant refactoring effort. Even team 4 that tried an incremen-
tal parallelization with OpenMP had to modify about 3% of
the original code.

5. AND THE WINNERIS...

Team 2 won the competition and obtained a speedup of
10.3, which was the highest of all teams. Speedups greater
than the number of eight cores are possible, as the SUN T'1
processor can execute up to 4 threads per core. Team 3 had
a speedup of 9.8. A reasonable maximum speedup of 8.8 was

achieved by team 1. Finally, team 4 obtained a speedup of
0.9.

Given the benchmark file of 79 MB mentioned in Sect.
2, team 2 had the lowest execution time of 25.8 seconds at
51 threads. They are closely followed by team 3 with 27.3
seconds at 127 threads, and team 1 with 30.2 seconds at 32
threads. By contrast, team 4 had their lowest execution time
of 308.7s at 16 threads - this is about 15% slower than the
sequential program that executes in 267.1 seconds! More-
over, their parallel program was designed in such a way that
only 1, 2, 4, 8, or 16 parallel threads were allowed.

The detailed performance comparisons of the four teams
are depicted in Fig. 2. All programs were compiled on the
SUN Niagara machine with GCC 4.2.1. The execution times
are shown in Fig. 2 a). A particular data point represents
the time in seconds that was needed to compress the input
file (including I/O) when the program was called with a
particular number of threads. All data points are averages
of 5 executions. The speedups in Fig. 2 b) are calculated
with respect to the execution time of the sequential BZip2.

6. RECOMMENDATIONS

Several lessons learned from this case study are presented
next, along with suggestions for improvement.

6.1 Parallelize on Several Abstraction Levels

The case study shows that a parallelization on low ab-
straction levels alone might not be enough.

In the beginning, it looked promising to profile the se-
quential code, determine the critical execution path, and
parallelize the application along this path. Unfortunately,
this approach does not produce respectable speedup results,
because the resulting parallel version is too tightly bound to
the sequential implementation. Many parallelization oppor-
tunities are not exploited, as the original program is heavily
optimized for sequential performance.

Just parallelizing loops, even if they are on the critical
execution path, yields only minor speedups. Due to data
dependencies introduced by “tricky” programming in the se-
quential version, a lot of effort may be required to prepare
the loops for parallelization (cf. team 1 and 4). Other low-
granular replacements of calls to a sequential sorting routine
with calls to a parallel sorting routine did not lead to signif-
icant improvements either (cf. team 1).

The most successful strategies tackled parallelization on
higher abstraction levels by introducing a producer-consumer
pattern (team 2) or master-worker pattern (team 3). Team
2 won the competition even though they did not have the
time to do other fine tuning. In addition, the usage of high-
level patterns improved the understanding of the parallel
program.

Suggestions for improvement: Further research is needed
on how to provide developers with the appropriate support for
parallelization on several abstraction levels. For example,
useful parallel patterns must be identified and made recon-
figurable, and techniques must be developed that simplify the
integration of such patterns into existing code.

6.2 Use Several Sourcesto Find Parallelism

The sequential implementation of BZip2 is not the only
source for parallelism.
Of course, understanding and profiling the sequential code



Total LOC | #lines  with

Total Lines of | without com- | Comstructs for

Program Total Bytes Code (LOC) ments or parallelism; %

blank lines Zv.r.t. column

Sequential BZip2 236,150 8,090 (100%) 5,102 0

Team 1 204,704 7,030 ( 87%) 4,228 49 (1.2%)
Team 2 246,079 8,515 (105%) 5,356 48 (0.9%)
Team 3 266,897 9,270 (115%) 5,915 82 (1.4%)
Team 4 239,387 8,207 (101%) 5,170 8 (0.2%)

Table 1: Comparison of total lines of code and lines with constructs for parallelism.

Program | #lines modified | # lines added | # lines removed
Team 1 2476 (49%) 801 (15.7%) 1675 (32.8%)
Team 2 600 (12%) 427 (8.4%) 173 (3.4%
Team 3 861 (17%) 837 (16.4%) 24 (0.5%)
Team 4 156 (3%) 112 (2.2%) 14 (0.9%)

Table 2: Total modified lines of code compared to sequential version of BZip2 (comments and blank lines are
excluded; additions/removals with respect to the sequential version of BZip2).

gives some hints at existing performance bottlenecks. How-
ever, these bottlenecks may be closely related to the way the
sequential version implements the algorithm.

Specifications/
Descriptions

Sequential Program

Parallel Program

Figure 3: Identify potential parallelism using differ-
ent sources.

Other sources for parallelism may be found in the specifi-
cation or description of the compression algorithm (cf. Fig.
3). They are important because the sequential implemen-
tation of a program may omit information that does not
improve sequential performance, but which is valuable for
improving parallel performance.

In addition to documentation available online [12], the stu-
dents were given an article describing the general compres-
sion principles used in BZip2 [14]; the article also contains
references to papers on the employed algorithms. A thor-
ough program understanding using different sources helps

to assess the potential for parallelization, and is an interme-
diate step towards the identification of potential parallelism
on higher abstraction levels. Teams 1, 2, 3 invested more
time in these tasks and performed better than team 4 that
mainly focused on the sequential code.

Suggestions for improvement: Productivity can be in-
creased by tools that assist developers at parallelizing a se-
quential program. For example, an interactive analysis of
data dependencies might help decide on how to modularize
code for parallelization. Building upon this, an automated
proposal of parallelizable parts would help as well. Both pro-
gram code and specification could be used as a source to im-
prove the quality of suggestions.

6.3 Don’t Loose Your Nerve While
Refactoring

In certain cases, parallelizing a sequential program is not
possible right away, as massive refactorings are required to
prepare the code for parallelization (cf. Sect. 4.2). Refactor-
ings may be targeted at the improvement of code modularity
or readability, the elimination of side effects of function calls,
or the removal of unnecessary data dependencies.

The case study shows that even simple loop paralleliza-
tions that are easy to do in classroom examples may be dif-
ficult to realize in practice. This becomes evident for team 4
that focused on parallelizing loops with OpenMP. Although
parallelization constructs accounted for 0.2% of the total
code (Tab. 1), 3% of the code — that is about 10 times more
— had to be refactored (Tab. 2).

At another extreme, team 1 refactored almost half the
code, while team 2 and 3 refactored 12% and 17%, respec-
tively (Tab. 2). However, the strategies of teams 1, 2, 3
were much more invasive than the strategy of team 4.

Although teams 1, 3, 4 favored OpenMP at first, they
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Figure 2: Performance comparisons of the four teams. The benchmarked programs use a block size of 900.000
Bytes and eclipse-java-europa- fall2-linux-gtk.tar (79MB, obtained from [2]) as an input file.

soon realized that it required even more refactoring. Teams
1 and 3 turned to PThreads instead, trading a more explicit
(and potentially more error-prone) thread programming for
less refactoring.

Team 2 reported that refactoring for parallelization was a
frustrating experience, because it took a long time to see the
results and have a sense of achievement. In the end, however,
refactoring was an important success factor for winning the
competition. Team 1 also got frustrated by refactoring, but
stopped doing it under time pressure.

Suggestions for improvement: Refactoring comprises many
tedious tasks. If they are well-structured, tools could be de-
signed to help with the preparation of sequential programs
for parallelization. An interactive automation might relieve
stress from the developers. This could help them focus on
the relevant issues for parallelization, increasing productiv-
ity and reducing errors at the same time. Further research
is needed to find out what the typical refactoring tasks are,
and how they can be automated.

6.4 Work in a Systematic Way

For successful parallelization, it is important to have a
strategy on how to proceed. A strategy helps to set up
long-term goals and short-term milestones, and allows de-
velopers to stay on the right track. A structured process is
key to success for systematic engineering. Even though the
strategy or the milestones might be changed in the course
of action, it nevertheless important to define them.

Team 4 neglected these guidelines as well as the “big pic-
ture”. The team did not work systematically enough, as the
work was dominated by trying out ideas. For this reason,
it was difficult to measure progress or decide whether to
abandon certain approaches. This finally led to the worst
result.

By contrast, Team 1 and 3 changed their initial strategies

during their work, but they always had a plan. Both of them
delivered a parallel BZip2 version with acceptable speedups.
Although team 3 did not submit their results on time, they
continued to work systematically and handed in a version
that performed better than that of team 4.

Team 2 worked systematically and stuck to their refac-
toring strategy, even though they did not have a working
version two days before the deadline. They did not panic
under time pressure. We consider this to be an additional
success factor.

Suggestions for improvement: Future research can help
to find a systematic process model for the parallelization of
sequential programs. Such a model would form the basis
for systematic engineering and helps developers to plan their
steps and control progess. More empirical studies are needed
to identify and wvalidate the relevant phases as well as the
structure of such a model. In addition, we also need metrics
to measure the complezity of multicore programs.

6.5 Current Industry Approaches

Current industry approaches seem to try to convey the
idea that incremental parallelization of sequential programs
can be done easily by simply inserting some parallelization
constructs into sequential code. Furthermore, many solu-
tions focus on fine-granular parallelization. Based on the
experience from this case study, the following questions need
to be asked: is the reality of multicore programming different
from what the industry vendors tell us at the moment? Are
the currently offered software solutions, such as languages
or libraries for multicore programming, suitable?

At least for this case study, fine-granular parallelization
does not seem to be promising. The achieved speedups are
minor compared to what is possible when parallelization is
complemented on higher abstraction levels. This means that
a superficial parallelization of sequential code by incremen-



tally enclosing some portions with parallelization constructs
may not yield acceptable performance in the long run. More-
over, this approach does not seem to be scalable due to the
required refactoring effort.

Another industry trend is to offer parallel libraries for mul-
ticore. However, this study shows that in certain contexts,
just exchanging library calls with parallel implementations
might not yield acceptable performance. Other approaches,
such as patterns (cf. Sect. 6.1) appear to be more promising.

Suggestions for improvement: If these experiences are
made also in other studies, we must fundamentally rethink
our approach to parallelization for general-purpose applica-
tions. In particular, parallelization on several abstraction
levels and refactoring must be addressed.

6.6 Educational Aspects

The topics and tools that were taught in the course are
standard in parallel programming. The students did not
have many difficulties while they worked on the classroom
exercises. In addition, they were familiar with software en-
gineering techniques.

However, things changed when the larger BZip2 program
had to be parallelized. Despite extensive training in par-
allelization, the results of the teams varied greatly. The
students said that there was a difference between paralleliz-
ing small “toy” programs and real-world applications. Many
concepts, such as loop parallelization or data partitioning
could not be applied right way. Not only was BZip2 more
complex, but it was also heavily optimized for sequential
performance, making parallelization a difficult task.

Suggestions for improvement: As future software engi-
neers will be confronted with the parallelization of real-world
applications, we need to prepare them adequately and ad-
dress parallelization in computer science curricula. We ob-
viously need to extend the repertoire of available techniques
and tools that we teach. In addition, combining techniques
from different field of computer science (e.g., covering par-
allel programming and software engineering) is unavoidable.
From a practical point of view, case studies in parallelizing
real-world programs are a suitable vehicle to train the skills
needed in every-day situations, and at the same time gain
valuable insights for research.

7. THREATSTO VALIDITY

Within our course, all students had the same paralleliza-
tion training before the BZip project started. However, in-
dividual skills could have influenced the results. To be sure
that this case study was not dominated by such effects, we
asked all students about other courses or labs they have
taken before in the area of software engineering or paral-
lelism. We found out that all of them had a similar expe-
rience. In addition, the skill levels we observed throughout
the course were comparable — no student performed signifi-
cantly worse than others. This is objectively backed by the
fact that all students passed all assignments.

Some of the teams did not log their activities accurately
enough. Team 4 could not give accurate effort numbers
due to their trial-and-error approach, but provided estimates
when asked during the interview. We checked the numbers
reported by all teams for plausibility, based on the delivered
code, comparisons between teams, and our own experience
from parallelizing BZip in a feasibility study.

This case study can’t be representative for all multicore
software in general; it aims to present our experience with
parallelizing a real program and develop an understanding
for similar problems in practice.

8. CONCLUSION

In order to exploit the potential of current multicore hard-
ware, applications of all sorts need to be parallelized. How-
ever, we are currently lacking empirical results in the area
of multicore software engineering. This case study adds a
piece to the body of knowledge and reports on the experience
gained from the parallelization of a compression program.

A remarkable result is that many of the key activities for
successful parallelization are software engineering activities
beyond “mere programming”. This claim is supported by
several clues. Parallelization on higher abstraction levels
using patterns improved speedups. Contrary to our initial
expectations, this aspect was even more important here than
more fine-granular parallelizations on an algorithmic level
or loop-level. Moreover, just exchanging calls to sequen-
tial library functions with calls to parallel counterparts did
not produce acceptable speedups, as the structure of the
sequential program was highly optimized for sequential exe-
cution and acted like a tight corset. Parallelization on higher
abstraction levels help to break through such barriers, and
might become even more important when large applications
— with millions of lines of code — are parallelized. Further-
more, a careful preparation of the sequential code for paral-
lelization through refactoring was indispensable and repre-
sented another key factor to success.

Many of the engineering aspects for parallel software that
were touched in this study are largely neglected at the mo-
ment. Research must fill these gaps quickly if multicore
programming is to be successful on a large scale.
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