
2	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

focus 1

still growing) discipline, capable of addressing the
increasing complexity of new software systems.
The term software architecture was first coined at
a 1969 NATO conference on software engineering
techniques, but it wasn’t until the late 1980s that
software architectures were used in the sense of sys-
tem architecture.2

Today, modern software architecture practices
still rely on the principles that Dewayne E. Perry and
Alexander L. Wolf enunciated in their lovely, yet
simple formula “Architecture = {Elements, Form,
Rationale}.”3 Elements are the main constituents
of any architectural description in terms of compo-
nents and connectors, whereas the nonfunctional
properties guide the architecture’s final shape. Dif-
ferent shapes with the same or similar functionality
are possible; they constitute valid design choices by
which software architects make their design deci-
sions. These decisions are precisely the soul of archi-
tectures. However, they’re often neglected during
architecting because they usually reside in the archi-
tect’s mind as tacit knowledge, which is seldom cap-
tured and documented in a usable form. Further-

more, as the Rational Unified Process (RUP) states,
software architecture practice

practice encompasses significant decisions
about

■	 the organization of a software system,
■	 the selection of the structural elements and

their interfaces by which a system is com-
posed with its behavior as specified by the
collaboration among those elements, and

■	 the composition of these elements into pro-
gressively larger subsystems.4

For years, architecture practice and research ef-
forts have focused solely on architecture representa-
tion itself. For a long time, these practices have ex-
clusively aimed at representing and documenting a
system’s architecture from different perspectives—
the so-called architectural views. These views rep-
resent different stakeholders’ interests as a set of
coherent, logical, harmonized descriptions; they’re
also used to communicate the architecture. IEEE

S oftware development has to deal with many challenges—increasing system
complexity, requests for better quality, the burden of maintenance operations,
distributed production, and high staff turnover, to name just a few. Increasingly,
software companies that strive to reduce their products’ maintenance costs de-

mand flexible, easy-to-maintain designs. Software architecture constitutes the cornerstone
of software design, key for facing these challenges. Several years after the “software crisis”
began in the mid-1970s,1 software architecture practice emerged as a mature (although

This is a journey
of discovery from
software architecture
representation
to architectural
methods, to design
decisions, to end at a
decision view, which
enables architects to
capture architectural
design decisions and
design rationale as
first-class entities.

Philippe Kruchten, University of British Columbia

Rafael Capilla, Universidad Rey Juan Carlos

Juan C. Dueñas, Universidad Politécnica de Madrid

The Decision View’s
Role in Software
Architecture Practice

c ap t ur ing de s ign kn o wle dge

	 March/April 2009 I E E E S o f t w a r e � 3

Standard 1471-2000 Recommended Practice for
Architectural Description of Software-Intensive
Systems provides a guide for describing the archi-
tecture of complex, software-intensive systems in
terms of views and viewpoints.5 However, it doesn’t
offer a detailed description of the rationale that
guides the architecting process.

This article describes the historic evolution of
software architecture representation and the role it
can play. We use a set of epiphanies that can guide
you from the initial architecture views to a new de-
cision view, expressing the need for capturing and
using architectural design decisions and design ra-
tionale as first-class entities. When we explicitly re-
cord and document design decisions, new activities
arise during the architecting process; this architec-
tural knowledge (AK) constitutes a new crosscut-
ting view that overlaps the information described
by other views.

First Epiphany:
Architectural Representation
Before 1995—that is, prior to the notion of the
architecture view—software designers did archi-
tecting, but the demand for large complex systems
brought new design challenges. Such systems’ in-
trinsic complexity, with different structures entan-
gled in different levels of abstractions, was orga-
nized into a set of architecture views that tried to
describe the system from different perspectives, ac-
cording to different users’ needs.

As a result, Philippe Kruchten proposed archi-
tecture views in his “4+1” view model to provide a
blueprint of the system from different angles.6 That
model uses four views to describe the design con-
cerns of different stakeholders, plus a use-case view
(the +1) that overlaps the others and relates the de-
sign to its context and its business goals (see Figure
1). Many Rational Software consultants used the
set of views in the 4+1 view model in large indus-
trial projects as part of the RUP approach. Simi-
larly, Siemens developed the Siemens Four-Views
(S4V) method, based on best architectural practices
for industrial systems.7 The S4V method aimed to
separate engineering concerns to reduce the com-
plexity of the design task.8

In 1995, we proposed views that helped archi-
tects identify all the influencing factors they can use
to identify the key architectural challenges and to
develop design strategies for solving the issues by
applying one or more views. In such contexts, we
evaluate design decisions (that is, strategies applied
to particular views) according to constraints or de-
pendencies on other decisions. The Software Engi-
neering Institute proposed a classification based on

views and view types and highlights the importance
of documenting design decisions. However, it gave
no details on how to do this and failed to define ad-
equate processes for capturing and documenting
those decisions.9 Nick Rozanski and Eoin Woods
defined up to six viewpoints that clarify the most
important architectural aspects or elements of infor-
mation systems that are relevant for stakeholders.10
In the mid-1990s, architecture research focused on
design description and modeling, with little agree-
ment on notations for architecture representation.

Second Epiphany:
Architectural Design
The period from 1996 to 2006 brought comple-
mentary techniques in the form of architectural
methods, many of them derived from well-estab-
lished industry practices. Methods such as IBM’s
RUP, Philips’ BAPO/CAFCR (Business-Architec-
ture-Process-Organization method and its Cus-
tomer, Application, Functional, Conceptual, and
Realization views), Siemens’ S4V, Nokia’s ASC
(Architectural Separation of Concerns), and the
Software Engineering Institute’s ATAM (Archi-
tecture Trade-off Analysis Method), SAAM (Soft-
ware Architecture Analysis Method), and ADD
(Attribute-Driven Design) are now mature prac-
tices for analyzing, synthesizing, and evaluating
modern software architectures. In some cases,
they’re backed by architectural description lan-
guages, assessment methods, and stakeholder-
focused decision-making procedures. Because
many of the design methods were developed in-
dependently,8 they exhibit certain similarities and
differences motivated by the specific nature, pur-
pose, application domain, or organization size for
which they were developed. In essence, they cover
the essential phases of the architecting activity but
are performed in different ways.

Common to some of these methods is the use of
design decisions that are evaluated during the ar-
chitecture’s construction. Groups of stakeholders,

End user, designers
Functionality

Users, analysts, testers
Behavior

Logical view

Programmers
Software management

Implementation view

Process view Deployment view

Use-case view

System integrators
Performance
Scalability
Throughput

System engineering
System topology

Delivery, installation
Communication

Figure 1. The “4+1”
architecture view
model.6 Four views
describe the design
concerns of different
stakeholders. A use-
case view overlaps the
others and relates the
design to its context
and its business goals.

4	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

under architects’ guidance, elicit these decisions, but
the ultimate decision makers are the architects—
often a single person or a small group. Unfortu-
nately, design decisions and their rationale still
aren’t considered first-class entities because they
lack an explicit representation. As a result, software
architects can’t revisit or communicate the decisions
made, so in most cases the decisions vanish forever.

Reasons for Design Rationale
In 2002, Ioana Rus and Mikael Lindvall wrote,
“The major problem with intellectual capital is that
it has legs and walks home every day.”11 Software
organizations suffer the loss of this intellectual cap-
ital when their experts leave. The same happens in
software architecture when the reasoning required
for understanding a particular system is unavailable
and hasn’t been explicitly documented. In 2004,
Jan Bosch stated that “we do not view a software
architecture as a set of components and connec-
tors, but rather as the composition of a set of archi-
tectural design decisions.”12 The lack of first-class
representation of design rationale in current archi-
tecture view models led to the need to include deci-
sions as first-class citizens that should be embodied
within the traditional architecture documentation.

There are several benefits of using design ratio-
nales in architecture to explain why a particular
design choice was made or to know which design
alternatives have been evaluated before making the
final design choice. One medium- to long-term ben-
efit is avoiding architecture-recovering processes,
which are used mostly to retrieve decisions when
an architecture’s design, documentation, or even
creators are no longer available. Maintaining and
managing this AK requires continuous attention to

keep the changes in the code and the design aligned
with the decisions, and to use these to bridge the
software architecture gap.

In this new context, Perry and Wolf’s old ideas3
become relevant for upgrading the software archi-
tecture concept by explicitly adding the design deci-
sions that motivate the creation of software designs.
Together with design patterns and assumptions, de-
sign decisions are a subset of the overall AK that’s
produced during architecture development. Most
of the tacit knowledge hidden in the architects’
minds should be made explicit and transferable
into a useful form, easing the execution of distrib-
uted and collective decision-making processes. The
formula Architecture Knowledge = Design Deci-
sions + Design, recently proposed by Kruchten
and his colleagues,13 modernizes Perry and Wolf’s
formula and considers design decisions part of the
architecture.

Third Epiphany:
Architectural Design Decisions
Architecture decisions are seldom rigorously docu-
mented. Explicitly documenting key design deci-
sions is pretty rare, and typically justified only on
political and economic grounds or even sometimes
fear. So, our third epiphany highlights the need to
deal with the representation, capture, management,
and documentation of the design decisions made
during architecting.

Active research from 2004 to 2008 has produced
a significant number of approaches for representing
and capturing architectural design decisions, and
has defined new roles and activities for supporting
the creation and use of this AK. Several approaches
use template lists of attributes to describe and repre-
sent design decisions as first-class entities.13–15 One
approach emphasizes categorizing different types
of dependencies between decisions as valuable,
complementary information for capturing useful
traces—information that developers can use, for in-
stance, during maintenance to estimate the impact
when a decision is added, removed, or changed.13
Another approach advocates using flexible ap-
proaches that employ mandatory and optional at-
tributes for knowledge capture that can be tailored
to specific organizations.15 Others have proposed
ontologies to formalize tacit knowledge and make
visible the relationships between the decisions and
other artifacts of the software life cycle.13 The field
of product-family engineering, or product lines, has
yielded a large amount of work about specifica-
tion, modeling, and automation of design decisions
applied to describing and selecting a product line’s
common and specific elements.16 For product lines,

Create

Assess

Make

CharacterizeTeach

CommunicateValidate

Detect wrong decisions

SubscribeEvaluate

StoreReuse

ReviewRecommend

ShareLearn Design
decision

Figure 2. The four main
activities—Create,
Share, Assess,
and Learn—and the
subactivities involved
in the creation and use
of design decisions
and design rationale.
Each of the four colors
shown indicates a
main category (for
example, “Create”)
and its related, smaller
subactivities (in
this case, “Make,”
“Characterize,”
and “Store”).

	 March/April 2009 I E E E S o f t w a r e � 5

knowledge is codified in an operational manner as
derivation processes are automated.

New Architecting Activities
Several authors have recently contributed models,
methods, and tools that encourage design decisions
in both software architecture and software engi-
neering.17 Because architecture modeling isn’t iso-
lated from decision making, new processes must be
carried out in parallel with typical modeling tasks.
Hence, architecting is highly impacted by these
new activities that deal with the creation and use of
design decisions.

So, as decision makers, software architects must
assume new roles as knowledge producers and
consumers in a social process and must perform
a variety of new activities. Figure 2 (inspired by a
technical report by Patricia Lago and Paris Avge-
riou of the first Shark [Sharing and Reusing Archi-
tectural Knowledge] workshop18) illustrates these
two aspects to articulate the decisions made and
the architecture resulting from these decisions. For
instance, architects capture decisions (“Create”)
that lead to a particular architecture. In this phase,
architects make decisions, characterize them in us-
able form, and link them to design artifacts. Once
a first version of the architecture is created, the de-
sign can be communicated to other stakeholders
and, for instance, the status of the architecture can
be reviewed. During maintenance, decisions might
become relevant for the current architecting team
to evaluate and to provide recommendations to de-
termine whether the decisions were right or wrong.
Because the architecture is continuously evaluated,
assessment procedures can occur at different stages
of architecture development (when decisions are
first made or after). Also, less expert architects can
learn from decisions made by others; if they detect
wrong decisions, they must fix or replace them
with new decisions and modify the architecture ac-
cordingly. As a result, a perfect alignment between
decisions and design can be achieved.

Additional subactivities refine the main ones
shown in Figure 2, but our aim here is just to ex-
plain that parallel, complementary activities re-
lated to the reasoning process directly influence the
architecture-modeling tasks. We justify the separa-
tion between knowledge producers and knowledge
consumers on the basis of the distinction between
architecting for the first time and maintaining the
architecture over time.

Impact and Use
Our third epiphany has a strong impact on current
architecting practices: two empirical studies have

already reported on the value of capturing and us-
ing design decisions, and they provide some spe-
cific results:

Design decisions and rationales, considered ■■

different types of knowledge //okay?// for rep-
resenting and recording design information,
might not have the same value or importance
for all stakeholders.19 So, we should decide
which type of knowledge would better fit each
type of user.
The effort of capturing decisions during the ■■

early development stages really pays off only
in later maintenance and evolution phases, so
no great return on investment should be ex-
pected when decisions are captured for the
first time.20 The experiences described in this
report also highlight the benefits of using spe-
cific tool support for capturing, managing, and
documenting architectural design decisions.

Another visible impact on practice is related
to the documentation by means of the traditional
views as described in the standard IEEE Std.
1471-2000.5 Its successor, known as ISO/IEC
42010 and currently under review, expands it with
AK concepts, including concern, design decision,
and rationale.

The Texture of a Decision View
A complementary perspective in which decisions
are entangled with design for each architectural
view has led us to think about a decision view.21
This new perspective extends the traditional views
by superimposing the design rationale that under-
lies and motivates the selection of concrete design
options. Figure 3 depicts a graphical sketch of the

Logical view

Implementation viewDesign decisions

Design decisions

Design decisions
Design decisions

Deployment view

Process view

Use-case view

Design decisions

Figure 3. The “decision
view” embedded in
the 4+1 view model.
This new perspective
superimposes the
design rationale that
underlies and motivates
the selection of concrete
design options.

6	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

decision view, which incorporates design decisions
in the 4+1 view model.

The traditional representation of architectures
in terms of views and viewpoints varies when de-
cisions have to be described. Architects interested
in capturing decisions and rationale should know
how to build a decision view—that is, how to un-
derstand and represent the texture of decisions. As
a first approach, we can refer to the classic architec-
tural assessment methods; most of them rely on the
development of scenarios, their projection against
several candidate architectures, and the addition
of information to the architectural components.
Then the architect aggregates this information and
evaluates it for each candidate architecture.

Another possible approach is based on a study
of architectural assessment and definition of de-
sign decisions on a product-line architecture for
medical equipment, in which the decisions related
to the economic impact of changing each architec-
tural component.20 The authors focused on each
component’s economic attributes in the implemen-
tation view (from the 4+1 model), and their deci-
sion view consisted of the decisions, rationale, and
actual data on the architectural components.

Focusing on the capture and representation of
decisions, as a guide to help architects document
the decisions in their architectures, we propose
these steps:

	 1.	Decide which information items are needed
for each design decision (such as the decision’s
name, description, rationale, pros and cons,
status, and category). Then, decide which rep-
resentation system will better handle the re-
cording and organization of the decisions (that
is, as templates or ontologies). Select a strategy
(such as codification, personalization, or a hy-
brid strategy) to capture the items.

	 2.	For each decision, define links to the require-
ments that motivate it.

	 3.	If you must evaluate alternative decisions, pro-
vide mechanisms to change the decision’s sta-
tus (such as approved, rejected, or obsolete)
and category (such as alternative or main).

	 4.	If a decision depends on previous ones, define
these relationships to support internal trace-
ability among them.

	 5.	Once you’ve made a set of significant decisions,
link them to the architecture that results from
such decisions. These links provide the connec-
tion to traditional architecture views.

	 6.	After making and capturing all the decisions,
share them through communication and docu-
mentation mechanisms.

We could add extra items and functionality to
this list (for example, supporting the evolution of
decisions), but we believe we’ve listed enough to
help you quickly start capturing design decisions
and their underpinning rationale alongside their
architectures.

Challenges and Benefits
The explicit capture and documentation of design
decisions will bring new challenges, but in most
cases we see these as benefits derived from using ar-
chitecture development decisions. Here’s a short list
of the expected challenges and benefits:

Decisions enhance traceability between soft-■■

ware engineering artifacts produced across
the software life cycle. Forward and backward
traces facilitate our understanding of the root
causes of changes and help us better estimate
change impact analysis.
Capturing the dependencies between decisions ■■

supports impact analysis when we add, mod-
ify, or remove a decision.
Documented decisions facilitate our general ■■

understanding of a system, which is particu-
larly useful during staff turnover.
Documented decisions facilitate knowledge ■■

sharing and assessment processes because us-
ers can easily review the rationale of past
decisions.
Learning activities can use previous knowledge ■■

for assessing novice software architects in their
professional careers.
Leveraging tacit AK into formal documenta-■■

tion requires understanding and performing
many of the activities described in Figure 2.

The adoption barrier for capturing design ra-
tionale can be high because of the intrusiveness
of these new activities, as shown in Figure 2. So,
the overhead required during the creation of these
decisions should pay off during maintenance, be-
cause knowledge of key design decisions avoids
the need to reverse architecture descriptions from
code, particularly in staff turnover situations or
rapid software evolution. Long-term benefits
and reduced maintenance costs should motivate
users to capture the design rationale, particu-
larly in successive iterations of the system as it
evolves.21 Hence, the broad impact of capturing
and using architecturally significant design deci-
sions affects not only the designs’ evolution but
also the evolution and maintenance of the deci-
sions base itself. This issue often emerges during
reviews, where major changes affect the design.

Long-term
benefits and

reduced
maintenance
costs should

motivate users
to capture
the design
rationale,

particularly
in successive
iterations of

the system as it
evolves.

	 March/April 2009 I E E E S o f t w a r e � 7

Like other key activities, recording the history of
decisions is another challenge requiring in-depth
treatment.

T he software architecture community’s
perception that architectural design deci-
sions are intangible and difficult to cap-

ture and communicate is changing as a result of
recent research. That research is leading to a new
perspective or “view,” in the IEEE 1471 sense, to
describe rationale and architectural knowledge.
The traditional gap between different artifacts of
the software engineering process has shown the

need to effectively and precisely capture and rep-
resent design decisions and their underlying ra-
tionale for later use, thus avoiding knowledge
vaporization.

We also believe that key architectural design
decisions should be recorded and documented; in
contrast, it’s not worth the effort to capture and
maintain all the microdecisions that happen along
a software system’s life. One adoption barrier for
capturing design decisions is the intrusiveness of
many of the processes listed in Figure 2, as they’re
not fully integrated into current software engineer-
ing practice. So, tools such as those mentioned in
the sidebar “Tools Supporting Design Rationale”

As Allen H. Dutoit and his colleagues pointed out in Rationale
Management in Software Engineering,1 the design ratio-
nale movement began in the early 1970s with Horst Rittel’s
Issue-Based Information System (IBIS), which supported de-
sign rationale in general. The IBIS approach and its succes-
sor gIBIS were applied to large-scale projects in the ’70s and
’80s. IBIS-based approaches included some basic features
supporting the design rationale and to discuss //???//
controversial questions that arise in design. On the basis of Rit-
tel’s approach, other tools such as PHI (Procedural Hierarchy
of Issues), QOC (Questions, Options, and Criteria), and DRL
(Design Representation Language) appeared in the field as
extensions of the IBIS tool. Other tools (Scram, C-ReCS, Seurat
(www.users.muohio.edu/burgeje/SEURAT), Sysiphus (http://
sysiphus.informatik.tu-muenchen.de), and Drimer) developed
between 1992 and 2004, provide simple solutions to manipu-
late knowledge and record decisions for a broad number of
software engineering processes.1 Since 2005, active research
has produced a number of tools supporting design rationale in
software architecture.

Here, we identify five representative research prototype
tools for capturing, using, managing, and documenting archi-
tectural design decisions.

Archium (www.archium.net) is a Java extension that pro-
vides traceability among a wide range of concepts (such as
requirements, decisions, architecture descriptions, and imple-
mentation artifacts) that are maintained during the system life
cycle. The Archium tool suite contains a compiler, a runtime
platform, and a visualization tool. The compiler turns Archium
source files into executable models for the runtime platform.
The visualization tool uses the runtime platform to visualize
and make accessible the architectural knowledge (AK).

The Architecture Rationale and Element Linkage (AREL,
www.ict.swin.edu.au/personal/atang/AREL-Tool.zip) is a UML-
based tool to help architects create and document architectur-
al designs with a focus on architectural decisions and design
rationale. AREL captures three types of AK: design concerns,

design decisions, and design outcomes. These knowledge enti-
ties are represented as standard UML entities and linked to
show their relationships.

The Process-based Architecture Knowledge Management
Environment (PAKME, http://193.1.97.13:8080) is a Web-based
tool that supports collaborative knowledge management for
the software architecture process. It’s built on top of the Hiper-
gate open source groupware platform. PAKME’s features can
be categorized into four AK management services: acquisition,
maintenance, retrieval, and presentation.

The Architecture Design Decision Support System (ADDSS,
http://triana.escet.urjc.es/ADDSS) is an ongoing Web-based
research prototype that captures design decisions using a
template list of mandatory and optional attributes. This tool
supports a combined strategy of codification and personaliza-
tion. Decisions are related to requirements and architectures.
The tool provides an automatic reporting system that produces
documents containing the decisions made for a given architec-
ture, the trace relationships from decisions to requirements and
architectures, and the trace relationships between decisions. In
addition, ADDSS users can navigate and visualize the architec-
tures and decisions, showing the system’s evolution over time.

The Knowledge Architect (http://search.cs.rug.nl/griffin) is
a tool suite for capturing, managing, and sharing AK using
a server and an AK repository. It’s accessed by three plug-in
clients: a Word client to capture and manage AK in MS Word
documents, a client that captures and manages the AK of
quantitative architectural analysis models using MS Excel, and
a visualization tool called the Knowledge Architect Explorer
that supports the analysis of the captured AK. This tool enables
the exploration of the AK by searching and navigating through
the web of traceability links among the knowledge entities.

Reference
	 1.	 A.H. Dutoit et al., eds., Rationale Management in Software Engineering,

Springer, 2006.

Tools Supporting Design Rationale

8	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

must be improved, adapted, and better integrated
to avoid duplicate efforts in capturing design de-
cisions. They should also be used to facilitate the
gradual introduction of new activities dealing
with design rationale, some of which relate to dis-
tributed-team decision making.

There’s often not much difference between the
software requirements or description of a well-
known design pattern and the explicit representa-
tion of a design decision. In many cases, a design
decision constitutes a replica of the requirement
that motivated that decision. As a result, the effort
to capture such decisions is considered duplicated,
because users of such tools often record the same
data. So, appropriate mechanisms should be pro-
vided to avoid recording the same information as
well as to streamline the capturing effort. These
mechanisms must be based on stronger tracing
and duplication-detection techniques.

The key goal of our current research is to high-
light the importance and impact of design ratio-
nale in software architecture activities in particu-
lar, and in software engineering from a broader
perspective. What will a fourth epiphany bring?
Despite the challenges of capturing the design ra-
tionale, the introduction of documented design
decisions will bring better ways to build and un-
derstand our software systems. Software archi-
tects and developers will also see the benefits of
considering decisions first-class entities, and they

will pursue better integration with other software
engineering artifacts. Hopefully, design decisions
and design rationale will be recognized in the up-
coming ISO/IEC 42010 standard.

References
	 1.	 W.W. Gibbs, “Software’s Chronic Crisis,” Scientific

American, September 1994, vol. 271, pp. 72–81.
	 2.	 P. Kruchten, H. Obbink, and J. Stafford, “The Past,

Present, and Future of Software Architecture,” IEEE
Software, vol. 23, no. 2, 2006, pp. 22–30.

	 3.	 D.E. Perry and A.L. Wolf, “Foundations for the Study
of Software Architecture,” ACM Software Eng. Notes,
vol. 17, no. 4, 1992, pp. 40–52.

	 4.	 P.. Kruchten, The Rational Unified Process--An Intro-
duction, 3rd ed., Addison-Wesley, 2003.

	 5.	 IEEE Std. 1471-2000, Recommended Practice for Ar-
chitectural Description of Software-Intensive Systems,
IEEE, 2000.

	 6.	 P. Kruchten, “The 4+1 View Model of Architecture,”
IEEE Software, vol. 12, no. 6, 1995, pp. 45–50.

	 7.	 C. Hofmeister, R. Nord, and D. Soni, Applied Software
Architecture, Addison-Wesley, 1999.

	 8.	 C. Hofmeister et al., “A General Model of Software
Architecture Design Derived from Five Industrial
Approaches,” J. Systems and Software, vol. 80, no. 1,
2007, pp. 106–126.

	 9.	 P. Clements et al., Documenting Software Architec-
tures: Views and Beyond, Addison-Wesley, 2002.

	10.	 N. Rozanski and E. Woods, Software Systems Architec-
ture, Addison-Wesley, 2005.

	11.	 I. Rus and M. Lindvall, “Knowledge Management in
Software Engineering,” IEEE Software, vol. 19, no. 3,
2002, pp. 26–38.

	12.	 J. Bosch, “Software Architecture: The Next Step,”
Proc. 1st European Workshop Software Architecture
(EWSA 04), LNCS 3047, Springer, 2004, pp. 194–199.

	13.	 P. Kruchten, P. Lago, and H. van Vliet, “Building Up
and Reasoning about Architectural Knowledge,” Proc.
2nd Int’l Conf. Quality of Software Architectures
(QoSA 06), LNCS 4214, Springer, 2006, pp. 43–58.

	14.	 J. Tyree and A. Akerman, “Architecture Decisions:
Demystifying Architecture,” IEEE Software, vol. 22,
no. 2, 2005, pp. 19–27.

	15.	 R. Capilla, F. Nava, and J.C. Dueñas, “Modeling and
Documenting the Evolution of Architectural Design
Decisions,” Proc. 2nd Workshop Sharing and Reusing
Architectural Knowledge Architecture, Rationale, and
Design Intent, IEEE CS Press, 2007, p. 9.

 	16.	T. Käkölä and J.C. Dueñas, eds., Software Product
Lines—Research Issues in Engineering and Manage-
ment, Springer, 2006.

	17.	 A.H. Dutoit et al., eds., Rationale Management in
Software Engineering, Springer, 2006.

	18.	 P. Lago and P. Avgeriou, “First ACM Workshop on
Sharing and Reusing Architectural Knowledge (Shark),”
ACM SIGSOFT Software Eng. Notes, vol. 31, no. 5,
2006, pp 32–36.

	19.	 D. Falessi, R. Capilla, and G. Cantone, “A Valued-
Based Approach for Documenting Design Decisions
Rationale: A Replicated Experiment,” Proc. 3rd Int’l
Workshop Sharing and Reusing Architectural Knowl-
edge (Shark 08), ACM Press, 2008, pp. 63–70.

	20.	 R. Capilla, F. Nava, and R. Carrillo, “Effort Estima-
tion in Capturing Architectural Knowledge,” Proc.
23rd IEEE/ACM Int’l Conf. Automated Software Eng.,
IEEE Press, 2008, pp. 208−217.

	21.	 J.C. Dueñas and R. Capilla, “The Decision View of
Software Architecture,” Proc. 2nd European Work-
shop Software Architecture (EWSA 05), LNCS 3047,
Springer, 2005, pp. 222–230.

About the Authors
Philippe Kruchten is a professor of software engineering in the University of
British Columbia’s Department of Electrical and Computer Engineering. He spent more
than 30 years in industry, working mostly with large software-intensive systems design in
telecommunication, defense, aerospace, and transportation domains. Kruchten directed
the development of the Rational Unified Process in 1995−2003. His research interests are
software architecture, particularly architectural decisions and the decision process, and soft-
ware engineering processes, particularly the application of agile processes in large, globally
distributed teams. He received his doctorate in computer science from the French Institute
of Telecommunications. He’s a senior member of the IEEE Computer Society, the founder of

Agile Vancouver, and a Professional Engineer. Contact him at pbk@ece.ubc.ca.

Juan C. Dueñas is a professor in the Telecommunications School, and currently the
deputy director of the Department of Telematics Engineering, at Universidad Politécnica de
Madrid. He received his PhD in telecommunications from the same university. His research
focuses on Internet services, service-oriented architectures, software architecture, software
engineering, and evolution. Dueñas coedited Software Product Lines: Research Issues in
Engineering and Management (Springer, 2006) and is a member of the IEEE. Contact him at
jcduenas@dit.upm.es.

Rafael Capilla is an assistant professor of software engineering in the Computer
Science Department at Universidad Rey Juan Carlos. He received his PhD in computer science
from the same university. His research interests include software architectures, product line
engineering, software variability, and Internet technologies. Capilla is a member of the IEEE
Computer Society. Contact him at rafael.capilla@urjc.es.

View publication statsView publication stats

https://www.researchgate.net/publication/220093619

©2022 Rafael Capilla Sevilla

Algunos derechos reservados

Este documento se distribuye bajo la licencia

“Atribución-CompartirIgual 4.0 Internacional” de Creative Commons,

disponible en

https://creativecommons.org/licenses/by-sa/4.0/deed.es

Es lícita la inclusión en una obra propia de fragmentos de otras ajenas

de naturaleza escrita, sonora o audiovisual, así como la de obras

aisladas de carácter plástico o fotográfico figurativo, siempre que se

trate de obras ya divulgadas y su inclusión se realice a título de cita o

para su análisis, comentario o juicio crítico. Tal utilización solo podrá

realizarse con fines docentes o de investigación, en la medida justificada

por el fin de esa incorporación e indicando la fuente y el nombre del

autor de la obra utilizada.

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/300623079

Reflective Approach for Software Design Decision Making

Conference Paper · April 2016

DOI: 10.1109/QRASA.2016.8

CITATIONS

9
READS

270

4 authors:

Some of the authors of this publication are also working on these related projects:

Sustainable Software View project

Dual Process Decision Making in the Software Design Process (PhD Project) View project

Maryam Razavian

Eindhoven University of Technology

37 PUBLICATIONS 375 CITATIONS

SEE PROFILE

Antony Tang

Swinburne University of Technology and VU University Amsterdam

77 PUBLICATIONS 2,093 CITATIONS

SEE PROFILE

Rafael Capilla

King Juan Carlos University

131 PUBLICATIONS 1,803 CITATIONS

SEE PROFILE

Patricia Lago

Vrije Universiteit Amsterdam, Amsterdam, Netherlands

263 PUBLICATIONS 3,837 CITATIONS

SEE PROFILE

All content following this page was uploaded by Rafael Capilla on 13 August 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/300623079_Reflective_Approach_for_Software_Design_Decision_Making?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/300623079_Reflective_Approach_for_Software_Design_Decision_Making?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Sustainable-Software?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Dual-Process-Decision-Making-in-the-Software-Design-Process-PhD-Project?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maryam_Razavian?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maryam_Razavian?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Eindhoven_University_of_Technology?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maryam_Razavian?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antony_Tang?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antony_Tang?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antony_Tang?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rafael_Capilla?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rafael_Capilla?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/King_Juan_Carlos_University?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rafael_Capilla?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patricia_Lago2?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patricia_Lago2?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patricia_Lago2?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rafael_Capilla?enrichId=rgreq-24b2c3c839bcda5bc3d395bf8e8b1c76-XXX&enrichSource=Y292ZXJQYWdlOzMwMDYyMzA3OTtBUzo2NTkwOTg1MDQ3OTgyMDhAMTUzNDE1MjczNzQwMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Reflective Approach for
Software Design Decision Making

Maryam Razavian
Eindhoven University

of Technology,

The Netherlands

Email: m.razavian@tue.nl

Antony Tang
Swinburne University

of Technology,

Australia

Email: atang@swin.edu.au

Rafael Capilla
Universidad Rey Juan Carlos,

Spain

Email: rafael.capilla@urjc.es

Patricia Lago
Vrije Universiteit Amsterdam,

The Netherlands

Email: p.lago@vu.nl

Abstract—Good software design practice is difficult to define
and teach. Despite the many software design methods and
processes that are available, the quality of software design relies
on human factors. We notice from literature and our own
experiments that some of these factors concern design reasoning
and reflection. In this paper, we propose a reflective approach
to software design decision making. The approach is built upon
Two-Minds model and is enabled by a set of problem-generic
reflective questions. We illustrate its usefulness in design sessions
with an example taken from preliminary experimentation.

Keywords—Design Decision Making, Reflection, Behavioral
Software Engineering

I. INTRODUCTION

It is well recognized in the software architecture commu-
nity that design rationale and decision making are important
aspects in software architecture design [1], [2]. There are many
models that deal with the artifacts such as decision models
or design rationale elements. However, these models and ele-
ments lack considerations of human factors in design, such as
cognitive biases, proper design reasoning and communication,
and reflection; all of which can affect decision making [3].
For instance, a designer who is biased towards one solution
can put misleading emphasis on its rationale. As such, having
rationale and decision models do not necessarily produce good
software architecture design.

Human issues are a well known problem in design decision
making [4]. It has been shown that people generally have a
pattern of deviation in judgment, due to biases such as sub-
jective representativeness of probability, bounded rationality,
satisficing [5] and so on [6]. As an initial attempt to overcome
some of the mentioned human issues, we discuss a design
decision making approach that treats design reasoning and
reflection as first class elements.

Novice software designers are trained to use design and
development methodologies such as object-oriented analysis
and design, RUP, or SCRUM. There is however few method-
ologies that address design thinking; i.e, how software design-
ers should think when designing. Design thinking has many
perspectives [7]. In this paper, we focus on two perspectives:
design reasoning and reflection.

Design reasoning is a process which helps a software
designer gather the right information, exploring relevant prob-
lems and synthesizing potential solutions. Studies such as the

twin peak model [8], various decision rationale models [1] and
design reasoning techniques [9] are available, but they do not
directly challenge the thinking behind such design reasoning.

Reflection helps to challenge the thinking behind design
reasoning. It can help to overcome human design thinking
issues such as cognitive biases, satisficing behavior and lack
of knowledge. Reflection helps to check and remind a designer
if appropriate information is gathered, relevant problems are
identified, and solution options and decisions are carefully
considered.

Existing software design approaches provide mechanisms
to carry out design steps, without any consideration how to
reason when making software design decisions. To fill this
gap, this paper takes the first crucial step by proposing an
approach that facilitates reflection on design decision making.
The approach is built upon the Two-Minds model for design
thinking, presented in [10]. Two-Minds, captures the interplay
of modes of thinking for design thinking at two levels: (a)
the design reasoning level called Mind 1; and (b) reflection
level called Mind 2. While the Two-Minds model provides
the structure of design thinking, in this work we focus on
the reflective questions that steer software design decision
making. Our proposed reflective questions target two very
different decision making approaches: rational and naturalistic
[11]. Naturalistic decision making is based mainly on intuition
and experience. Rational decision making relies on careful
reasoning and argumentation. With these two basic decision
making approaches, we explore our reflection method.

Section II explains the theoretical underpinnings of our
proposed reflective approach. Section III further discusses the
rational and naturalistic decision making approaches, in the
context of software design, as well as how our reflective
approach can steer each of the two. We experimented with
our reflection method using novice designers. It was found
that [10] those who use a reflective mind generally produced
better quality work. In this paper, we illustrate how reflective
questions work for novice in the design decision making
(Section IV). We conclude with a discussion of promising
future research directions.

II. BACKGROUND: SOFTWARE DESIGN THINKING MODEL

Software design has often been seen as a problem solving
exercise—that is, analyzing problems, finding solution options,
and making decisions. The process of challenging the thinking

behind such problem solving is not explored. For instance, are
there any implicit assumptions behind a design problem? Are
risks considered when a solution is proposed? How does one
decide if a requirement has priority over another requirement?
or if we are tackling the real problem? Are cognitive biases
involved in the problem solving? Facing such issues, we need
better ways to deal with the assumption that all designs can
come naturally without careful reasoning. But first we need a
model to represent design thinking.

We present a model for Software Design Thinking, called
Two-Minds, in [10] (see Fig. 1). Two-Minds reflects our theory
that software design thinking comprises the following modes
of thinking: (i) Mind 1 is the design reasoning mind with a
problem solving mindset; (ii) Mind 2 is the reflective mind with
a feedback mindset. Mind 1 is about design argumentation,
whereas Mind 2 is about conscious questioning and reflection
on how well we reason and argue with a design.

A. Mind 1: Design Reasoning

As illustrated in Fig. 1, Mind 1 carries out four generic
activities: Identifying Relevant Context and Requirements, For-
mulating and Structuring Design Problems, Creating Solution
Options, and evaluating the trade-offs of the potential solutions
to Make Decisions. Having the right requirements and the
relevant context can help to frame the right design problems
to solve [9]. As problems and solutions are often intertwined,
their explorations are also intertwining [12]. Accordingly,
Mind 1 bidirectional arrows in our model capture such co-
evolving exploration process in design reasoning.

Two points should be noted about Mind 1. First, although
Mind 1 emphasizes the use of the four key activities to reason
with a design it does not suggest the order of the activities.
The process of applying this model is incremental and iterative.
A design decision can spark new design problems, leading to
new design options and context. Second, covering all the four
activities is important for new and unfamiliar problems. As
designers, if we are familiar with the problem and the solution,
we might find it quite easy to solve that problem relying on
our experience—in such a case we might skip some of the
four reasoning steps when making a decision. However, if the
problem is new and unfamiliar, we need to gather relevant
requirements or premises, contemplate what problems to solve,
and potential solutions for satisfying a set of requirements
and context [13]—in such a case we are following a process
involving all four activities of Mind 1.

Let us consider a couple of examples of Mind 1 reasoning.
(1) To reason on which database to use, a designer asks
“Should we use PostgreSQL? Is it better to use JSON or SOAP
to transfer data?”. (2) To develop a required API, a designer
asks “Is it better to use JSON or XML to transfer data?”.
These design topics involve reasoning based on the technical
know-how and the context of a design.

B. Mind 2: Reflection

Mind 2 is about challenging designers’ thinking and rea-
soning. Just as any kind of reflection, it is difficult to step
out from of the current mindset and consider problem-solving

from a different level of abstraction. A reflective mind chal-
lenges one’s problem solving process, which does not consider
technical design details—it is about how well to reason.

As depicted in Fig. 1, our model includes four key areas
of design reflection (Mind 2).

• Reflect on the Contexts and Requirements. This reflec-
tion challenges if our reasoning is based on relevant
and adequate context and requirements. For instance,
if certain context and requirements are relevant to a
design argumentation or not; or if we have accurately
described certain requirements (e.g., performance) in
our argumentation.

• Reflect on Design Problems challenges if in our design
reasoning the design problems have been well artic-
ulated. For instance, design problems can be unclear,
imprecise and poorly articulated. Reflection is aimed
at challenging these situations [14].

• Reflect on Design Solutions. It challenges how design
solutions are arrived at. For example, sometimes de-
signers do not provide solution options even when
they exist; or a solution does not address any re-
quirements [15]. In these cases, reflection helps to
challenges the quality and the appropriateness of a
how a solution is arrived at.

• Reflect on Design Decisions. It challenges whether the
reasoning behind a design decision is sound and valid.
For instance, if during the problem-solving the pros
and cons of each solution options are considered.

To illustrate some examples of reflective mind compared
to reasoning mind, we refer to the reasoning examples from
Mind 1. A reflective Mind 2 would not only ask about what
to use, but it would ask about the criteria that dictate the
decision. Such as “What are some of the criteria that affects the
selection of a database? performance? portability?” or “What is
the criteria for a better protocol? payload overhead? language
support?” The reflective Mind 2 in these examples help a
designer to check his thinking and reflect on design decisions.

III. HOW REFLECTIVE QUESTIONS STEER SOFTWARE

DECISION MAKING

This section presents our reflective approach to software
design decision making. The approach is built upon Two-
Minds model and is enabled by a set of problem-generic
reflective questions.

A. Reflective Questions for Realizing Two-Minds

We propose reflective questions as a technique to trigger
reflection on design reasoning. As illustrated in Fig. 1, re-
flective questions are meant to prompt moving from each of
the activities of the reasoning mind (circles in the bottom of
Fig. 1) to the reflective mind (circles on top of Fig. 1). For
example, when identifying relevant context and requirements
a reflective question such as “what else do we need to
know?” would trigger the designer to reflect on context and
requirement. Reflective questions can be applied to context
and requirements (e.g., what else do I need to know?), design
problems (e.g., what is the problem?), design solutions (e.g.,

Identifying
Relevant

Context and
Requirements

Formulating &
Structuring

Design
Problems

Creating
Solution
Options

Making
Decision

Mind 1:
Design

Reasoning

Mind 2:
Reflections

Reflect
on Context and
Requirements

Reflect on
Design Problem

Reflect on
Solution
Option

Reflect on
Decision

Reflective
Questions

Fig. 1: Software Design Thinking Model - Mind 1 and Mind 2 [10]

do these solutions solve my problems), and one’s potential
biases in the evaluation of a decision (i.e. is the trade-off in
the decision fair?). So what reflective question should one ask
to challenge the design reasoning? Reflective questions can
be applied to context and requirements (e.g., what else do I
need to know?), design problems (e.g., what is the problem?),
design solutions (e.g., do these solutions solve my problems?),
and one’s potential biases in the evaluation of a decision (i.e.
is the trade-off in the decision fair?).

In our view reflective questions should pursue three goals:
(i) provide a common ground to challenge design reasoning,
(ii) be prevalent to software design endeavors and cover what
we already address in problem solving, i.e., context, designs
issues, design options, risks, and decisions, and (iii) be in-line
with how designers work.

With these goals in mind, we defined a set of reflec-
tive questions (see Table I), derived from design reasoning
techniques and customized for each of the design reasoning
activities of our model. Each question challenges the generic
design reasoning activities (referred to in the columns of
Table I), while the rows show the design reasoning techniques
the question belongs to, i.e., trade-off analysis, risk analysis,
assumption analysis, constraint analysis and problem analysis.
A summary of these techniques is reported in [9].

B. Prompting Rational and/or Naturalistic Decision Making

The reflective questions are meant to steer software archi-
tecture decision making. Decision making research, spanning
an extensive range of disciplines such as business, economics,
and psychology, have been focusing on various approaches of
design decision making, ranging from rational to naturalis-
tic [11].

Rational Decision Making (RDM) relies entirely on con-
scious understanding of all the design issues, analysis, and
reasoning. RDM is characterized by systematic exploration of

alternative options, rating options based on predefined set of
criteria, resulting in logical arguments in favor or against those
options [16]. This kind of decision making places a heavy load
on cognition. Naturalistic Decision Making (NDM), provides
a rather different account of how designers make decisions:
through expertise and experience, designers learn to recognize
situations and match them with a set of solutions that they
know would work; if the match is not so strong the designers
stimulate how actual solution might play out in the new
situation and make the necessary modifications. This way of
decision making is simpler and faster, and it has the added
advantage that decisions are taken quickly [11].

RDM prescribes a rational way of design decision making.
In NDM, a designer follows the perception of the relative
desirability of the available options [17]. By attaining that
understanding, a designer, is able to identify the most robust
option, those that are more probable to turn out favorably under
widest range of possible options. Robust options are in contrast
to optimal options in RDM, options that score highest based
on a set of predefined criteria.

The Two-Minds model examines a phenomenon common
to both RDM and NDM: being aware of design context, issues,
and options. Although RDM and NDM represent different
approaches to decision making, there is no inconsistency
between the role of reflection in the two: questioning and
challenging the way decisions are made. Two-Minds model
is effectively orthogonal to RDM and NDM design decision
making: Mind 1 and Mind 2 encapsulate common activities
in each of RDM and NDM, however, with different focuses:
RDM emphasizes accuracy and completeness, while NDM
emphasizes expertise and complexity [11]. More specifically,
for each of Mind 1 activities (see bottom of Fig. 1):

• When Identifying Context and Requirements RDM
requires that the context is defined accurately and
sufficiently. NDM, however, focuses on understanding

TABLE I: Reflective questions used by Mind 2 to reflect on Mind 1 [10]

Design Reasoning Activities

Design Contexts and
Requirements

Design Problems Design Solutions Decision Making

Assumption Anal-
ysis

Q1. What assumptions
are made?

Q2. Do the assumptions
affect the design prob-
lem?

Q3. Do the assumptions
affect the solution op-
tion?

Q4. Is an assumption ac-
ceptable in a decision?

Te
ch

ni
qu

es

Risk Analysis Q5. What are the risks
that certain events would
happen?

Q6. How do the risks
cause design problems?

Q7. How do the risks
affect the viability of a
solution?

Q8. Is the risk of a de-
cision acceptable? What
can be done to mitigate
the risks?

Constraint Analy-
sis

Q9. What are the con-
straints imposed by the
context?

Q10. How do the
constraints cause design
problems?

Q11. How do the con-
straints limit the solution
options?

Q12. Can any constraints
be relaxed when making
a decision?

R
ea

so
ni

ng

Problem Analysis Q13. What are the con-
text and the requirements
of this system? What
does this context mean?

Q14. What are the design
problems? Which are the
important problems that
need to be solved? What
does this problem mean?

Q15. What potential so-
lutions can solve this
problem?

Q16. Are there other
problems to follow up in
this decision?

D
es

ig
n

Tradeoff Analysis Q17. What context can
be compromised?

Q18. Can a problem be
framed differently?

Q19. What are the solu-
tion options? Can a so-
lution option be compro-
mised?

Q20. Are the pros and
cons of each solution
treated fairly? What is
an optimal solution after
tradeoff?

the complexity of the context (e.g., contradicting goals
or assumptions) as well as available expertise (e.g.,
skills and experiences of designers).

• For Formulating & Structuring Design Problems
RDM focuses on accurate formulation of all relevant
design issues, while NDM emphasizes critical design
issues and plausible goals.

• When Creating Solution Options RDM aims at explor-
ing the complete list of options, while NDM focuses
on workable options, based on past experiences or
what experts foresee as being plausible.

• For Making Decisions, RDM evaluate the options
based on a set of known assumptions, constraints and
qualities, in order to select the optimal option. NDM,
however, focuses on evaluation of existing options
in complex scenarios, in order to choose the robust
option.

As noted, what Mind 2 does, i.e., challenging the four reason-
ing activities, is common to both RDM and NDM approaches.
The differences between RDM and NDM lies in “what” needs
to be challenged. Hence, the reflective questions should register
the differences between each of Mind 1 activities in RDM and
NDM, as discussed above. We propose a paired down list of
reflective questions for each of RDM and NDM approaches
(see Table II and Table III). Those questions are defined
based on the different focus of each of the RDM and NDM
approaches as described above and customized for each of the
design reasoning activities (presented in brackets in Table II
and Table III).

On one hand, the seven RDM-inspired reflective questions
(see Table II) help to structure the design problems, generate
alternative options, and evaluate them based on set of known
assumptions, constraints and qualities. For instance, if a de-
signer thinks that there are certain risks in the design, then
he/she can pose the RDM-inspired question of “What can
potentially go wrong with. . . ?”(Q4 in Table II). Consider the
case where in a design session the ‘circular buffer’ is selected

as a way to realize a FIFO queuing mechanism. A question
like “What can go wrong with the choice of using a circular
buffer?” can help formulating and structuring the consequent
design problems, such as, “expanding a circular buffer re-
quires shifting memory, which is comparatively costly”. As
an alternative option a designer could argue “for arbitrarily
expanding queues, a linked list approach may be preferred
instead”.
On the other hand, the seven NDM-inspired reflective ques-
tions (see Table III) can help to characterize the context
and requirements, recognizing common problems, representing
design solutions and their potential outcomes, and providing
means to think in new ways about the underlying reasons
for variations in potential outcomes and enabling addressing
hidden complexity. For instance, and NDM-inspired questions
like “Is this solution workable for . . . ”. This reflective question
enables designers to recognize situations and match them with
a set of solutions that they know would work. Consider the
case where in a design session ‘Amazon S3 Web Services’ is
selected as a solution for storage of data objects (e.g., hotels
info). A question like “Does S3 work for querying detailed info
like hotels with swimming pool?” (i.e., customized based on
Q5 in Table III) can help identify the necessary modifications.
As an answer a designer might argue: “We need to introduce a
certain file naming scheme like hotels with/without swimming
pool”.
It should be noted that, extreme forms of pure rational or
naturalistic decision making are unlikely to happen in software
design development. In practice, software designers use a
combination of both rational and naturalistic approaches [17].
This means that in any design session, a combination of RDM-
and NDM-inspired questions can be used. While the reflective
questions enable prompting each of the RDM and/or NDM
approaches, when/how RDM and NDM should be used is yet
unknown. One possible factor is designer’s expertise, discussed
in the following.

C. Steering Decision Making based on Designer’s Expertise

Much emphasis is placed on the role of expertise in deci-
sion making and significant difference of novice and experts.

TABLE II: RDM-inspired Reflective Questions

Reflective Questions based on RDM

Q1. What are the most important. . . ? [Identifying Context and Requirements]
What are the most important requirements here?
Which design consideration is more important to the user, A or B?

Q2. How does that address. . . ? [Identifying Context and Requirements]
How does that address the requirement of having to authenticate individual transaction?
How do we deal with the fact that no programmers in the team know JQuery?

Q3. What is your reason for. . . ? [Formulating Design Problems]
What is the reason for selecting service oriented architecture?
Why do you use asynchronous communication protocol?

Q4. What can potentially go wrong with. . . ? [Formulating Design Problems]
What can go wrong with the choice of using a circular buffer?
What are risks with the confidentiality of user data?

Q5. What problems are you solving with. . . ? [Formulating Design Problems]
What problems are you solving with migration to the cloud?
What are the design problems to consider in designing a controller for a self-guiding robot?

Q6. What are the alternatives to. . . ? [Creating Solution Options]
What are the alternatives to using the cloud?
Can you use another data structure?

Q7. What are the potential limitations to. . . ? [Making Decisions]
What are the potential limitations to choosing MySQL Lite?
How would the assumption on the transaction rate of MySQL Lite influence the performance of your system?

TABLE III: NDM-inspired Reflective Questions

Reflective questions based on NDM

Q1. Is this context familiar where. . . ? [Identifying Context and Requirements]
Have we faced this situation before?
What are the commonalities between the current situation and the one experienced before?

Q2. Have we addressed this goal before when. . . ? [Identifying Context and Requirements]
Have we addressed integration of silo systems before?
How do we deal with security this time?

Q3. What goals are plausible when. . . ? [Formulating Design Problems]
Can we achieve flexibility when selecting service oriented architecture?
What was our gain in using asynchronous communication protocol before?

Q4. Have we faced similar problems in. . . ? [Formulating Design Problems]
Did we face the data interoperability problem in project. . . ?
What was the performance problem in. . . ?

Q5. Is this solution workable for. . . ? [Creating Solution Options]
Does Amazon Web Services work for our storage problem?
What is the typical solution for avoiding data leakage?

Q6. What will the outcome look like when. . . ? [Making Decisions]
What will the performance be if we use MySQL Lite?
How will the controller component look like in a self-guiding robot?

Q7. Does the outcome fulfill. . . ? [Making Decisions]
Did using cloud fulfill our energy efficiency expectations?
Can we need to modify our security solution?

Although NDM captures what experienced designers do, it
does not specify how we can determine whether software
designers are experts. Some argue that expertise is a contin-
uum, and there are boundaries and voids within all designer’s
expertise whether they have 5 or 25 years of experience [18].
Software designers make decisions across domains where there
are disagreements about what the appropriate action should be.
When problems are familiar and well defined, designers are
able to map the situation to the one experienced previously
and quickly come to conclusion regarding robust options,
without having to resort to a rational approach [17]. In such

cases, NDM-inspired reflective questions like “what did I do
last time that worked?”, could help to steer decision making.
However, when problems are new and uncertain and the
designers have limited experience, it is difficult for designers
to envision which options are more likely to be desirable and
result in a successful decision. To steer such decision making,
we conjecture that use of RDM-inspired reflective questions
like such as “based on what criteria the options should be
compared?” can better facilitate decision making. Reflective
questions proposed in Table II and Table III are a pragmatic
way support both RDM and NDM approaches depending on

a designer’s design approach and expertise.

IV. STEERING RATIONAL DECISION MAKING OF NOVICE

DESIGNERS

Good design decision making is an acquired skill. Novice
or inexperienced software designer, no matter how relatively
skilled they are, simply will not have enough collection of
known and experienced situations, problems or working solu-
tions to pattern match current situations or problems. Thus a
novice’s use of NDM is limited. For this reason, we explored
the use of the RDM-inspired questions (see Table II) with
novice software designers, in the context of an experiment [10].
In what follows we explain how those reflective questions
steered the rational decision making of novice designers.

Before the design sessions, we taught students the generic
design reasoning activities (See bottom of Fig. 1) and design
reasoning techniques such as QOC [19] (Mind 1). However,
we did not teach or inform the students about reflection or
reflective questions (Mind 2). We participated in the design
sessions of student teams and posed reflective questions from
Table II. In a way, we played the role of “reflection advocate”,
a designer in the team who observes the thinking behind the
design process and when necessary triggers the reflective mind.
As reflective advocates we followed one rule: we did not
provide design suggestions or give design solutions, we only
asked questions.

The design dialogue shown in Table IV captures part of a
design session in a design team. Design dialogue represents the
thinking behind a design—it represents the identifiable states
of Mind 1 and Mind 2 in group design situation. We used
the RDM-inspired reflective questions and contextualized them
based on our conversation to trigger novice designers to use
the reflective mind (Mind 2). Throughout the design session
when the discussion was deviating from rational approach,
we triggered Mind 2. For instance, when the context was
not explored sufficiently, or argumentation was not carefully
constructed, and options were not scored based on a set of
criteria, we posed a reflective question.

We use the design dialogue shown in Table IV to illustrate
how reflective questions help rational decision making. The
dialogue starts with the students discussing their envisioned
solution without discussing the problem. As the reflection
advocate, we observed that there is insufficient problem under-
standing. Rational approach, however, demands understanding,
formulating and structuring the problem before selecting a
solution. Thus, to prompt students to reflect on design issues,
we posed a reflective question (line 1 in Table IV). As an
answer to the reflective question, the student raised the issue
of security (line 2). The student used the word “security”
vaguely without a clear notion of what it means to their
system. This issue, however, was vaguely formulated. Rational
decision making, conversely, aims at accuracy of information,
allowing precise analysis of problem and solutions. Noticing
this, we sought further clarification of the context to see if the
students understood why confidentiality was relevant in this
situation. By asking how the students defined confidentiality,
we prompted them to reflect on the design issue (line 3); the
answer given was superficial and no further information was
given in this answer (line 4). At this point, we made another

attempt asking the student to phrase the design issues in the
form of a question (line 5); in answering this question the issue
became more articulated (in line 6). Interestingly, reflective
questions had triggered students to find other design issues
(line 7).

We see that the three reflective questions helped the stu-
dents to some extent fulfill two of the key requirements of
rational decision making approach: accuracy and completeness
of design issues [16]. It helped the to step out and Reflect
on Design Problem. Such reflection allowed them to frame
their design problems from a generic confidentiality issue to
specific design issues that needed to be solved. In other words,
it helped them to improve the Formulating & Structuring
Design Problems in their reasoning and make it more accurate
(accuracy of design issues). It also led them to identify addi-
tional relevant design issues (completeness of design issues).
Ultimately, rational decision making approach advocates that
high quality problem formulation is a foundation of good
design.

In a nutshell, our initial findings suggest that it is worth-
while to inject reflective questions in the software design teams
to challenge rational decision making in a more structured way.

V. DISCUSSION AND OUTLOOK

Studies in design science tell us that people can make
biased design decisions. However, software engineering design
approaches and models have barely addressed how human
factors influence design. One of these human factors is the
inability of a software designer to reflect on one’s reasoning.
By treating this human factor as a first class element, we
proposed a reflective approach to software design decision
making. We have shown in a previous work that reflection has
a positive impact on the quality of design decision making.
However, the systematic practice of reflection and reasoning
requires more empirical studies and experiments to understand
how reflection leads to better software design decisions: What
questions to ask and when to ask them? What reflective
questions are effective? And under what circumstances? Does
personality play a role? This knowledge will allow us to
improve software design, in three ways:

a) Towards complementing RDM with NDM: Before
naturalistic decision making (NDM) was introduced, decision
making researchers primarily focused on rational decision
making (RDM), that is systematic and thorough identification
of decisions among alternatives. With the rise of naturalistic
decision making and the research on biases (e.g., Kahneman
et al. [4]) it was known that designers do not always adhere to
the principles of RDM; designers often rely on their intuition
rather than reasoning. They mostly do not generate alternative
options or evaluate the options based on predefined set of
criteria. However, in the software architecture field researchers
have mainly focused on a rationalistic approach on software
architecture decision making. Most of the work focused on
generating and documenting design options, decisions, and
their rationale. However, extreme forms of pure rational or
naturalistic decision making are unlikely to appear in any soft-
ware design and development endeavor. In practice, software
designers use a combination of both rational and naturalistic
approaches [17]. For instance, intuition, a key element of

TABLE IV: An Example of Reflective Approach in Design Sessions

Design Dialogue Interpretation

0. Student 3: We should design a service for admis-
sion of students. The students from all over the world
should be able to enter the required information.

The students had a discussion about the type of solution they envision
without thinking about the problem.

1. Reflection Advocate: What are your design issues
for this business service? (Q5 in Table II)

This was a reflective question to prompt the students to identify the
design issues before thinking about solutions.

2. Student 3: The most important one is security,
because we need the data to be confidential.

The student identified on security as a design issue, and tried to justify
why it was an issue

3. Reflection Advocate: What does confidentiality
mean for your domain? (Q3)

We sought further clarification of the context to make student reflect
on why confidentiality was relevant in this situation and provide an
accurate definition.

4. Student 3: It means that the data of student is only
visible to authorized people.

The answer given was superficial and no further information was given
in this answer.

5. Reflection Advocate: Can you rephrase this issue
as a question? (Q2)

This reflective question prompted the students to look at the design
issue from another perspective.

6. Student 3: How to make sure the data of students
remain confidential?

One student added data confidentially as a design issue, providing more
specific issues to be addressed.

7. Student 1: We also have another issue about
authorization Let’s say “how to authorize admission
staff?”

Another student added user authorization as a design issue, a separate
security issue but also specific to security.

naturalistic approach, can be traced in many design discourses
and documents. Some elements of rationalistic approach, such
as documenting the decision rationale, has been introduced
in practice to support sound reasoning—though not always
achieved—as desirable goal [20]. How the two should be
balanced and combined, is still an open question.

b) Complexity and software designers in action: In
the software architecture field (including our experiment with
Two-Minds) we have been trying to identify when designers
are suboptimal; when do they fail to make sound arguments
and make optimal decisions. We conjecture that we should
shift our focus on how software designers make decisions
under tough circumstances such as limited time, uncertainty,
and unstable conditions; how people use their experience to
recognize a situation and generate fitting solutions rather than
making a choice from a set of predefined options. NDM
researchers in fields such as medicine [21], business [22], and
economy [4], had already been studying these kinds of issues.
There is an urgent need for research clarifying the problems
and needs of software designers when dealing with complexity.

c) Integrating Two-Minds into software design prac-
tice: We argue that with the Two-Minds model software
teams can systematically reflect on their design activities to
achieve better results. To put Two-Minds model into practice,
one can integrate it into existing design approaches such
as agile methods. Being people-centric, agile methods rely
on interaction and (for design activities) conversation about
design among developers. This is an environment that naturally
encourages argumentation and reflection about the thinking
behind the design. In the future we plan to study how to
realize such integration. Thus, while generally applicable, it
seems especially promising to integrate the Two-Minds model
in existing agile practices. This would help reflecting on design
reasoning e.g., by introducing the role of “reflection advocate”,
a role similar to the role we played in the design sessions
with students. The reflection advocate is an outsider in the
design endeavor who often have different starting positions,
challenge assumptions, and raise alternative interpretations of
the problem.

REFERENCES

[1] D. Falessi, L. C. Briand, G. Cantone, R. Capilla, and P. Kruchten, “The
value of design rationale information,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 22, no. 3, p. 21, 2013.

[2] C. Zannier, M. Chiasson, and F. Maurer, “A model of design decision
making based on empirical results of interviews with software design-
ers,” Information and Software Technology, vol. 49, no. 6, pp. 637–653,
2007, qualitative Software Engineering Research.

[3] H. van Vliet and A. Tang, “Decision making in software architecture,”
Journal of Systems and Software, pp. –, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121216000157

[4] D. Kahneman, Thinking, fast and slow. Penguin, 2011.

[5] A. Tang and H. van Vliet, Software Designers Satisfice. Springer
International Publishing, 2015, vol. 9278, ch. 9, pp. 105–120.

[6] M. Petre, A. van der Hoek, and A. Baker, “Editorial,” Design Studies,
vol. 31, no. 6, pp. 533 – 544, 2010, special Issue Studying Professional
Software Design.

[7] K. Dorst, “The core of “design thinking” and its application,” Design
Studies, vol. 32, no. 6, pp. 521 – 532, 2011, interpreting Design
Thinking.

[8] B. Nuseibeh, “Weaving Together Requirements and Architecture,” IEEE
Computer, vol. 34, no. 3, pp. 115–119, March 2001.

[9] A. Tang and P. Lago, “Notes on design reasoning techniques (v1.4),”
Swinburne University of Technology, Tech. Rep., 2010.

[10] M. Razavian, A. Tang, R. Capilla, and P. Lago, “In Two Minds: How
Reflections Influence Software Architecture Design Thinking,” Journal
of Software: Evolution and Process [In Press], 2016.

[11] G. Klein, “Naturalistic decision making,” Human Factors: The Journal
of the Human Factors and Ergonomics Society, vol. 50, no. 3, pp. 456–
460, 2008.

[12] K. Dorst and N. Cross, “Creativity in the design space: co-evolution of
problem-solution,” Design Studies, vol. 22, no. 5, pp. 425–437, 2001.

[13] A. Tang and H. van Vliet, “Design strategy and software design
effectiveness,” IEEE Software, vol. Jan-Feb, pp. 51–55, 2012.

[14] K. Dorst, “Design problems and design paradoxes,” Design issues,
vol. 22, no. 3, pp. 4–17, 2006.

[15] A. Tang and M. F. Lau, “Software architecture review by association,”
Journal of Systems and Software, vol. 88, no. 0, pp. 87–101, 2014.

[16] D. Parnas and P. Clements, “A Rational Design Process: How and Why
to Fake it,” IEEE Transactions on Software Engineering, vol. 12, no. 2,
pp. 251–257, 1986.

[17] M. S. Pfaff, G. L. Klein, J. L. Drury, S. P. Moon, Y. Liu, and
S. O. Entezari, “Supporting complex decision making through option
awareness,” Journal of Cognitive Engineering and Decision Making,
vol. 7, no. 2, pp. 155–178, 2013.

[18] R. S. Adams, S. R. Daly, L. M. Mann, and G. Dall’Alba, “Being
a professional: Three lenses into design thinking, acting, and being,”
Design Studies, vol. 32, no. 6, pp. 588–607, 2011.

[19] A. Maclean, R. Young, V. Bellotti, and T. Moran, “Questions, Options
and Criteria: Elements of Design Space Analysis,” in Design Rationale:
Concepts, Techniques and Use, T. Moran and J. Carroll, Eds. Lawrence
Erlbaum Associates, 1996, ch. 3, pp. 53–106.

[20] M. Jackson, “Formalism and intuition in software engineering,” in
Perspectives on the Future of Software Engineering. Springer, 2013,
pp. 335–347.

[21] A. S. Elstein, L. S. Shulman, and S. A. Sprafka, “Medical problem
solving an analysis of clinical reasoning,” 1978.

[22] D. J. Isenberg, How senior managers think. Open University Press,
1991.

View publication statsView publication stats

https://www.researchgate.net/publication/300623079

