
0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E 	 March/April 2010 I E E E S O F T W A R E � 81

feature

such recommendations ensures that the more
complex modules receive greater scrutiny. How-
ever, our recent findings imply that, given limited
and a fixed amount of resources, focusing on the
smaller modules would lead to more effective de-
fect detection.1–3 So, it’s important to understand
the mechanisms behind those findings to make
the case for amending current practices.

Research has shown that higher module de-
pendencies, also called higher coupling, result in
more defects by increasing the likelihood of in-
terface defects.6–10 “Coupling” as we use it here
corresponds to the concept of fan-out (depend-
ing on other modules). It doesn’t mean fan-in (be-
ing depended upon by other modules) because
the literature shows no consistent evidence that a
module’s fan-in is related to its defect-proneness.
Relying on the evidence from the literature, we

formulated a testable hypothesis of relative depen-
dency (RD) for software modules:

HRD: Smaller modules are proportionally
more coupled.

HRD requires us to study the size-coupling re-
lationship for software modules. So far, the em-
pirical evidence has shown a positive correlation
between module size and coupling because of
their monotonically increasing relationship.11–13
However, those findings aren’t enough to test
HRD because correlations don’t imply propor-
tionality between the two variables.

To investigate proportionality, we performed
an empirical study of data from multiple sys-
tems. The results confirmed HRD and led us to
formulate the theory of relative dependency:

O ur recent research on several large-scale software products has consis-
tently shown that smaller modules are proportionally more defect prone.1–3
These findings challenge the common recommendations from the litera-
ture suggesting that quality assurance (QA) and quality control (QC) re-

sources should focus on larger modules. Those recommendations are based on the un-
founded assumption that a monotonically increasing linear relationship exists between
module size and defects.1–4 Given that complexity is correlated with size,5 following

Our observations on
large-scale software
systems lead to an
empirically based
theory that smaller
modules will be
proportionally more
dependent compared
to larger ones.

A. Güneş Koru, University of Maryland, Baltimore County

Khaled El Emam, University of Ottawa

The Theory
of Relative Dependency:
Higher Coupling Concentration
in Smaller Modules

s o f t war e m e a s ur em en t and qua l i t y

Authorized licensed use limited to: University of Ottawa. Downloaded on July 14,2010 at 14:40:23 UTC from IEEE Xplore. Restrictions apply.

82	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

In large-scale software systems, smaller
modules will be proportionally more de-
pendent compared to larger ones.

This theory, along with our findings, has im-
portant implications for software practice, es-
pecially for projects involving considerable
refactoring.

Methods
We performed measurements and tested HRD on
14 open source object-oriented (OO) products
from different development teams: the Mozilla 1.0
Web browser and 13 products in KOffice 1.6.3,
an office suite. The release dates for Mozilla 1.0

and KOffice 1.6.3 were 5 June 2002 and 7 June
2007, respectively. Table 1 lists the products and
their functionality; the list of products covers a
wide range of functionalities and measurement
characteristics.

Data Collection
We measured size in physical LOC excluding
blank lines and lines including only comments. To
measure coupling, we used two OO metrics de-
fined by Shyam Chidamber and his colleagues:14

■■ Coupling between object classes (CBO) is the
number of other classes whose methods or at-
tributes are used.

Table 1
The analyzed products, their functionality,

and descriptive statistics for their size and coupling data

LOC
Coupling between

object classes (CBO)*
Depth of

inheritance tree (DIT)*

Min. Median Max. Total Min. Median Max. Total Min. Median Max. Total

Mozilla Web
browser

4,971 1 59.0 12,408 990,571 0 4.0 157 37,210 0 1 9 8,393

KWord Word
processing

224 6 66.0 6,634 44,473 0 7.0 185 2,239 0 1 3 237

KSpread Spreadsheet 284 1 65.5 5,159 67,508 0 5.5 103 2,368 0 1 3 252

KPre-
senter

Presentation 178 9 89.5 5,884 47,204 0 5.0 150 1,666 0 1 4 212

Kexi Data
management

628 4 54.0 3,460 80,795 0 5.0 83 4,787 0 1 4 621

KPlato Project
management

218 7 41.0 1,354 23,884 0 4.0 68 1,337 0 1 3 277

Kivio Diagramming 130 5 75.5 1,955 23,721 0 5.0 84 1,049 0 1 3 131

Krita Painting and
image editing

700 3 43.0 2,965 74,604 0 4.0 126 4,315 0 1 5 1,025

KChart Chart
drawing

85 9 144.0 6,700 31,368 0 7.0 28 612 0 1 3 89

Karbon Scalable-
vector
drawing

183 9 92.0 1,293 26,468 1 7.0 81 1,588 0 1 3 247

KFilters Conversion
between file
formats

954 1 50.5 2,151 133,688 0 2.0 98 3,964 0 1 5 683

KO.
Library

KOffice
library

699 3 62.0 2,716 104,609 0 4.0 56 4,569 0 1 8 793

Kugar Generating
business-
quality
reports

55 15 52.0 847 6,765 0 3.0 29 298 0 1 5 108

KFor-
mula

Formula
editor for
KOffice

17 8 38.0 404 1,337 0 0 15 50 0 1 2 19

*CBO indicates the number of other classes whose methods or attributes are used; DIT indicates the maximum depth of a class in the inheritance tree from the root class.

Fu
nc

tio
na

lit
y

Pr
od

uc
t

No
. o

f
cl

as
se

s

Authorized licensed use limited to: University of Ottawa. Downloaded on July 14,2010 at 14:40:23 UTC from IEEE Xplore. Restrictions apply.

	 March/April 2010 I E E E S O F T W A R E � 83

■■ Depth of inheritance tree (DIT) is the maxi-
mum depth of a class in the inheritance tree
from the root class.

We considered only application (product) classes,
not those in the C++ libraries. Empirical studies
of software engineering have commonly used all
three metrics.

In OO programming, classes are considered
to be logically cohesive development units, or
modules, organized in an inheritance hierarchy.
So, we must consider DIT to better understand
class dependencies. Indeed, Chidamber and his
colleagues stated that DIT is “a measure of how
many ancestor classes can potentially affect this
class,” which exactly describes the dependencies
of a child class to its ancestors.

We performed the measurements at the class
level using a mature static-code-analysis tool, Un-
derstand for C++ (www.scitools.com). For each
class, we took into account its header and imple-
mentation files during the size measurements.
As a result of our measurements, we created a
distinct data set for each product, with the data
points corresponding to the C++ classes in the
product. Each data point included three numeric
values for LOC, CBO, and DIT.

Table 1 includes the descriptive statistics for
the data sets for the products in this study.

Data Analysis
For each product, we plotted a concentration curve
and produced a concentration index (C) to visual-
ize and quantify the inequality of CBO concentra-
tion with respect to module size. We repeated this
process for DIT. For more on concentration curves
and indices, see the “Using Concentration Curves
and Indices” sidebar.

Results
Figure 1 displays the concentration curves for
all the products. All the curves except the CBO
curve for KFormula are above the equality line,
clearly showing that coupling is concentrated in
smaller modules. For example, in KChart, the
smallest module sizes adding up to 20 percent
of the total size had more than 50 percent of the
total CBO. In all plots, the inequalities with re-
spect to size were even greater for DIT. For ex-
ample, in KSpread, the source lines in the small-
est modules adding up to 20 percent of the total
size had almost 80 percent of the total DIT.

Figure 2 shows bar plots for the concentra-
tion indices. The estimate of C is the value on
the y-axis corresponding to the bar’s center. A

bar’s length shows the 95 percent confidence
interval. For ease of reference, the figure also
shows the numeric values of C and its confidence
intervals.

Figure 2 shows that, for all products except
KFormula, not only the point estimates of C
but also the 95 percent confidence intervals stay
above the zero line (the dashed horizontal line),
showing statistical significance. For KFormula,
the point estimate for C is also positive; however,
its confidence interval reaches below zero. This
is understandable because KFormula is a small
product providing only 17 data points, which
makes it difficult to reject the equality of CBO
concentration (C = 0) with enough confidence.

Figure 2 presents compelling quantitative evi-
dence that, in general, coupling is concentrated
more in the lines of source code in smaller mod-
ules. So, smaller modules are proportionally
more coupled than larger modules. This strongly
supports HRD.

How Code Refactoring
Affects Coupling Concentration
Refactoring basically means improving soft-
ware design without changing its functionality.15
Martin Fowler and his colleagues stress the ne-
cessity of refactoring because software design
typically decays over time as developers add or
change functionality.15 So, refactoring is inher-
ent in software design and maintenance and is
particularly favored in agile development.

When discussing “code smells,” Fowler
and his colleagues stress that the first three
smells in the “stink parade” are duplicated
code, long method, and large class.15 So,
the expert advice directly suggests focusing
refactoring first (or more) on larger modules.
Some of the other code smells such as feature
envy and shotgun surgery recommend focus-
ing on tightly coupled classes to reduce their
dependency, which is in concordance with
the traditional advice given to practitioners.
Yoshio Kataoka and his colleagues reported
that experts’ subjective judgment on refactor-
ing’s effectiveness correlated with coupling
reductions.16

Indirectly, more emphasis on highly coupled
modules also means more emphasis on larger
modules, for two reasons:

■■ As we mentioned before, a well-established
correlation exists between size and coupling.

■■ Mika Mäntylä and his colleagues examined
the correlations between code smells.17 They

Authorized licensed use limited to: University of Ottawa. Downloaded on July 14,2010 at 14:40:23 UTC from IEEE Xplore. Restrictions apply.

84	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

found that the Spearman correlation between
large class (which is concerned with size)
and feature envy (which is concerned with
coupling) was 0.59 and significant at a = 0.01.

We also examined whether refactoring tools’
smell detection rules detect larger classes. Bor-
land Together (www.borland.com/us/products/
together), a Java IDE, includes a refactoring tool.

0 20 40 60 80 100

100

80

60

40

20

0

Mozilla KWord KSpread KPresenter

Concentration curve for CBO
Concentration curve for DIT
Concentration equality with respect to LOC

x-axis: Cumulative percentage of total lines
y-axis: Cumulative percentage of total coupling as measured
 by CBO or DIT

Legend

0 20 40 60 80 100

100

80

60

40

20

0
0 20 40 60 80 100

100

80

60

40

20

0
0 20 40 60 80 100

100

80

60

40

20

0

0 20 40 60 80 100 0 20 40 60 80 100

100

80

60

40

20

0
0 20 40 60 80 100

100

80

60

40

20

0
0 20 40 60 80 100

100

80

60

40

20

0

100

80

60

40

20

0

Kexi KPlato Kivio Krita

0 20 40 60 80 100 0 20 40 60 80 100

100

80

60

40

20

0
0 20 40 60 80 100

100

80

60

40

20

0
0 20 40 60 80 100

100

80

60

40

20

0

100

80

60

40

20

0

KChart Karbon

0 20 40 60 80 100 0 20 40 60 80 100

100

80

60

40

20

0

100

80

60

40

20

0

Kugar KFormula

KFilters KO. Library

Figure 1. Concentration curves for coupling between object classes (CBO) and depth of inheritance tree (DIT), for all
products tested. The x- and y-axes represent the cumulative proportion of total LOC and CBO or DIT, respectively. The
curves are plotted for unique class sizes sorted from the smallest to the largest and marked along the x-axis from left
to right. All the curves except KFormula’s CBO curve are above the equality line, showing that coupling is concentrated
in smaller modules.

Authorized licensed use limited to: University of Ottawa. Downloaded on July 14,2010 at 14:40:23 UTC from IEEE Xplore. Restrictions apply.

	 March/April 2010 I E E E S O F T W A R E � 85

Because the tool supports smell detection for only
Java programs, we detected the code smells in
JBoss (www.jboss.org), an open source Java appli-
cation server. (JBoss isn’t in Table 1 because Under-
stand for C++ analyzed C++ source code.) Borland
Together detected 7,991 classes in JBoss.

Table 2 shows that, for each smell other than
refused bequest, a statistically significant size dif-
ference existed between the classes having the
smell and those not having it. For the rest of the
code smells, the percentiles for median size rank-
ings were very high, directing developers’ attention
to larger modules.

All this evidence suggests that larger classes will
more likely be refactored.

Fortunately, we were also able to investigate
the effect of refactoring on coupling concentration
empirically. In the Kivio and Karbon projects, the
developers were specifically requested to perform
refactoring before an upcoming big release, KOf-
fice 2.0. (We archived this announcement at www.
webcitation.org/5SrjtxRoj.) At the time of writ-
ing, the fourth alpha release of KOffice 2.0 had
occurred. When we examined the Kivio sources
for this release and compared them with the 1.6.3
release, we saw that Kivio was almost unchanged,
showing no signs of refactoring. However, for Kar-
bon, we observed that refactoring had indeed taken
place in the alpha release.

The Karbon 1.6.3 release (before refactoring)

(a)

(b)

Co
nc

en
tra

tio
n

in
de

x
(C

)

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

Mozilla KWord KSpread KPresenter Kexi KPlato Kivio Krita KChart Karbon KFilters KO.
Library

Kugar KFormula

0.34 0.34
0.41

0.32 0.31 0.34 0.31
0.36

0.6

0.24

0.36 0.35
0.31

0.35
0.31 0.31

0.36

0.27 0.26
0.3

0.23
0.31

0.51

0.19

0.31 0.32

0.17

0.08

0.29 0.27
0.31

0.21 0.22 0.25

0.15

0.26

0.42

0.14

0.26 0.29

0.02

–0.2

Co
nc

en
tra

tio
n

in
de

x
(C

)

Mozilla KWord KSpread KPresenter Kexi KPlato Kivio Krita KChart Karbon KFilters KO.
Library

Kugar KFormula

0.74 0.77

0.88

0.77

0.63

0.75 0.72
0.66

0.79

0.63

0.74 0.74 0.74

0.87

0.69 0.69
0.76

0.7

0.57

0.71

0.59 0.59
0.67

0.52

0.68 0.68
0.64

0.69
0.65

0.61 0.63 0.63

0.51

0.66

0.46
0.53 0.55

0.41

0.62 0.63

0.54 0.51

Figure 2. Coupling concentration index (C) values with their confidence intervals for all products studied. (a) CBO
and (b) DIT. C > 0 means that smaller modules are proportionally more coupled. The results indicate that, in general,
coupling is concentrated more in the lines of source code in smaller modules.

Authorized licensed use limited to: University of Ottawa. Downloaded on July 14,2010 at 14:40:23 UTC from IEEE Xplore. Restrictions apply.

86	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

Table 2
Code smells in JBoss as determined by Borland Together,

with data about classes having the smells*

Code smell
Number of classes
with this smell

Statistical size comparison with classes not
having the smell (p-value from the Wilcoxon
rank-sum test)

Median size ranking for classes
having this smell (%, with 100%
being the largest size)

Duplicated code 64 <2.2e-16 95.95

Long method 226 <2.2e-16 95.84

Large class 59 <2.2e-16 98.60

Shotgun surgery 199 <2.2e-16 84.88

Feature envy 48 <2.2e-16 94.14

Message chains 90 4.441e-16 80.23

Refused bequest 221 0.60 49.59

Data class 25 6.286e-06 74.57

*We obtained the median ranking after assigning a size rank to each class (we computed an average rank value for equal rankings) and then finding the median-rank value for the sizes having the code smell.

had 183 classes with 26,468 total LOC, with a
median class size of 92 LOC. Ninety-six classes
were changed, 48 were added, and 66 were de-
leted. After refactoring, Karbon had 163 classes
with 20,617 total LOC, with a median class size

of 81 LOC. These numbers show that refactoring
affected much of the system. In the resulting alpha
version, the newly added classes were significantly
smaller than the others (the Wilcoxon rank-sum
test gives p = 0.005). No size difference existed be-

While investigating the inequality of coupling with respect
to size, we adopted concentration curves and indices. This
approach is widely used in healthcare and public health to
measure a health outcome’s inequality with respect to a met-
ric indicating socioeconomic status.1

Usually, plotting a concentration curve involves plotting
the cumulative proportion of the ill-health variable (for ex-
ample, infant mortality or the number of heart attacks) on the
y-axis against the cumulative proportion of the population
on the x-axis, ordered from lowest to highest socioeconomic

status (for example, income or education). Figure
A shows such a typical curve, using an ill-health
variable.

If there’s no inequality of ill health related to
socioeconomic status, the concentration curve
follows the 45-degree line (diagonal), which is
called the equality line. If ill health is concen-
trated in the disadvantaged socioeconomic
levels, the concentration curve rises above the
equality line as in Figure A. If the advantaged
socioeconomic levels had a higher concentra-
tion of ill health, the curve would drop below
the equality line.

The ordering along the x-axis can be at the
individual or group level.1 The groups usually

Using Concentration Curves and Indices

1

0

Cu
m

ul
at

iv
e

pr
op

or
tio

n
of

 il
l h

ea
lth

Cumulative proportion of people
(sorted from lowest to highest socioeconomic status)

0 1

Figure A. A typical concentration curve
used in health research. In this case, the
curve indicates a higher concentration of
ill health in disadvantaged socioeconomic
levels.

Authorized licensed use limited to: University of Ottawa. Downloaded on July 14,2010 at 14:40:23 UTC from IEEE Xplore. Restrictions apply.

	 March/April 2010 I E E E S O F T W A R E � 87

tween the removed and nonremoved classes.
Refactoring didn’t affect DIT values signifi-

cantly. However, among the modified classes,
CBO increased proportionally more for smaller
classes. The CBO ratio (CBO after refactoring
divided by CBO before refactoring) decreased as
class size increased, giving a Spearman’s correla-
tion of -0.32, which was highly significant (p =
0.002). The CBO concentration index was 0.18
before refactoring and 0.23 after it, showing that
coupling was concentrated even more in smaller
classes after refactoring.

So, overall, the Karbon analysis shows that
refactoring

■■ produced more classes that were smaller and
■■ disproportionately increased coupling for
smaller classes.

Refactoring activities seem likely to increase
the concentration of coupling in smaller modules.
Given that refactoring is continuous, especially
for agile development projects,18 this result sug-
gests that systems developed with agile methods

will likely face an increasing concentration of
coupling in smaller modules. So, giving a higher
priority to smaller modules for defect detection
will be even more important. As always, in such
decisions, developers should also consider other
available information about software modules
such as their fan-in, business importance, and
operational profile, as we stressed in our earlier
research.1–3

Limitations
As with any empirical study, our study has lim-
itations. Certainly, it is possible to use or derive
some metrics other than LOC, CBO, and DIT.
However, software researchers have widely ad-
opted, validated, and accepted these metrics. Fu-
ture studies could collect additional measures of
size and coupling to compare their results with
ours.

Our results are limited to the concentration of
dependencies over source code lines with respect
to module size. Future studies could also investi-
gate the effect of refactoring on the size-coupling
relationship in more depth and whether some of

correspond to some welfare categories—for example, the
income categories for neighborhoods described as very
poor, poor, middle-class, rich, and very rich. In the grouped
case, the group sums are used to calculate the proportions of
people and ill health.

By definition, the concentration index (denoted with C),
which is the measure of inequality, is twice the area between
the concentration curve and the equality line. This area is the
shaded part of Figure A. The socioeconomic-related inequal-
ity of ill health increases as the shaded area increases. C
becomes zero when the concentration curve exactly overlaps
with the equality line. It can take any value between +1 and
-1. In our research, when the curve rises above the equality
line, C increases toward +1; it decreases toward -1 when the
curve drops below the equality line. (In health-related fields,
C usually decreases when the curve rises above the equality
line because ill health for the disadvantaged [or poor] is a
more common and undesirable phenomenon. We followed
the opposite of this convention to simplify the presentation in
the main article.)

For the products in our study, we plotted the cumulative
proportion of total coupling (on the y-axis) versus the cumu-
lative proportion of total lines of source code (on the x-axis)
grouped and ordered by class size. That is, we adopted
the grouped case we just explained and used class size (in
a way similar to the welfare categories) to group lines of
source code. In this scheme, each unique class size formed

a size category. Then, we ordered the size categories from
the smallest to largest and calculated the cumulative propor-
tions for each category to draw the concentration curves and
to calculate C. We calculated the variance and confidence
interval for C using the method detailed by Nanak Kakwani
and his colleagues.1

When this process is followed, if our hypothesis is true,
coupling should be concentrated in the source lines in small-
er modules, and the concentration curves obtained should
resemble the one in Figure A rising above the equality line.
Such a curve’s C value should be positive, and, if the concen-
tration effect is significant, the 95 percent confidence interval
for C should remain above zero.

To summarize, the concentration curve lets us visualize the
nonlinear relationship between module size and coupling.
The concentration index, C, quantitatively summarizes the
visual information that curve presents. The sign of C indicates
the coupling concentration’s direction (that is, positive when
coupling is concentrated in the source code lines in smaller
modules, and vice versa). Its absolute value shows the con-
centration’s strength; its statistical significance is important
and should be calculated.

Reference
	 1.	 N. Kakwani, A. Wagstaff, and E. Van Doorslaer, “Socioeconomic

Inequalities in Health: Measurement, Computation, and Statistical Infer-
ence,” J. Econometrics, vol. 77, no. 1, 1997, pp. 87–103.

Authorized licensed use limited to: University of Ottawa. Downloaded on July 14,2010 at 14:40:23 UTC from IEEE Xplore. Restrictions apply.

88	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

the process and people characteristics (developer
skill or experience, testing or inspection effort,
and so on) have any effect on this relationship.

O ur study has two implications for practice.
First, our findings provide a plau-

sible mechanism to explain why smaller
modules have proportionally more defects as ob-
served in our earlier studies and in Victor Basili
and Barry Perricone’s research (see the “Basili and
Perricone’s Work on Module Size and Defect Den-
sity” sidebar). Coupling is concentrated more in
the smaller modules, making them proportionally
more defect-prone. This evidence will be useful to
practitioners when they seek resources or support
to amend or revise their organizations’ QA and
QC practices.

Second, refactoring exacerbates the coupling
concentration in smaller modules. So, for projects
that refactor extensively, focusing defect detection
and correction on smaller modules will increase
the QA and QC effectiveness even more.

Certainly, we don’t claim that software devel-
opers should avoid refactoring. Refactoring is es-
sential for software development and maintenance
because of its system-wide benefits. Our findings
are only about the effect of refactoring on cou-
pling concentration with respect to module size,
which has implications in terms of the effective-
ness and efficiency of focused defect detection ac-
tivities often performed with limited resources.

Empirical studies investigating our findings
and their implications will further contribute to

the software field’s knowledge and capacity to de-
velop and maintain high-quality software systems
effectively and efficiently.

Acknowledgments
We thank the associate editor and the anonymous
reviewers for their useful and constructive feedback.
We also thank Vic Basili, Dave Card, Barbara Kitch-
enham, Tim Menzies, and Carolyn Seaman for their
feedback on earlier drafts of this article.

References
	 1.	 A.G. Koru et al., “Theory of Relative Defect Prone-

ness,” Empirical Software Eng., vol. 13, no. 5, 2008,
pp. 473–498.

	 2.	 A.G. Koru et al., “An Investigation into the Functional
Form of the Size-Defect Relationship for Software Mod-
ules,” IEEE Trans. Software Eng., vol. 35, no. 2, 2009,
pp. 293–304.

	 3.	 A.G. Koru et al., “Testing the Theory of Relative Defect
Proneness for Closed-Source Software,” to be published
in Empirical Software Eng.

	 4.	 K. El Emam et al., “The Optimal Class Size for Object-
Oriented Software,” IEEE Trans. Software Eng., vol.
28, no. 5, 2002, pp. 494–509.

	 5.	 N. Fenton and S.L. Pfleeger, Software Metrics: A Rigor-
ous and Practical Approach, 2nd ed., PWS Publishing,
1996.

	 6.	 J.H. Hayes et al., “Fault Links: Exploring the Relation-
ship between Module and Fault Types,” Dependable
Computing—EDCC 2005, LNCS 3463, Springer,
2005, pp. 415–434.

	 7.	 D.E. Perry, “Programmer Productivity in the Inscape
Environment,” Proc. IEEE Global Communications
Conf. (Globecom 86), IEEE Press, 1986, pp. 428–434.

	 8.	 D.E. Perry and W.M. Evangelist, “An Empirical Study
of Software Interface Errors,” Proc. IEEE Int’l Symp.
New Directions in Computing, IEEE Press, 1985, pp.
32–38.

	 9.	 D.E. Perry and W.M. Evangelist, “An Empirical Study
of Software Interface Faults—an Update,” Proc. 20th
Ann. Hawaii Int’l Conf. Systems Sciences (HICSS 20),
IEEE Press, 1987, pp. 113–126.

Victor Basili and Barry Perricone studied defect density for
different size groups and observed higher defect density
for smaller modules.1 However, their analysis suffered from
artificial ratio correlations.2,3 When defect density is plotted
against size or tabulated against size groups, even randomly
generated data will show higher defect density for smaller
modules because size is in the denominator of the derived
metric, defect density.

Nevertheless, Basili and Perricone concluded that smaller
modules are proportionally more problematic; our recent
findings4–6 concur with their observation. Then, they specu-
lated that the equal distribution of interface defects over
smaller and larger modules could have been responsible
for their finding, which implies that smaller modules had
proportionally more interface defects. Their definition of in-
terface defects was “those (defects) that were associated with
structures existing outside the module’s local environment but

which the module used.”1 This definition exactly describes the
defects associated with coupling. So, our findings in the main
article about a higher concentration of coupling in smaller
modules shows that Basili and Perricone’s speculation was
plausible.

References
	 1.	 V.R. Basili and B.T. Perricone, “Software Errors and Complexity: An

Empirical Investigation,” Comm. ACM, vol. 27, no. 1, 1984, pp. 42–52.
	 2.	 K. El Emam et al., “The Optimal Class Size for Object-Oriented Soft-

ware,” IEEE Trans. Software Eng., vol. 28, no. 5, 2002, pp. 494–509.
	 3.	 J. Rosenberg, “Some Misconceptions about Lines of Code,” Proc. 4th Int’l

Symp. Software Metrics (Metrics 97), IEEE CS Press, 1997, pp. 137–142.
	 4.	 A.G. Koru et al., “Theory of Relative Defect Proneness,” Empirical Soft-

ware Eng., vol. 13, no. 5, 2008, pp. 473–498.
	 5.	 A.G. Koru et al., “An Investigation into the Functional Form of the Size-

Defect Relationship for Software Modules,” IEEE Trans. Software Eng.,
vol. 35, no. 2, 2009, pp. 293–304.

	 6.	 A.G. Koru et al., “Testing the Theory of Relative Defect Proneness for
Closed-Source Software,” to be published in Empirical Software Eng.

Basili and Perricone’s Work on Module Size and Defect Density

Authorized licensed use limited to: University of Ottawa. Downloaded on July 14,2010 at 14:40:23 UTC from IEEE Xplore. Restrictions apply.

	 March/April 2010 I E E E S O F T W A R E � 89

	10.	 D.E. Perry and C.S. Stieg, “Software Faults in Evolving
a Large, Real-Time System: A Case Study,” Proc. 4th
European Conf. Software Eng., Springer, 1993, pp.
48–67.

	11.	 L.C. Briand et al., “Exploring the Relationships
between Design Measures and Software Quality in
Object-Oriented Systems,” J. Systems and Software,
vol. 51, no. 3, 2000, pp. 245–273.

	12.	 K. El Emam et al., “The Confounding Effect of Class
Size on the Validity of Object-Oriented Metrics,”
IEEE Trans. Software Eng., vol. 27, no. 7, 2001, pp.
630–650.

	13.	 T. Gyimothy, R. Ferenc, and I. Siket, “Empirical Vali
dation of Object-Oriented Metrics on Open Source
Software for Fault Prediction,” IEEE Trans. Software
Eng., vol. 31, no. 10, 2005, pp. 897–910.

	14.	 S.R. Chidamber, D.P. Darcy, and C.F. Kemerer, “Mana-
gerial Use of Metrics for Object-Oriented Software: An
Exploratory Analysis,” IEEE Trans. Software Eng., vol.
248, no. 1998, pp. 629–639.

	15.	 M. Fowler et al., Refactoring: Improving the Design of
Existing Code, Addison-Wesley Professional, 1999.

	16.	 Y. Kataoka et al., “A Quantitative Evaluation of Main-
tainability Enhancement by Refactoring,” Proc. IEEE
Int’l Conf. Software Maintenance, IEEE CS Press,
2002, pp. 576–585.

	17.	 M. Mäntylä, J. Vanhanen, and C. Lassenius, “A Tax-
onomy and an Initial Empirical Study of Bad Smells in
Code,” Proc. IEEE Int’l Conf. Software Maintenance,
IEEE CS Press, 2003, pp. 381–384.

	18.	 K. Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley, 2000.

About the Authors

A. Güneş Koru is an assistant professor in the Department of Information Systems
at the University of Maryland, Baltimore County. His research interests include software
quality, measurement, maintenance, and evolution; open source software; bioinformatics;
and healthcare informatics. Koru has a PhD in computer science from Southern Methodist
University. He’s the program chair for the Promise (Predictive Models in Software Engineer-
ing) 2010 conference. Contact him at gkoru@umbc.edu; http://umbc.edu/~gkoru.

Khaled El Emam is an associate professor at the University of Ottawa’s Faculty of
Medicine and School of Information Technology and Engineering. He is a Canada Research
Chair in Electronic Health Information at the university. El Emam has a PhD from the Depart-
ment of Electrical and Electronics Engineering, King’s College, University of London. Contact
him at kelemam@uottawa.ca; www.ehealthinformation.ca.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

Advertising Sales
Representatives

Recruitment:

Mid Atlantic
Lisa Rinaldo
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: lr.ieeemedia@
ieee.org

New England
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@
ieee.org

Southeast
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@
mindspring.com

Midwest/Southwest
Darcy Giovingo
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: dg.ieeemedia@
ieee.org

Northwest/Southern CA
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Japan
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Europe
Heleen Vodegel
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@
impressmedia.com

Product:

US East
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: db.ieeemedia@
ieee.org

US Central
Darcy Giovingo
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: dg.ieeemedia@ieee.org

US West
Lynne Stickrod
Phone: +1 415 931 9782
Fax: +1 415 931 9782
Email: ls.ieeemedia@ieee.org

Europe
Sven Anacker
Phone: +49 202 27169 11
Fax: +49 202 27169 20
Email: sanacker@
intermediapartners.de

Advertiser� Page
ICSE 2010� 32
John Wiley & Sons� 1
Nu Info Systems, Inc.� 8
Saturn 2010� Cover 2
Seapine Software� Cover 4
XP 2010� 7

Advertising Personnel
Marion Delaney
IEEE Media, Advertising Dir.
Phone: +1 415 863 4717
Email: md.ieeemedia@ieee.org

Marian Anderson
Sr. Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
Sr. Business Development Mgr.
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

ADVERTISER INFORMATION
MARCH/APRIL 2010 • IEEE SOFTWARE

Authorized licensed use limited to: University of Ottawa. Downloaded on July 14,2010 at 14:40:23 UTC from IEEE Xplore. Restrictions apply.

