
0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0  ©  2 0 1 0  I E E E 	 March/April 2010   I E E E  S O F T W A R E � 81

feature

such recommendations ensures that the more 
complex modules receive greater scrutiny. How-
ever, our recent findings imply that, given limited 
and a fixed amount of resources, focusing on the 
smaller modules would lead to more effective de-
fect detection.1–3 So, it’s important to understand 
the mechanisms behind those findings to make 
the case for amending current practices.

Research has shown that higher module de-
pendencies, also called higher coupling, result in 
more defects by increasing the likelihood of in-
terface defects.6–10 “Coupling” as we use it here 
corresponds to the concept of fan-out (depend-
ing on other modules). It doesn’t mean fan-in (be-
ing depended upon by other modules) because 
the literature shows no consistent evidence that a 
module’s fan-in is related to its defect-proneness. 
Relying on the evidence from the literature, we 

formulated a testable hypothesis of relative depen-
dency (RD) for software modules:

HRD: Smaller modules are proportionally 
more coupled.

HRD requires us to study the size-coupling re-
lationship for software modules. So far, the em-
pirical evidence has shown a positive correlation 
between module size and coupling because of 
their monotonically increasing relationship.11–13 
However, those findings aren’t enough to test 
HRD because correlations don’t imply propor-
tionality between the two variables.

To investigate proportionality, we performed 
an empirical study of data from multiple sys-
tems. The results confirmed HRD and led us to 
formulate the theory of relative dependency:

O ur recent research on several large-scale software products has consis-
tently shown that smaller modules are proportionally more defect prone.1–3 
These findings challenge the common recommendations from the litera-
ture suggesting that quality assurance (QA) and quality control (QC) re-

sources should focus on larger modules. Those recommendations are based on the un-
founded assumption that a monotonically increasing linear relationship exists between 
module size and defects.1–4 Given that complexity is correlated with size,5 following
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In large-scale software systems, smaller 
modules will be proportionally more de-
pendent compared to larger ones.

This theory, along with our findings, has im-
portant implications for software practice, es-
pecially for projects involving considerable 
refactoring.

Methods
We performed measurements and tested HRD on 
14 open source object-oriented (OO) products 
from different development teams: the Mozilla 1.0 
Web browser and 13 products in KOffice 1.6.3, 
an office suite. The release dates for Mozilla 1.0 

and KOffice 1.6.3 were 5 June 2002 and 7 June 
2007, respectively. Table 1 lists the products and 
their functionality; the list of products covers a 
wide range of functionalities and measurement 
characteristics.

Data Collection
We measured size in physical LOC excluding 
blank lines and lines including only comments. To 
measure coupling, we used two OO metrics de-
fined by Shyam Chidamber and his colleagues:14

■■ Coupling between object classes (CBO) is the 
number of other classes whose methods or at-
tributes are used.

Table 1
The analyzed products, their functionality,  

and descriptive statistics for their size and coupling data

LOC
Coupling between  

object classes (CBO)*
Depth of  

inheritance tree (DIT)*

Min. Median Max. Total Min. Median Max. Total Min. Median Max. Total

Mozilla Web  
browser

4,971 1 59.0 12,408 990,571 0 4.0 157 37,210 0 1 9 8,393

KWord Word  
processing

224 6 66.0 6,634 44,473 0 7.0 185 2,239 0 1 3 237

KSpread Spreadsheet 284 1 65.5 5,159 67,508 0 5.5 103 2,368 0 1 3 252

KPre-
senter

Presentation 178 9 89.5 5,884 47,204 0 5.0 150 1,666 0 1 4 212

Kexi Data  
management

628 4 54.0 3,460 80,795 0 5.0 83 4,787 0 1 4 621

KPlato Project  
management

218 7 41.0 1,354 23,884 0 4.0 68 1,337 0 1 3 277

Kivio Diagramming 130 5 75.5 1,955 23,721 0 5.0 84 1,049 0 1 3 131

Krita Painting and 
image editing

700 3 43.0 2,965 74,604 0 4.0 126 4,315 0 1 5 1,025

KChart Chart  
drawing

85 9 144.0 6,700 31,368 0 7.0 28 612 0 1 3 89

Karbon Scalable-
vector  
drawing

183 9 92.0 1,293 26,468 1 7.0 81 1,588 0 1 3 247

KFilters Conversion 
between file 
formats

954 1 50.5 2,151 133,688 0 2.0 98 3,964 0 1 5 683

KO. 
Library

KOffice 
library

699 3 62.0 2,716 104,609 0 4.0 56 4,569 0 1 8 793

Kugar Generating 
business-
quality 
reports

55 15 52.0 847 6,765 0 3.0 29 298 0 1 5 108

KFor-
mula

Formula 
editor for 
KOffice

17 8 38.0 404 1,337 0 0 15 50 0 1 2 19

*CBO indicates the number of other classes whose methods or attributes are used; DIT indicates the maximum depth of a class in the inheritance tree from the root class.
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■■ Depth of inheritance tree (DIT) is the maxi-
mum depth of a class in the inheritance tree 
from the root class.

We considered only application (product) classes, 
not those in the C++ libraries. Empirical studies 
of software engineering have commonly used all 
three metrics.

In OO programming, classes are considered 
to be logically cohesive development units, or 
modules, organized in an inheritance hierarchy. 
So, we must consider DIT to better understand 
class dependencies. Indeed, Chidamber and his 
colleagues stated that DIT is “a measure of how 
many ancestor classes can potentially affect this 
class,” which exactly describes the dependencies 
of a child class to its ancestors.

We performed the measurements at the class 
level using a mature static-code-analysis tool, Un-
derstand for C++ (www.scitools.com). For each 
class, we took into account its header and imple-
mentation files during the size measurements. 
As a result of our measurements, we created a 
distinct data set for each product, with the data 
points corresponding to the C++ classes in the 
product. Each data point included three numeric 
values for LOC, CBO, and DIT.

Table 1 includes the descriptive statistics for 
the data sets for the products in this study.

Data Analysis
For each product, we plotted a concentration curve 
and produced a concentration index (C) to visual-
ize and quantify the inequality of CBO concentra-
tion with respect to module size. We repeated this 
process for DIT. For more on concentration curves 
and indices, see the “Using Concentration Curves 
and Indices” sidebar.

Results
Figure 1 displays the concentration curves for 
all the products. All the curves except the CBO 
curve for KFormula are above the equality line, 
clearly showing that coupling is concentrated in 
smaller modules. For example, in KChart, the 
smallest module sizes adding up to 20 percent 
of the total size had more than 50 percent of the 
total CBO. In all plots, the inequalities with re-
spect to size were even greater for DIT. For ex-
ample, in KSpread, the source lines in the small-
est modules adding up to 20 percent of the total 
size had almost 80 percent of the total DIT.

Figure 2 shows bar plots for the concentra-
tion indices. The estimate of C is the value on 
the y-axis corresponding to the bar’s center. A 

bar’s length shows the 95 percent confidence 
interval. For ease of reference, the figure also 
shows the numeric values of C and its confidence 
intervals.

Figure 2 shows that, for all products except 
KFormula, not only the point estimates of C 
but also the 95 percent confidence intervals stay 
above the zero line (the dashed horizontal line), 
showing statistical significance. For KFormula, 
the point estimate for C is also positive; however, 
its confidence interval reaches below zero. This 
is understandable because KFormula is a small 
product providing only 17 data points, which 
makes it difficult to reject the equality of CBO 
concentration (C = 0) with enough confidence.

Figure 2 presents compelling quantitative evi-
dence that, in general, coupling is concentrated 
more in the lines of source code in smaller mod-
ules. So, smaller modules are proportionally 
more coupled than larger modules. This strongly 
supports HRD.

How Code Refactoring  
Affects Coupling Concentration
Refactoring basically means improving soft-
ware design without changing its functionality.15 
Martin Fowler and his colleagues stress the ne-
cessity of refactoring because software design 
typically decays over time as developers add or 
change functionality.15 So, refactoring is inher-
ent in software design and maintenance and is 
particularly favored in agile development.

When discussing “code smells,” Fowler 
and his colleagues stress that the first three 
smells in the “stink parade” are duplicated 
code, long method, and large class.15 So, 
the expert advice directly suggests focusing 
refactoring first (or more) on larger modules. 
Some of the other code smells such as feature 
envy and shotgun surgery recommend focus-
ing on tightly coupled classes to reduce their 
dependency, which is in concordance with 
the traditional advice given to practitioners. 
Yoshio Kataoka and his colleagues reported 
that experts’ subjective judgment on refactor-
ing’s effectiveness correlated with coupling 
reductions.16

Indirectly, more emphasis on highly coupled 
modules also means more emphasis on larger 
modules, for two reasons:

■■ As we mentioned before, a well-established 
correlation exists between size and coupling.

■■ Mika Mäntylä and his colleagues examined 
the correlations between code smells.17 They 
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found that the Spearman correlation between 
large class (which is concerned with size) 
and feature envy (which is concerned with  
coupling) was 0.59 and significant at a = 0.01.

We also examined whether refactoring tools’ 
smell detection rules detect larger classes. Bor-
land Together (www.borland.com/us/products/
together), a Java IDE, includes a refactoring tool. 
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Figure 1. Concentration curves for coupling between object classes (CBO) and depth of inheritance tree (DIT), for all 
products tested. The x- and y-axes represent the cumulative proportion of total LOC and CBO or DIT, respectively. The 
curves are plotted for unique class sizes sorted from the smallest to the largest and marked along the x-axis from left 
to right. All the curves except KFormula’s CBO curve are above the equality line, showing that coupling is concentrated 
in smaller modules.
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Because the tool supports smell detection for only 
Java programs, we detected the code smells in 
JBoss (www.jboss.org), an open source Java appli-
cation server. (JBoss isn’t in Table 1 because Under-
stand for C++ analyzed C++ source code.) Borland 
Together detected 7,991 classes in JBoss.

Table 2 shows that, for each smell other than 
refused bequest, a statistically significant size dif-
ference existed between the classes having the 
smell and those not having it. For the rest of the 
code smells, the percentiles for median size rank-
ings were very high, directing developers’ attention 
to larger modules.

All this evidence suggests that larger classes will 
more likely be refactored.

Fortunately, we were also able to investigate 
the effect of refactoring on coupling concentration 
empirically. In the Kivio and Karbon projects, the 
developers were specifically requested to perform 
refactoring before an upcoming big release, KOf-
fice 2.0. (We archived this announcement at www. 
webcitation.org/5SrjtxRoj.) At the time of writ-
ing, the fourth alpha release of KOffice 2.0 had 
occurred. When we examined the Kivio sources 
for this release and compared them with the 1.6.3 
release, we saw that Kivio was almost unchanged, 
showing no signs of refactoring. However, for Kar-
bon, we observed that refactoring had indeed taken 
place in the alpha release.

The Karbon 1.6.3 release (before refactoring) 
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Figure 2. Coupling concentration index (C) values with their confidence intervals for all products studied. (a) CBO 
and (b) DIT. C > 0 means that smaller modules are proportionally more coupled. The results indicate that, in general, 
coupling is concentrated more in the lines of source code in smaller modules.
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Table 2
Code smells in JBoss as determined by Borland Together,  

with data about classes having the smells*

Code smell
Number of classes 
with this smell

Statistical size comparison with classes not 
having the smell (p-value from the Wilcoxon 
rank-sum test)

Median size ranking for classes  
having this smell (%, with 100%  
being the largest size)

Duplicated code 64 <2.2e-16 95.95

Long method 226 <2.2e-16 95.84

Large class 59 <2.2e-16 98.60

Shotgun surgery 199 <2.2e-16 84.88

Feature envy 48 <2.2e-16 94.14

Message chains 90 4.441e-16 80.23

Refused bequest 221 0.60 49.59

Data class 25 6.286e-06 74.57

*We obtained the median ranking after assigning a size rank to each class (we computed an average rank value for equal rankings) and then finding the median-rank value for the sizes having the code smell.

had 183 classes with 26,468 total LOC, with a 
median class size of 92 LOC. Ninety-six classes 
were changed, 48 were added, and 66 were de-
leted. After refactoring, Karbon had 163 classes 
with 20,617 total LOC, with a median class size 

of 81 LOC. These numbers show that refactoring 
affected much of the system. In the resulting alpha 
version, the newly added classes were significantly 
smaller than the others (the Wilcoxon rank-sum 
test gives p = 0.005). No size difference existed be-

 
While investigating the inequality of coupling with respect 
to size, we adopted concentration curves and indices. This 
approach is widely used in healthcare and public health to 
measure a health outcome’s inequality with respect to a met-
ric indicating socioeconomic status.1

Usually, plotting a concentration curve involves plotting 
the cumulative proportion of the ill-health variable (for ex-
ample, infant mortality or the number of heart attacks) on the 
y-axis against the cumulative proportion of the population 
on the x-axis, ordered from lowest to highest socioeconomic 

status (for example, income or education). Figure 
A shows such a typical curve, using an ill-health 
variable.

If there’s no inequality of ill health related to 
socioeconomic status, the concentration curve 
follows the 45-degree line (diagonal), which is 
called the equality line. If ill health is concen-
trated in the disadvantaged socioeconomic 
levels, the concentration curve rises above the 
equality line as in Figure A. If the advantaged 
socioeconomic levels had a higher concentra-
tion of ill health, the curve would drop below 
the equality line.

The ordering along the x-axis can be at the 
individual or group level.1 The groups usually 
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tween the removed and nonremoved classes.
Refactoring didn’t affect DIT values signifi-

cantly. However, among the modified classes, 
CBO increased proportionally more for smaller 
classes. The CBO ratio (CBO after refactoring 
divided by CBO before refactoring) decreased as 
class size increased, giving a Spearman’s correla-
tion of -0.32, which was highly significant (p = 
0.002). The CBO concentration index was 0.18 
before refactoring and 0.23 after it, showing that 
coupling was concentrated even more in smaller 
classes after refactoring.

So, overall, the Karbon analysis shows that 
refactoring

■■ produced more classes that were smaller and
■■ disproportionately increased coupling for 
smaller classes.

Refactoring activities seem likely to increase 
the concentration of coupling in smaller modules. 
Given that refactoring is continuous, especially 
for agile development projects,18 this result sug-
gests that systems developed with agile methods 

will likely face an increasing concentration of 
coupling in smaller modules. So, giving a higher 
priority to smaller modules for defect detection 
will be even more important. As always, in such 
decisions, developers should also consider other 
available information about software modules 
such as their fan-in, business importance, and 
operational profile, as we stressed in our earlier 
research.1–3

Limitations
As with any empirical study, our study has lim-
itations. Certainly, it is possible to use or derive 
some metrics other than LOC, CBO, and DIT. 
However, software researchers have widely ad-
opted, validated, and accepted these metrics. Fu-
ture studies could collect additional measures of 
size and coupling to compare their results with 
ours.

Our results are limited to the concentration of 
dependencies over source code lines with respect 
to module size. Future studies could also investi-
gate the effect of refactoring on the size-coupling 
relationship in more depth and whether some of 

correspond to some welfare categories—for example, the 
income categories for neighborhoods described as very 
poor, poor, middle-class, rich, and very rich. In the grouped 
case, the group sums are used to calculate the proportions of 
people and ill health.

By definition, the concentration index (denoted with C), 
which is the measure of inequality, is twice the area between 
the concentration curve and the equality line. This area is the 
shaded part of Figure A. The socioeconomic-related inequal-
ity of ill health increases as the shaded area increases. C 
becomes zero when the concentration curve exactly overlaps 
with the equality line. It can take any value between +1 and 
-1. In our research, when the curve rises above the equality 
line, C increases toward +1; it decreases toward -1 when the 
curve drops below the equality line. (In health-related fields, 
C usually decreases when the curve rises above the equality 
line because ill health for the disadvantaged [or poor] is a 
more common and undesirable phenomenon. We followed 
the opposite of this convention to simplify the presentation in 
the main article.)

For the products in our study, we plotted the cumulative 
proportion of total coupling (on the y-axis) versus the cumu-
lative proportion of total lines of source code (on the x-axis) 
grouped and ordered by class size. That is, we adopted 
the grouped case we just explained and used class size (in 
a way similar to the welfare categories) to group lines of 
source code. In this scheme, each unique class size formed 

a size category. Then, we ordered the size categories from 
the smallest to largest and calculated the cumulative propor-
tions for each category to draw the concentration curves and 
to calculate C. We calculated the variance and confidence 
interval for C using the method detailed by Nanak Kakwani 
and his colleagues.1

When this process is followed, if our hypothesis is true, 
coupling should be concentrated in the source lines in small-
er modules, and the concentration curves obtained should 
resemble the one in Figure A rising above the equality line. 
Such a curve’s C value should be positive, and, if the concen-
tration effect is significant, the 95 percent confidence interval 
for C should remain above zero.

To summarize, the concentration curve lets us visualize the 
nonlinear relationship between module size and coupling. 
The concentration index, C, quantitatively summarizes the 
visual information that curve presents. The sign of C indicates 
the coupling concentration’s direction (that is, positive when 
coupling is concentrated in the source code lines in smaller 
modules, and vice versa). Its absolute value shows the con-
centration’s strength; its statistical significance is important 
and should be calculated.

Reference
	 1.	 N. Kakwani, A. Wagstaff, and E. Van Doorslaer, “Socioeconomic 

Inequalities in Health: Measurement, Computation, and Statistical Infer-
ence,” J. Econometrics, vol. 77, no. 1, 1997, pp. 87–103.
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the process and people characteristics (developer 
skill or experience, testing or inspection effort, 
and so on) have any effect on this relationship.

O ur study has two implications for practice.
First, our findings provide a plau-

sible mechanism to explain why smaller 
modules have proportionally more defects as ob-
served in our earlier studies and in Victor Basili 
and Barry Perricone’s research (see the “Basili and 
Perricone’s Work on Module Size and Defect Den-
sity” sidebar). Coupling is concentrated more in 
the smaller modules, making them proportionally 
more defect-prone. This evidence will be useful to 
practitioners when they seek resources or support 
to amend or revise their organizations’ QA and 
QC practices.

Second, refactoring exacerbates the coupling 
concentration in smaller modules. So, for projects 
that refactor extensively, focusing defect detection 
and correction on smaller modules will increase 
the QA and QC effectiveness even more.

Certainly, we don’t claim that software devel-
opers should avoid refactoring. Refactoring is es-
sential for software development and maintenance 
because of its system-wide benefits. Our findings 
are only about the effect of refactoring on cou-
pling concentration with respect to module size, 
which has implications in terms of the effective-
ness and efficiency of focused defect detection ac-
tivities often performed with limited resources.

Empirical studies investigating our findings 
and their implications will further contribute to 

the software field’s knowledge and capacity to de-
velop and maintain high-quality software systems 
effectively and efficiently.
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Victor Basili and Barry Perricone studied defect density for 
different size groups and observed higher defect density 
for smaller modules.1 However, their analysis suffered from 
artificial ratio correlations.2,3 When defect density is plotted 
against size or tabulated against size groups, even randomly 
generated data will show higher defect density for smaller 
modules because size is in the denominator of the derived 
metric, defect density.

Nevertheless, Basili and Perricone concluded that smaller 
modules are proportionally more problematic; our recent 
findings4–6 concur with their observation. Then, they specu-
lated that the equal distribution of interface defects over 
smaller and larger modules could have been responsible 
for their finding, which implies that smaller modules had 
proportionally more interface defects. Their definition of in-
terface defects was “those (defects) that were associated with 
structures existing outside the module’s local environment but 

which the module used.”1 This definition exactly describes the 
defects associated with coupling. So, our findings in the main 
article about a higher concentration of coupling in smaller 
modules shows that Basili and Perricone’s speculation was 
plausible.
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